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ABSTRACT Energy aware scheduling and reliability are both very critical for real-time cyber-physical
system design. However, it has been shown that the transient faults of a system will increase when the
processor runs at reduced speed to save energy consumption. In this paper, we study total energy and reliability
scheduling co-design problem for real-time cyber-physical systems. Total energy refers the sum of static and
dynamic energy. Our goal is to minimize total energy while guaranteeing reliability constraints. We approach
the problem from two directions based on the two different ways of guaranteeing the reliability of the tasks.
The first approach aims at guaranteeing reliability at least as high as that of without speed scaling by reserving
recovery job for each scaled down task. Heuristics have been used to guide the speed scaling and shutdown
techniques that are used to lower total energy consumption while guaranteeing the reliability. The second
way to guarantee the reliability of the tasks is to satisfy a known minimum reliability constraint for the tasks.
The minimum reliable speed guarantees the reliability level of tasks, and is used as a constraint in the energy
minimization problem. Both static and dynamic co-design methods are explored. Experimental results show
that our methods are effective.

INDEX TERMS Real-time systems, dynamic energy, static energy, leakage control, reliability.

I. INTRODUCTION
With the advance of engineering and networking technology,
many devices are now connected into a network or with
the Internet. Embedded systems are emerging into Cyber-
Physical Systems (CPS) [7], [19], [28]. A cyber-physical sys-
tem is strongly coupled with physical systems, functioning as
sensor based systems, on-line monitoring systems, or on-line
controlling systems. A cyber-physical system can be found
in diverse areas such as automotive, aerospace, health care,
transportation, building and process control, entertainment
etc.

There are challenges related to various aspects on design-
ing Cyber-Physical Systems [11], [14], [18], [31]. In this
paper, we study scheduling methods in CPS systems that take
both energy consumption and system reliability into account.
Unlike desktop systems, many Cyber-Physical Systems oper-
ate with limited energy supply. Therefore, energy efficient

computing and communication, and energy aware resource
management are of great importance to CPS [5], [23], [29],
[34], [42]. Reliability is also of extreme importance in many
of these CPS such as aerospace systems, transportation sys-
tems and medical monitoring systems [4], [41].
The energy consumption of the CPS in this paper refers

to the sum of static and dynamic energy of the CMOS based
processing unit and/or communication links. Dynamic power
consumption is caused by switching activities of transistors
and has been previously considered as the dominant part of
system energy consumption. Static energy, also called leak-
age energy, is consumed whenever the processor is on. Static
(Leakage) energy consumption is comparable to the dynamic
energy consumption in modern chips, and thus cannot be
ignored anymore. According to [30], with processor size
shrinking, supply voltages and threshold voltages of CMOS
circuits shrink too, which results in exponential increases in
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sub-threshold leakage current. At and under 70 nm processor
technology, the static power consumption occupies more than
50% of total energy. In order to obtain minimal total energy
consumption, static power consumption must be considered
together with dynamic power consumption. Dynamic Volt-
age Scaling (DVS) method can reduce dynamic energy con-
sumption by scaling down the voltage level. Leakage control
method can reduce static energy consumption during idle
period. DVS and Leakage control method can be combined
to reduce total energy consumption.

Reliability of a job is defined as the probability of the job
being correctly executed before its deadline [44]. Many CPS
used in critical areas such as defence, aerospace, and nuclear
power generation require high-level reliability. For a CPS,
fault occurs unpredictably during run time due to various
reasons, such as hardware failures, electromagnetic interfer-
ences as well as the effects of cosmic ray radiations [44].
If the faults are not dealt with in time, it may lead to a
disaster. Faults usually can be classified as transient faults and
permanent faults, and the transient faults occur much more
frequently than permanent faults [2]. We only concentrate on
transient faults in this work. It has been reported that when
CPU runs with a reduced speed, the transient faults of the
system will increase and thus the reliability of the system is
reduced [45].

In this paper, we will focus on the total energy and relia-
bility co-design problem considering a set of periodic tasks
scheduled with Earliest Deadline First (EDF) policy. The
tasks here can be sensing, computing or communicating tasks.
Aswe consider highly reliable CPS, theworst execution times
of the tasks are assumed known in a priori. Two approaches
are used to manage reliability and total energy scheduling
co-design.

1) Low total energy consumption with guaranteed relia-
bility at least as high as that without voltage scaling:
The first approach aims at guaranteeing reliability at
least as high as that without voltage scaling while at
the same time reducing total energy. It is achieved
by heuristically applying leakage control methods to
previous reliability-aware DVSmethods [39], [45] such
that total energy can be reduced.

2) Minimum reliability level as a constraint to the energy
minimization problem:
The second approach aims at minimizing energy con-
sumption with reliability as a constraint. The minimum
reliable speed guarantees the reliability level of a task,
and can be derived by looking up the reliability curve.
The minimum reliable speed constraint will be used as
a constraint in the energyminimization problem, solved
with convex optimization techniques.

The organization of the rest of the paper is as follows. Section
2 presents related works. Section 3 introduces the models we
use in this paper. Sections 4 and 5 present detailed algorithms
about the two aspects. Then Sections 6 and 7 discuss our
simulation results and conclusions.

II. RELATED WORKS
Energy management of CPS has gained a lot of attention.
There are two commonly used techniques to lower the energy
consumption in CPS: slowdown and shutdown. Slowdown
technique is used in Dynamic Voltage Scaling (DVS) to
reduce dynamic energy consumption in processing units or
communication links. Shutdown technique can put some
computing nodes, sensing nodes, communication links or
other devices to sleep to save static energy. Next, we describe
the related works on dynamic and static energy management.
We will also describe previous works on reliability aware
DVS scheduling. Then we will discuss the framework of our
works on reliability aware scheduling that integrates both
slowdown and shutdown technique in order to save energy
and maintains reliability of the system.

A. DYNAMIC VOLTAGE SCALING
The Dynamic Voltage Scheduling (DVS) strategy is an effec-
tive strategy to reduce dynamic power consumption. Most
processors in current computer systems are composed of
CMOS circuits. DVS can be used to reduce the energy con-
sumption of processors or interconnection networks [27],
[32]. When the workloads is light, a processor or communi-
cation link does not need to execute with maximum speed.
Instead, its execution frequency can be slowdown. The time
to finish the job is extended accordingly. Since the energy
dissipated per cycle with CMOS circuit scales quadratically
to the supply voltage, DVS can provide a large energy saving
by frequency and voltage scaling. A lot of DVS based real-
time scheduling algorithms without considering static power
have been proposed to reduce energy [16], [24], [36], [37].

B. STATIC POWER MANAGEMENT
With the development of processor technology, the energy
saved by DVS has been significantly limited with the dra-
matic increase of the static power consumption caused by
leakage current. According to [30], with processor size
shrinking, supply voltages and threshold voltages of CMOS
circuits shrink too, which results in exponential increases in
sub-threshold leakage current. At 180 nm, the leakage current
is negligible so the static power consumption can be ignored.
At 130 nm, static power consumption occupies 10% to 30% of
total energy. At 70 nm, the static power consumption occupies
more than 50% of total energy. So at and under 70 nm process
technologies, static power consumption would be as impor-
tant as dynamic power consumption. While DVS effectively
reduces the dynamic power consumption caused by switching
or transistors, the execution time to finish jobs would be
extended which leads to more static power consumption.
Note that when the processor is idle, the static power is still
consumed. So the total energy is not as efficiently saved as
that would be when we only consider dynamic power con-
sumption with DVS. In order to obtain the minimum of total
energy consumption, we must take static power consumption
into consideration.

354 VOLUME 1, NO. 2, DECEMBER 2013



Lin et al.: Scheduling Co-Design for Reliability and Energy in Cyber-Physical Systems

IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING

Leakage control method takes static power consumption
into consideration. The main idea is to shutdown the proces-
sor when it is idle and then wake it up when the next job
comes. The longer the idle interval, the more static power
consumption can be saved with power shutdown. Shutting
down and waking up a processor cost energy. Procrastination
method is used to help avoid frequent shutdown. The idea is to
delay the execution of an incoming job, so that small intervals
can be merged for power shutdown to save more energy (less
shutdown overhead).

0 1 2 43 65 7 8

Idle time = 2 Idle time = 2

J1 J2

(a)

80 1 2 43 65 7

Idle time = 4

J1 J2

(b)

FIGURE 1. Leakage control method. (a) Power shutdown.
(b) Procrastination.

Fig. 1 shows a simple example [25] about processor shut-
down and task procrastination strategy. Suppose there are two
jobs J1 (a1 = 0, d1 = 3, e1 = 2) and J2 (a2 = 4, d2 = 8,
e2 = 2), where ai, di and ei are the arrival time, deadline
and worst-case execution time (WCET) of Ji respectively. In
Fig. 1(a), the processor is shut down twice during the idle
intervals. But if J2 is not executed until time point 6 (pro-
crastination), the processor only needs to be shutdown once
and can get the same length of idle interval while meeting the
deadlines, as shown in Fig. 1(b).

Lee et al. are the first ones who used leakage control [12]
LC-EDF extends the idle interval by procrastinating the next
coming job as late as possible when the processor is idle.
But this algorithm only uses power shutdown to save static
power consumption. It does not consider DVS technology to
save dynamic power consumption, which means all the tasks
are executed at maximum speed. Thus this algorithm does
not optimize the total power consumption. Jejurikar et al. [8],
[10] proposed a static task-level algorithm called CS-DVSP,
which computes themaximumprocrastination length for each
task based on the utilization factor while meeting all time
constraints. This algorithm combines the DVS, power shut-
down and procrastination method together successfully and
gets a much better power performance for periodic tasks. But
in their algorithm the procrastination length of every job gen-
erated by the same task has the same length. Meanwhile, CS-
DVSP can only be applied when the relative deadline is equal
to the period of each task. Further, in [9], Jejurikar et al. also
proposed a dynamic algorithm to reduce total energy based
on their previous theory. Chen et al. made some improve-
ments to CS-DVSP, and developed a new algorithm called
P-Procrastination [3]. The idea is to control the ratio for the
residual interval and the procrastination interval so that the
procrastination is less greedy. It is proved that greedy procras-
tinationmight sacrifice the possibility to turn off the processor
in the near future, and hence, might consume more energy.

Niu and Quan [24] proposed a static job-level algorithm
called DVSLK which also adopts leakage control method
and DVS strategy to manage power. Since this is a job-level
static algorithm, the procrastination length is determined for
every job much more precisely. Meanwhile, it can also be
applied when the deadline is not equal to the period for each
task.
These existing algorithms [3], [8]–[10], [12] which com-

bine DVS and leakage control method for power management
did not consider reliability.

C. PREVIOUS WORK ON RELIABILITY AWARE DVS
ALGORITHM
Some researches have been studied to combine the DVS
and fault tolerance together, aiming at reducing power con-
sumption while processing all the faults successfully and
meeting all the time constraints [33], [38]. Most of these
previous researches either focused on tolerating fixed num-
ber of faults or assumed constant fault rate when apply-
ing DVS for energy savings. Zhu et al. are the first ones
who considered changed fault rate when exploring the trade-
off between reliability and energy consumption in real-time
embedded systems. Studies show that reducing the supply
voltage for lower frequency during the power management
would result in exponentially increased fault rates [45].
It means the excess of implementing DVS during the power
management would lead to lower reliability of the real-time
system.
Previous work focuses on either power management with

DVS and leakage control method, or reliability guaranteed
algorithms with DVS technique only. Zhu et al. proposed
static task-level reliability aware algorithms SUF/LUF and
corresponding dynamic algorithms for periodic tasks [44].
Although the leakage power has been considered in the algo-
rithm, the processor are not put into sleep during scheduling.
Our method SUF-L [26] extends SUF with leakage control
method. To the best of knowledge, this is the first research
effort that tries to derive better energy performance with the
combination of shutdown and slowdown techniques while the
reliability of the system is guaranteed.
SHR proposed by Zhao et. al. [39] adopts single fault

assumption and uses shared-recovery technique where a
shared recovery block/slack that can be used by any faulty
task at run-time. SHR is more efficient than SUF, and gets
much better energy performance. However, SHR only works
for a periodic task set with tasks of the same deadline/period.
Our second method SUF-S [26] is to extend the shared-
recovery technique to the case where the periods of the tasks
in the task set may be different. Zhao et al. also proposed a
technique called Generalized Shared Recovery (GSHR) [40]
where multiple shared recovery block can be used by any
faulty task. Given a reliability goal, GSHR determines the
optimal number of recoveries and the task-level process-
ing frequencies to minimize the energy consumption while
achieving the reliability goal and meeting the timing con-
straints.
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D. OUR WORKS
Considering the two approaches mentioned in Section 1, our
works can be illustrated from the two aspects (see Fig. 2).
First, under the requirement of guaranteed reliability as with-
out DVS, SUF/LUF [44] algorithms are adopted to reserve
enough slacks for potential recovery job. Then, we use leak-
age control method and shared-recovery technique to reduce
energy consumption [26]. In this paper, we would further
improve the energy performance with slack reclaim tech-
nique. Second, when reliability level is given as a constraint,
the problem can be formulated and solved with convex opti-
mization technique. Further, we use leakage control method
to improve the energy performance as well.

FIGURE 2. Framework for energy and reliability co-design.

III. MODELS
Next, we show the models, which are also adopted in [26].

A. TASK MODEL
The task model under consideration is a periodic task set.
Each task Ti is modelled as (ai, ei, di, pi), 1 ≤ i ≤ n
where n is the number of tasks; ai is the arrival time; ei is
the worst case execution time (WCET) when the processor
runs with maximum speed (smax will be normalized to 1);
di is the deadline; and pi is the period of the task. There
have been works on estimating the WCET of tasks (either
computational tasks or communication tasks) of various types
of programming language, under various architecture [1],
[13], [15], [17], [35].

The tasks are scheduled with preemptive EDF policy.
Schedulability test checks whether all the tasks can be fea-
sibly scheduled without missing any deadline. For periodic
tasks scheduled by a preemptive EDF scheduler on a single
processor, the schedulability test condition is that all the
periodic task set’s total utilization is equal to or less than
100% [20], that is, U =

∑n
i=1 (

ei
pi
) <= 1, 1 ≤ i ≤ n.

B. POWER MODEL
We adopt the power model in [10]. The power consumption
of the tasks can be divided into two parts: dynamic power
consumption (Pdyn) and static power consumption (Pstat ).
Dynamic power consumption consists of the switching power

for charging and discharging the load capacitance, and is
defined as: Pdyn(f ) = Ceff V 2

dd f , where Ceff is the effective
switching capacity,Vdd is the supply voltage and f is the oper-
ating frequency/speed. Static power consumption consists of
the power consumed by the subthreshold leakage and the
reverse bias junction current [22]. The static power per CMOS
circuit is defined as: Pstat(f ) = Vdd × Isubn+|Vbs|× Ij, where
Vdd is the supply voltage, Isubn is the subthreshold current,
Vbs is the body bias voltage and Ij is the reverse bias junction.
Thus, the total energy consumed during the active mode for
time period t is

E(f ) = Pdyn(f ) × t + Lg × Pstat(f ) × t, (1)

where Lg is the number of logic gates in the processor circuit.

C. CRITICAL SPEED
scri, the critical speed (or threshold speed), is defined as
the speed to execute a cycle with the minimum total energy
consumption [3], [10], [24], [44]. When processor is active
(not idle), either increasing or decreasing the processor speed
would consume more total energy than executing with scri.
However, not all the jobs can be executed with scri, as it will
cause some jobs missing deadlines. Therefore, the jobs of a
system would be executed with the speeds between scri and
smax .

D. FAULT MODEL
The transient fault of the system will increase when the
system runs at a reduced speed [45]. Assuming the transient
faults follow Poisson Distribution [38], the average transient
fault rate for a job running at frequency f and voltage V
is [45]:

λ(f ,V ) = λ0 × g(f ,V ), (2)

where λ0 is the average fault rate corresponding to Vmax and
fmax . At the lowest frequency fmin and supply voltage Vmin,
the average fault rate is assumed to be [45]:

λmax = λ0 × 10d , (3)

d(> 0) is a constant. So for the job running at f and V where
V = f × Vmax = f (Vmax is normalized to be 1), the average
transient fault rate can be expressed as [45]:

λ(f ,V ) = λ(f ) = λ0 × 10
d(1−f )
1−fmin , (4)

from Formula (4), we can easily derive that g(f ,V ) =

10
d(1−f )
1−fmin > 1 for f < fmax and reducing the supply voltage

for lower frequency results in exponentially increased fault
rates.
For a given average error occurrence rate of λ, according

to the Poisson model, the probability of r occurrences in a
unit interval is given by P(X = r) = e−λλr/r !. When r = 0,
we can derive the probability of no fault during an interval of
interest. The probability of no-fault (Pnf ) during the running
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interval of a job with execution time ei at a given speed s can
thus be expressed [45] as

Pnf (s) = e−λ(f ,V )×
ei
s . (5)

Equation (5) not only considers the duration of the job
(which is determined by the execution time of the job and
the speed s used to run the job), but also the average fault rate
determined by the frequency and voltage change (equation 4).

Fig. 3 shows the probability of no fault under various
speeds for job J (with execution time ei = 10, constant
d = 2 and fmin = 0.41). If we define the reliability level as
the no-fault probability. One can observe that the reliability
loss depends on how much the speed is scaled down. If one
requires that the task has only up to 0.01% reliability loss,
then the no-fault probability due to task slow down has to be
bigger than 99.99% and the corresponding minimum speed
of the task will be set to 0.75.
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FIGURE 3. Probability of no fault.

IV. GUARANTEEING RELIABILITY AS TASKS NOT
SCALED
The fist approach guarantees reliability at least as high as that
without voltage scaling by reserving recovery job for each
scaled down task. This approach is based on the previous
reliability aware DVS algorithms [45]. In order to guarantee
that the reliability of every job after implementing DVS be
no less than its original reliability (which means the prob-
ability of correctly completing the job at maximum speed),
a recovery job is arranged after each scaled down primary
job [45]. Although the leakage power has been considered
in these reliability aware DVS algorithms [39], [45], the pro-
cessor is always active during the scheduling. Our approach
is to extend these previous methods with leakage control
method.

A. STATIC ALGORITHMS
Our previous method SUF-L [26] is the first method that
extends a reliability aware DVS algorithm SUF with leakage
control method.

Essentially, SUF-L determines the scaled speed of each
task and when to shutdown the processor. To guarantee relia-
bility, each scaled down task will be arranged with a recovery
job to calculate the initial scaled down speed of the tasks.
The initial speed is calculated statically by SUF [45] which
chooses the firstm smallest utilization tasks to scale down and
reserves time slots for each scaled down task. SUF-L then pre-
computes procrastination length for each task. The execution
speed and procrastination length of every job generated by
the same task would be the same. The procrastination length
calculation is based on an existing procrastination algorithm
CS-DVSP [10]. The difference is that in our calculation, in
order to guarantee the reliability of the system, we must
reserve some slacks for potential recovery job tolerance.
At run time, the scheduler schedules the tasks using EDF

policy and sets the speed of the tasks as the precalculated
initial speed. If any fault occurs during the execution, then a
recovery job with a maximum speed will be executed. When
the processor is idle, the scheduler will determine whether
shutting down the processor or not based on the precalculated
critical interval. The detailed algorithm for SUF-L can be
found in Algorithm 1 [26].

Algorithm 1 SUF-L: The Leakage Control Algorithm
1: Calculate initial speed for each task by SUF;
2: Calculate procrastination length Li for each task i;
3: During the scheduling:
4: if (Processor is not idle) then
5: Schedule jobs according to EDF policy;
6: else
7: Calculate next coming job Ji’s arrival time ai;
8: Judge if there is any job Jj’s arrival time aj is between

ai and (ai + Li);
9: Set the wake up time to be min(ai + Li, aj + Lj);
10: if (sleep time interval is longer than critical interval)

then
11: shutdown the processor until wake up time;
12: else
13: Keep processor in idle state until next job arrives;
14: end if
15: end if

Another method SUF-S is also described in [26] to lower
the total energy consumption by shared-recovery job method
for tasks with various deadlines. This is based on the single
fault occurrence assumption during a job execution [39].
By finding the shared recovery job, the recovery slack can
be used to slow down the tasks further. The algorithm
SUF-LS [26] combines leakage control and shared-recovery
method to achieve better total energy saving while guarantee-
ing reliability with single fault occurrence assumption.
The SUF-L, SUF-S and SUF-LS algorithms are all static

methods where we assume all the tasks run with their worst
case execution time (WCET). The actual execution time
(AET) of a task is normally less than itsWCET. Therefore, the
static algorithms are pessimistic in the energy saving. Next,
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we describe the dynamic algorithms for SUF-L, SUF-S and
SUF-LS algorithms which are named SUF-DL, SUF-DS and
SUF-DLS algorithms, respectively.

B. DYNAMIC ALGORITHMS
The static algorithms assume that every job executes with
WCET. But many jobs finish earlier than their WCETs and
thus generate slacks. For example a program may jump out
of a loop earlier than the worst case once some condition
is met. After taking this fact into consideration, each job
would be finished with an actual workload between best case
workload and worst case workload, and an extra slack time
may be generated. The actual workload of every job can not
be predicted until the job releases.

We denote the slack generated during the scheduling as S̄
(ā, l̄, ē, d̄) where ā stands for slack’s arrival time, l̄ stands
for the slack’s length, ē stands for slack’s end time, and d̄
stands for slack’s deadline. While constructing slack during
scheduling, the following rules would be followed: ā is equal
to the source job’s finish time, l̄ is unused workload divided
by job’s execution speed and ē = ā + l̄. Note that, in
order to guarantee the schedulability, a new slack inherits the
deadline of the early-completed source job which generates
the slack. For performance of the dynamic algorithm, we use
a conservative slack reclaiming method. Any future job that
wants to reclaim a slack must satisfy that it arrives before
slack’s end time and the job’s deadline is no earlier than the
slack’s deadline [44].

1) SUF-DL: THE LEAKAGE CONTROL DYNAMIC
ALGORITHM
Next, we describe SUF-DL (shown in Algorithm 2) which
uses the slack-reclaim technique with SUF-L to exploit the
run-time variations in task execution for further total energy
saving.

In the case when AET is less than WCET, a slack will be
generated for a job. With these extra idle intervals, we can
apply leakage control more often than SUF-L.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

J11 J21 J31 J12 J22 J32 J13

0

J11 J21 J31 J12 J22 J32 J13

362 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 340

(a)

(b)

FIGURE 4. SUF-L and SUF-DL.

We adopt the following periodic task set illustrate SUF-
DL: {T1(p1 = 12, e1 = 2), T2(p2 = 17, e2 = 1), T3(p3 =
18, e3 = 4)}. Fig. 4 shows the scheduling results of applying
SUF-L and SUF-DL algorithms to the above task set. After
applying SUF algorithm, T1 and T2’s initial speed is 0.58,
T3’s initial speed is 1 and the new utilization is 0.61. Then
we can calculate the procrastination length (Li) of every task
and result in L1 = L2 = L3 = 3.

In SUF-DL, during the scheduling, suppose the actual
workload of J31 is 2, so J31 finishes at time 7.17, earlier
than time 9.17 in SUF-L. A slack S̄31(ā31 = 7.17, l̄31 = 2,
ē31 = 9.17, d̄31 = 12) is constructed which can be used to
extend the shut down length. In this case, the processor can
be shut down for 7.83 time units, which is longer than that in
SUF-L. At time 15, J12 arrives with the actual workload 1.5.
A slack of S̄12(ā12 = 17.58, l̄12 = 0.46, ē12 = 18.44, d̄12 =
24) is generated after J12 is finished, which can be used
to further reduce J22’s execution speed from 0.58 to 0.53.
Scaled down speed can efficiently reduce dynamic power
consumption and with the longer idle interval, the processor
can be shut down for a longer time to save more static power
consumption. So, with the reclaimed slack technique, the total
energy consumption is further reduced. The time complexity
of SUF-DL is O(N 2) (N is the number of tasks in a task set).

Algorithm 2 SUF-DL: The Leakage Control Dynamic
Algorithm
1: Calculate initial speeds for each task by SUF;
2: Calculate procrastination length for each task;
3: At each time tick
4: Update the slack list;
5: if (Processor is not idle) then
6: On execution of a new job Ji:
7: if (si is between scri and smax and slack list is not

empty) then
8: Use slack if there is any, for scaling down the current

executing job ;
9: end if
10: Schedule jobs according to EDF policy;
11: if (Ji is finished with unused workload) then
12: Construct the slack and put it into slack list;
13: end if
14: else
15: Calculate next coming job Ji’s arrival time ai;
16: Judge if there is any job Jj’s arrival time aj is between

ai and (ai + Li);
17: Set the wake up time to be min(ai + Li, aj + Lj);
18: if (sleep time interval is longer than critical interval)

then
19: shutdown the processor until wake up time;
20: else
21: Keep processor in idle state until next job arrives;
22: end if
23: end if

During scheduling, all slacks are stored in a slack list
according to the deadlines. Earlier generated slacks would be
placed forward. A slack S̄i(āi, l̄i, ēi, d̄i) can be reclaimed by
Jj(aj, ej, dj) in the two following situations:

• āi ≥ aj & ēi ≤ dj & d̄i ≤ dj, the whole slack can be
reclaimed.

• āi ≤ Ej & ēi ≤ dj & ēi ≥ aj & d̄i ≤ dj, only the slack
from aj to ēi can be reclaimed.
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Meanwhile, in order to guarantee the reliability, for jobs
with initial speeds less than maximum speed, slacks can be
reclaimed once slacks satisfy the above conditions. For jobs
with initial speeds equal to maximum speed, the slacks can
be reclaimed only if it is long enough to tolerate the primary
job. This is because in the case when the execution speed
is smax , no recovery job was reserved. If the slack allows a
scale down, a recovery job has to be reserved to guarantee
reliability. The slack has to be at least as long as the primary
job in order for the scale to occur without compromising the
reliability.

Algorithm 3 SUF-DS: The Shared-Recovery Dynamic
Algorithm
1: Calculate initial speed for each task by SUF;
2: At each time tick
3: Update the slack list;
4: On execution of a new job Ji:
5: if (si is between scri and smax && slack list is not empty)

then
6: Use the slack, if there is any for the current executing

job;
7: end if
8: if (si is between scri and smax && Ri has never been

shared) then
9: Construct a new job list with all jobs arriving between

ai and di;
10: Schedule the new job list and judge any job Jj can share

recovery job with Ji according to the SRJ rule [26];
11: if (Jj can share recovery with Ji) then
12: Update Ji’s execution speed;
13: Mark Ri and Rj have been shared;
14: end if
15: Schedule Ji with new execution speed under EDF pol-

icy;
16: else
17: Schedule Ji with initial speed under EDF policy;
18: end if
19: if (Ji is finished and there exists unused workload) then
20: Construct the slack and put it into slack list;
21: end if

2) SUF-DS: THE SHARED-RECOVERY DYNAMIC
ALGORITHM
SUF-DS is a dynamic algorithm combining the slack-
reclaim technique and SUF-S. Both slack-reclaim and shared-
recovery can slow down a task further either by making
use of slack or the shared-recovery job. We choose to use
slack-reclaim technique first, and shared-recovery technique
is applied only if the job’s speed is still over critical speed
after slack is reclaimed. There are two reasons for this. One is
that slack has end time and it can not be reclaimed any more
once the end time is missed. And the second reason is that
the complexity of pre-scheduling is higher than that of slack-
reclaim. Note that WCETs are used during pre-schedule for

shared-recovery technique [26]. Algorithm 3 is the detailed
description of SUF-DS algorithm.

3) SUF-DLS: THE COMBINED DYNAMIC ALGORITHM
We further improve SUF-LS with the slack-reclaim tech-
nique. Since the leakage control method, shared-recovery
technique and slack-reclaim technique are all used in SUF-
DLS, we need carefully arrange the structure of algorithm.
Generally, the leakage control method is adopted when pro-
cessor is idle to extend the power down interval and reduce
static power consumption; the shared-recovery technique can
further scale down execution speed when processor is not idle
to reduce dynamic power consumption. The slack-reclaim
technique is able to reduce both dynamic and static power
consumption. In SUF-DLS, we choose to use slack-reclaim
technique first, leakage control method during processor’s
idle time and shared-recovery technique only if the job’s
speed is still over critical speed after slack reclaimed. The
same as SUF-LS, we must use the leakage control method
in pre-scheduling as well when we try to find the sharing-
recovery job in pre-shceduling. The time complexity of SUF-
DLS is O(N 2) (where N is the number of tasks in a task set).
The details of SUF-DLS are described in Algorithm 4.

V. GUARANTEEING MINIMUM RELIABILITY
CONSTRAINT
For a given application, if the maximum tolerable reliability
loss is known in advance, then we can formulate the energy
co-design problem as an optimization problemwith the objec-
tive function as the energy consumption subject to a speed
limit constraint. The minimum speed is set using the relation
between the reliability and speed.
Assume the minimum reliability speed for a periodic task

set is srel . As the critical speed scri is the speed that consumes
the least energy, we set srel to scri when srel < scri. For a
task set including n periodic tasks, the energy minimization
problemwithminimum reliability constraint can be expressed
as follows. (ei, pi, si) represents the execution time, period
and speed of task i.

minimize E(s) =
n∑
i=1

Ei(si) (6)

subject to
n∑
i=1

Ui(si) =
n∑
i=1

ei
si × pi

≤ 1 (7)

srel ≤ si ≤ smax i = 1, . . . , n. (8)

Formula (7) guarantees the schedulability of the system and
the constraint in Formula (8) is to guarantee the reliability
level of the system. The formula can be easily extended to
accommodate the case where each task has an individual reli-
ability constraint. According to [6], Ei(si) strictly increases
with si within the interval [srel, smax] for each task. Thus, there
are two cases for the above problem:
• case 1: If

∑n
i=1 Ui(srel ) ≤ 1.0, then si = srel is the optimal

solution.
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Algorithm 4 SUF-DLS: The Combined Dynamic
Algorithm
1: Calculate initial speed for each task by SUF;
2: Calculate procrastination length for each task;
3: At each time tick
4: Update the slack list;
5: if (Processor is not idle) then
6: On execution of a new job Ji:
7: Judge if there is any slack can be used for the current

executing job;
8: if (si == smax) then
9: Schedule Ji under EDF policy.
10: else
11: if (si < smax and Ri has not been shared) then
12: Construct a job list with the primary job and the

recovery job arriving between ai and di:
13: Pre-Schedule each primary job with recovery job

under EDF policy
14: if (There is idle interval in the pre-schedule) then
15: Judge whether to shutdown processor or not
16: else
17: if (a job can share recovery job with Ji accord-

ing to the SRJ rule) then
18: Update si
19: end if
20: Schedule Ji with speed si under EDF policy
21: end if
22: end if
23: end if
24: else
25: Calculate next coming job Ji’s arrival time ai;
26: Judge if there is any job Jj’s arrival time aj is between

ai and (ai + Li);
27: Set the wake up time to be min(ai + Li, aj + Lj);
28: if (sleep time interval is longer than critical interval)

then
29: shutdown the processor until wake up time;
30: else
31: Keep processor in idle state until next job arrives;
32: end if
33: end if

• case 2: If
∑n

i=1 Ui(srel ) > 1.0, then in the optimal
solution,

∑n
i=1 Ui(si) = 100%.

For case 2, the problem can be transformed to be the
following optimization problem.

minimize E(s) =
∑n

i=1 Ei(si) (9)

subject to
∑n

i=1
ei

si×pi
= 1 (10)

si ≥ srel i = 1, . . . , n (11)

si ≤ smax i = 1, . . . , n. (12)

The above problem has the same form as the ENERGY-LU
problem described in [6], which is a separable convex opti-
mization problem with n unknowns, 2n inequality constraints

and 1 equality constraint. Previous researches [6], [21], [43]
have proved that such convex optimization problem can be
solved by using the Karush-Kuhn-Tucker(KKT) optimality
conditions [39].
As described in [21], for nonlinear problems of the follow-

ing form where f(x) is convex:

minimize f(Ex) = f(x1,...,xn)
subject to g1(Ex) ≤ b1

...

gn(Ex) ≤ bn.

We can find necessary and sufficient KKT conditions sub-
ject to regularity conditions on the constraints gi(x) that are
always fulfilled for linear constraints. At the optimum point
Exe we must have:

∀j :
∂f(Ex)
∂xj
+

∑
λi ×

∂gi(Ex)
∂xj
= 0

∀i : λi × (bi − gi(Ex)) = 0

∀i : λi ≥ 0.

The nonlinear optimization theory states that the solution
of our problem should satisfy KKT conditions as follows.

E ′i (si)− λ
Ui
s2i
+ µ̄i − µi = 0, i = 1, 2, . . . , n (13)

µ̄i(smax − si) = 0, i = 1, 2, . . . , n (14)

µi(si − srel) = 0, i = 1, 2, . . . , n (15)

µ̄i ≥ 0, i = 1, 2, . . . , n (16)

µi ≥ 0, i = 1, 2, . . . , n (17)

where λ, µ̄i, µi are Lagrange multipliers and Ui =
ei
pi
.

Following the steps in [6], we can find the optimal set of
speeds for every task. Details of theory proofs are given in [6]
already, we only briefly introduce the procedure as follows.
In order to solve the original problem, we can solve the

problem without considering upper speed bound first and the
KKT conditions for the new problem is transformed to:

E ′i(si) − λ
Ui
s2i
− µi = 0, i = 1, 2, . . . , n (18)

µi(si − srel) = 0, i = 1, 2, . . . , n (19)

µi ≥ 0, i = 1, 2, . . . , n (20)

where λ, µi are Lagrange multipliers. In order to solve the
problem, we need to find a suitable Lagrange multiplier λ

satisfying λ =
s2i
U2
i
E ′i(si) =

s2j
U2
j
E ′j(sj) ∀i, j. After finding a

certain λ, we can derive a set of speeds that satisfies (17)
and (18) at the same time. If all these derived speeds are less
than upper speed bound, then it is the solution for the original
problem. Otherwise, we set the execution speed of the task
with the smallest period to be maximum speed and calculate
the remaining tasks’ speeds again.
The next question is how to find the reasonable Lagrange

multiplier λ. If the functions of task utilization U(s) and
Lagrange multiplier λ are monotone, then we can use the
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dichotomymethods to find the optimal λ. With variable speed
s (srel ≤ s ≤ smax), U(s) =

e
s×p is monotone decreasing

obviously for any periodic task. The function monotonicity of
λ depends on the power model of the system. One can easily
prove that the Lagrange multiplier λ is monotone increasing
with speeds between srel and smax for the adopted power
model in [10].
Proof 1: For a periodic task Ti with execution speed s,

λ(s) =
s2×pi
ci
× E ′(s) =

s2×pi
ei
× (P(s) ×

ei
s )
′. Using the power

model E in Section III-B with detailed power model parame-
ters in [10], we derive:

λ(s) = pi × [0.6665s3 + 0.6665s2 + (0.052414s2

+ 0.052414s− 0.0572831) (21)

× e1.83(
s
2+0.5) − 13.44× 10−4].

The necessary and sufficient condition of the proof is that
the derivative of the function is larger than 0 for variable s
between srel and smax .

λ′(s) = pi × [1.9995s2 + 1.333s+ (0.104828s+ 0.052414)

× e1.83(
s
2+0.5) + (0.052414s2 + 0.052414s

− 0.0572831)× e1.83(
s
2+0.5) × 0.915]. (22)

After simple transformation, we derive:

λ′(s) = pi × [1.9995s2 + 1.333s+ (0.04795881s2

+ 0.15278681s− 0.0000000365)

× e1.83(
s
2+0.5)]. (23)

All 1.9995s2, 1.333s, (0.04795881s2 + 0.15278681s −
0.0000000365) and e1.83(

s
2+0.5) obviously are larger than 0

for variable s between srel and smax . Thus, λ′(s) is a positive
number as well and λ is monotone increasing for speeds
between srel and smax .

After proving the function monotonicity, we can use Algo-
rithm 5 to find the optimal speed. Here, we define slow and
sup in the algorithm to be the current lower and upper bound
speed in each loop, slow initialized to be srel and sup initialized
to be smax at the beginning.

In step 5, in order to derive other tasks’ speeds with the
same λ, we can use dichotomy method since λ is monotone
increasing with the speed as we have proved. In step 7 to 12,
with the current speed set, if U(s) > 1, it means U(s) should
be smaller. SinceU(s) is monotone decreasing with speed, the
speeds should be higher and the λ would be higher as well.
So we keep the sup and reset the slow =

slow+sup
2 to recalculate

again.
The time complexity of the algorithm is O(N 2), where N

is the number of tasks in the task set.
With the above energy optimization problem with relia-

bility constraints solved, each task’s initial speed is derived.
Since these initial speeds are between srel and smax , there
would still leave some slacks during the scheduling especially
when

∑n
i=1 Ui(srel ) < 1.0. Regardless of these slacks, it would

lead to a waste of energy if the static power is considered.
Thus we adopt leakage control method during idle time and

Algorithm 5 Find Optimal Speed
1: while All speeds in the speed set is no less than srel do
2: while Utilization of the task set is not equal to 1 and

slow < sup do
3: Initialize the first task’s speed to be slow+sup

2 ;
4: Calculate the current λ with the speed;
5: Calculate every other task’ speed with the same λ

and derives si individually;
6: Calculate current task set’s utilization U(s);
7: if (U(s) > 1) then
8: Reset the slow =

slow+sup
2 ;

9: end if
10: if (U(s) < 1) then
11: Reset the sup =

slow+sup
2 ;

12: end if
13: end while
14: if Any task’s speed is less than srel then
15: Fix current the largest period task’s execution speed

to be minimum speed;
16: end if
17: end while

develop a new algorithm called KKT-Pro. In KKT-Pro, the
procrastination length for every task is calculated the same
as that in CS-DVSP [10] in advance. During the scheduling,
each task would execute with initial speed under EDF policy.
While the processor is idle and new job arrives, we find
the longest procrastination length so that the processor can
be shut down for a longer time. The simulation results and
analysis details will be given in Section VI.
The method can be easily extended to the case where srel

is different for different tasks.

VI. SIMULATION RESULTS AND ANALYSIS
In this section, the following algorithms are simulated in a
discrete single processor simulator to evaluate energy and
reliability performance.
The power model and technology parameters of the pro-

cessor used in the simulation are from [22] (The scri for this
model is around 0.4 [10]). The overhead of processor power
down/up is the same as that used in [10], where Pidle =
240mW , E0 = 483µJ , t0 = 2ms, Lg = 4 000 000. In
our simulation, the power settings are the same as those
in [24]. To evaluate energy consumptions, we set up system
utilizations from 0.1 to 0.9 for each algorithm. For each point
in the chart, we generate 20 task sets and each task set is
executed with five million time units. Every task set includes
20 periodic tasks. The periods and the WCETs in each task
set are randomly chosen in the range of [10, 200] and [1, 10],
respectively. Transient faults are assumed to follow the Pois-
son Distribution with an average fault rate of λ0 = 10−6

at fmax per megabit [45]. The same as [44], in order to take
the effects of DVS into consideration, the exponent in the
fault model d = 2, which means the average fault rate with
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smin is assumed to be 100 times higher than that of smax .
The energy consumptions by every algorithm are normalized
to that consumed by NPM. And the probability of failure is
calculated through dividing the number of faulty jobs by the
total number of executed jobs.

A. ALGORITHMS GUARANTEEING RELIABILITY AS TASK
NOT SCALED
In [26], we have shown the simulation results for the static
SUF-L(S)(LS)/LUF-L(S)(LS) based algorithms.

Here, we show the dynamic algorithms of the correspond-
ing algorithms. All jobs’ actual workloads are chosen from
WCET

2 to WCET randomly.
• SUF-DL/LUF-DL: the dynamic leakage control method
combined with SUF/LUF task-level algorithm.

• SUF-DS/LUF-DS: the dynamic shared-recovery tech-
nique combined with SUF/LUF job-level algorithm.

• SUF-DLS/LUF-DLS: the combined dynamic leakage
and shared-recovery job-level algorithm.
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FIGURE 5. Simulation results of the SUF-based dynamic
algorithms. (a) Energy consumption. (b) Probability of failure.

Figs. 5 and 6 show the simulation results of these algo-
rithms. Figs. 5(a) and (b) are about the performance of the
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FIGURE 6. Simulation results of the LUF-based dynamic
algorithms. (a) Energy consumption. (b) Probability of failure.

SUF based dynamic algorithms while Figs. 6(a) and (b) are
about the LUF based algorithms. The performance of SUF
based algorithm is similar to LUF based algorithms.
As shown in Fig. 5(a), compared with static algorithm

SUF-LS, nearly all dynamic algorithms can achieve at least
10% energy saving except for SUF-DS. The exceptional case
(SUF-DS consumes more energy than SUF-LS) occurs when
the system utilization is very low (less than 0.2).When system
utilization is high, we can observe that SUF-DL, SUF-DS and
SUF-DLS save more energy than SUF-LS.
We also observe that SUF-DLS consumes no less energy

compared with that of SUF-DL. The reason is that in dynamic
algorithms, workload is often much less and more slacks
can be merged to shut down the processor in SUF-DL. But
after combining the shared-recovery technique in SUF-DLS,
it may lead to less chances to shut down the processors and
thus the total power consumption is higher. Generally, SUF-
DS can save at most 25% energy, and SUF-DL and SUF-DLS
can reach more than 30% energy saving on average compared
with SUF.
Figs. 5(b) and 6(b) show the probability of failure of these

algorithms. With the recovery jobs arranged in advance, our
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proposed schemes in this section all have lower probability
of failure than NPM, which shows that the reliability of the
system is guaranteed. With the slack-reclaim technique in our
schemes, many jobs’ execution speeds are further decreased.
Therefore, the probability of failure is higher than that
in SUF.

B. ALGORITHMS GUARANTEEING MINIMUM
RELIABILITY CONSTRAINT
• NPM: all jobs are executed with the maximum speed,
and processor is always on.

• UTI: all jobs are executed with max(U , scri), and the
processor is always on. This is supposed to be optimal
if only dynamic power is considered.

• CS-DVSP: a task-level oriented leakage control
method [10].

• KKT: static KKT based task-level algorithm with srel =
scri.

• KKT-Pro: static leakage and reliability considered KKT
based task-level algorithm.
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FIGURE 7. Simulation results of the KKT-based static algorithms.
(a) Energy consumption. (b) Probability of failure.

Fig. 7 shows the simulation results of different algorithms.
In KKT algorithm, without considering reliability, all tasks

can execute from scri to smax . In KKT-Pro, we choose several
srel = {0.6, 0.7, 0.8} to show the different impacts of srel on
energy and reliability aspects.
Fig. 7(a) shows the total energy consumption performance

with different algorithms. According to the results, CS-DVSP
consumes the minimum energy (Note that CS-DVSP does not
take reliability into account.). As the processor is always on
in UTI algorithm, UTI algorithm is no longer the optimum
scheme for energy performance with static energy is con-
sidered. Without considering probability of failure, original
KKT algorithm consumes almost the same energy compared
with UTI. After taking reliability into consideration, KKT-
Pro-0.6/0.7/0.8 consumes more energy. With higher relia-
bility speed, the lower bound of the speed is higher and
more dynamic power is consumed. Comparedwith CS-DVSP,
KKT-Pro-0.6 consumes at most 4% more energy on average,
while KKT-Pro-0.7 with 7% more and KKT-Pro-0.8 with
10% more.
Fig. 7(b) shows the probability of failure with differ-

ent algorithms. Without considering any power manage-
ment method, NPM has the lowest probability of failure.
CS-DVSP and UTI have the highest probability of fail-
ure, almost 10/50/70 times higher than KKT-Pro-0.6/0.7/0.8,
which means if 1 000 000 jobs are executed, more than 500
faults would occur with CS-DVSP and UTI while only less
than 50/10/7 faults would occur with KKT-Pro-0.6/0.7/0.8.
Although the reliability of the system can not be guar-
anteed (as high as that without DVS) by KKT-Pro, with
4%/7%/10%more energy consumption, KKT-Pro-0.6/0.7/0.8
have some reliability improvements compared with KKT
algorithm.

VII. CONCLUSIONS
After taking both static power management and system reli-
ability aspects into consideration, energy saving algorithm
design using both slowdown and shutdown techniques in
cyber-physical systems becomes more complicated. In this
work, we propose algorithms to approach total energy and
reliability co-design problem from two different aspects. The
first is to maintain reliability level via reserving recovery
task and further use the leakage control method and the
shared-recovery technique to lower total energy. The sec-
ond one minimizes total energy consumption with reliability
expressed as a constraint. Both static and dynamic algorithms
have been described. The proposed algorithms are evaluated
through simulation. The results show the effectiveness of our
algorithms using both slowdown and shutdown techniques for
scheduling co-design for reliability and total energy in real-
time CPS.
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