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Abstract—We propose a novel attack, called an “Audio Hotspot Attack,” which performs an inaudible malicious voice command attack,
by targeting voice assistance systems, e.g., smart speakers or in-car navigation systems. The key idea of the approach is to leverage
directional sound beams generated from parametric loudspeakers, which emit amplitude-modulated ultrasounds that will be
self-demodulated in the air. Our work goes beyond the previous studies of inaudible voice command attack in the following three
aspects: (1) the attack can succeed on a long distance (3.5 meters in a small room, and 12 meters in a long hallway), (2) it can control
the spot of the audible area by using two directional sound beams, which consist of a carrier wave and a sideband wave, and (3) the
proposed attack leverages a physical phenomenon i.e.,non-linearity in the air, to attack voice assistance systems. To evaluate the
feasibility of the attack, we performed extensive in-lab experiments and a user study involving 20 participants. The results
demonstrated that the attack was feasible in a real-world setting. We discussed the extent of the threat, as well as the possible
countermeasures against the attack.

Index Terms—Voice assistance systems, Voice commands attack, Ultrasonic, Security, Acoustics, Internet of Things
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1 INTRODUCTION

VOICE assistance systems, such as Siri [2], Google Assis-
tant [3], and Amazon Alexa [4] have become increas-

ingly popular as a means to establish user-friendly human–
computer interactions. Voice assistance systems are now
supported on various devices, e.g., smartphones/tablets,
smart speakers, automobiles, smart homes, smart watches,
smart TVs, media boxes, and laptops/desktops. Voice assis-
tance systems can integrate speech recognition to demon-
strate various skills such as providing recommendations
to restaurants, reading out schedules, and even purchasing
products when an appropriate voice command is given.

While these voice assistance systems have clear benefits
in daily life activities, they also raise intrinsic security and
privacy concerns. One of the most serious security issues
related to the use of voice assistance systems is the lack
of a rigorous mechanism to guarantee the trustworthiness
of the voice source that operates the system. As previous
studies have demonstrated [5], [6], voice assistance systems
are vulnerable to “inaudible voice command attacks.” Here,
an attacker can issue voice commands to a voice assistance
device unbeknownst to the device owner. For instance, if an
attacker generates an inaudible voice command that adjusts
the volume of the music player set in a car to its maximum,
the driver may be surprised or momentarily distracted, thus
increasing the likelihood of an accident. Recent studies have
leveraged existing vulnerabilities of the device or software.
In Ref. [6], the authors found that ultrasound can be used
to convey inaudible voice command attacks, by using the
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Fig. 1. Overview of the Audio Hotspot Attack. Top: Attack with one para-
metric loudspeaker (linear attack). Bottom: Attack with two parametric
loudspeakers (cross attack). In the yellow colored area, you can hear
the sound.

vulnerability of the amplifier. Hidden voice commands [5]
used the vulnerability of machine learning models that
incorrectly recognize noise as normal commands.

We propose a novel inaudible voice attack, named Audio
Hotspot Attack, which leverages the physical phenomena. In



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2019.2953041, IEEE
Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 2

this attack, attackers attempt to input directional sound to
voice assistance systems as shown in Figure 1. Directional
sound is generated by using the nonlinearity of ultrasonic
waves in the air. When the modulated ultrasound passes
through the air, which acts as a nonlinear medium, the
signal is demodulated into audible sound even if a de-
modulation circuit is not prepared. It is well known that
the demodulated sound signals exhibit higher directivity
than those emitted from a normal loudspeaker [7], [8]. To
generate directional sound, we make use of a parametric
loudspeaker, which composes of an array of ultrasound
transducers.

The attack proposed in this paper is different from
previously proposed attacks in that it leverages physical
phenomena that cannot be modified or eliminated. As the
previous attacks use vulnerabilities associated with hard-
ware or software, they can be fixed, e.g., by modifying the
machine learning algorithm or eliminating the nonlinearity
of the microphone. In contrast, the nonlinearity of air is a
natural phenomenon, and it is impossible to take measures
against it using conventional approaches.

Furthermore, the adoption of parametric loudspeakers
enables an attacker to perform a unique form of the attack,
called a cross attack. As shown at the bottom of Figure 1,
an attacker sets two parametric loudspeakers in different
places and transmits directional sound beams to the target
voice assistance device. The two sound beams are inaudi-
ble because each sound beam consists of a carrier wave
or sideband wave with ultrasound frequency. The sound
beams become audible where the two beams cross at a point;
i.e., they become an AM sound wave. An attacker can take
control of the cross point by adjusting the sources of the two
sound beams.

To evaluate the feasibility of the attack, we pose the
following research questions:

RQ1: Is the Audio Hotspot Attack feasible at long distance with
off-the-shelf voice assistant devices?

RQ2: Does the Audio Hotspot Attack succeed in noisy practical
environments?

RQ3: Is the attack stealthy for nearby people and unrecognizable
for them?

We aim to answer these questions through extensive exper-
iments and user studies involving 20 participants.

The contributions of this work can be summarized as
follows:

• We proposed a novel inaudible voice command at-
tack that targets voice assistance systems, leveraging
the directional sound beams to create a “hotspot” of
the attack success area (Section 3).

• We carefully designed and controlled our experi-
ments. We used a room and equipment dedicated
to acoustic experiments (Section 4).

• We demonstrated that the attack could succeed at
a long distance. We discovered that the attacks were
tolerant of environmental noise. For both devices, the
attack success rate remained high at a noise sound
pressure level. We showed that the cross attack was
also feasible (Section 5).

• Through the extensive user studies, we demon-
strated that people could not recognize the attacker’s
voice (Section 6).

• We discussed potential threats that may arise in
the future as well as the possible countermeasures
against the attack (Section 7).

To the best of our knowledge, this work is the first to
make use of directional sound beams as a means of attacking
voice-controlled systems. This perspective sheds new light
on security and privacy issues for systems that make use of
sound.

2 BACKGROUND

In this section, we describe the three key technologies that
constitute our attack: the voice assistance system, parametric
loudspeakers, and voice presentation attack.

2.1 Voice Assistance Systems

Currently, a typical voice assistance system has two action
phases for device operation: activation and recognition. In
the first phase, a user speaks a specific wake-up word to
activate the system, e.g., “OK Google” for Google Assistant,
“Alexa” for Amazon Alexa, and “Hey Siri” for Apple Siri.
In the second phase, a user transmits a voice command to
the system. The system applies speech recognition to the
received voice data and executes a command extracted from
this data. The available voice commands include common
operations such as turning on a light, answering questions,
reading the news, or privacy-sensitive operations that access
personal resources such as reading out schedules, sending a
text message, making a phone call, or purchasing a product.

Many of the smart speakers today offer speaker recogni-
tion functionality so that each person in the household can
enjoy the device in a customizable way. For instance, each
person using the Amazon Echo can link their own Amazon
account to the device. The device identifies each person by
leveraging voiceprints to employ biometric verification. To
be enrolled in the device’s speaker recognition, an owner
of the device first needs to register his or her voiceprint,
typically by saying a wake-up word multiple times. By
comparing the wake-up word against a previously created
voiceprint, the voice assistance system verifies a person’s
identity. Although a third person who is not registered
can still attempt to use the device, his or her usage will
be limited to non-personalized common services such as
reading news or weather forecasts.

As we will discuss in Section 3, speaker recognition
technology is vulnerable to voice presentation attacks [9].
These attacks attempt to bypass voice authentication using
voice replay/synthesis/conversion technique fraudulently
(See Section 2.3).

2.2 Mechanism of parametric loudspeakers

A parametric loudspeaker can generate directional sound
using ultrasound. It consists of an array of many ultrasound
transducers installed in parallel [10]. Figure 2 presents a
parametric loudspeaker used throughout the experiments.
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Fig. 2. A parametric loudspeaker. This loudspeaker can generate direc-
tional sound. It consists of an array of ultrasonic-emitting loudspeakers
arranged in a grid. A parametric loudspeaker emits sounds on a narrow
spatial range containing a targeted device.

Each ultrasonic transducer transmits ultrasound that modu-
lates the original sound wave with amplitude modulation
(AM). The generated ultrasound is self-demodulated in
the air and becomes audible even if we do not prepare a
demodulation circuit (called self-demodulation [7]). Next,
we present the self-demodulation mechanism, also known
as the parametric phenomenon.

Let p = p(x, t) be the sound pressure caused by sound
wave originating from a parametric loudspeaker, where x
is the distance from the loudspeaker and t is time. As the
sound wave is AM-modulated, it has three major frequen-
cies, i.e., carrier frequency, fc, and adjacent sideband, fs− ,
fs+ where fs− = fc − fm, fs+ = fc + fm. fm represents the
frequency of the sound wave to be injected by an attacker.
We focus on lower sideband to simplify. Primary wave p is
expressed as

p = pc sin (2πfct
′) + ps− sin

(
2πfs−t

′) (1)

pc and ps− are the amplitudes of the carrier wave and the
sideband wave, respectively. where t′ = t−x/c0 is a retarded
time; the retarded time is the time when the sound wave
began to propagate from the sound source.

Burger’s equation is one of the fluid models that rep-
resents the nonlinear dynamics of sound waves [11]. The
dynamics of ultrasound generated from an array of trans-
ducers can be modeled with Burger’s equation:

∂p

∂x
=

β

ρ0c30

∂

∂t′
p2 +

δ

2c30

∂2p

∂t′2
, (2)

where β is the coefficient of nonlinearity, ρ0 is the density
of air, and c0 is the sound speed. The first term on the right
side has nonlinearity. By substituting Eq. 1 into p, we have

∂

∂t′
p2 =

∂

∂t′
[p2c sin

2(2πfct
′) + p2s− sin2(2πfs−t

′)

+2pcps− sin(2πfct
′) sin(2πfs−t

′)], (3)

For simplicity, we calculate only the third term of Eq. 3,

from which, we can derive fm. 1

∂

∂t′
(2pcps− sin(2πfct

′) sin(2πfs−t
′))

= 2[2πfs−pcps− sin(2πfct
′) cos(2πfs−t

′)

+2πfcpcps−cos(2πfct
′) sin(2πfs−t

′)],

= −2πpcps− [(fc + fs−) sin(2π(fc + fs−)t
′)

+(fc − fs−) sin(2π(fc − fs−)t′),
= −2πpcps− [(fc + fs−) sin(2π(fc + fs−)t

′)

+fm sin(2πfmt
′)], (4)

Eq. 4 contains two terms. The first term, which contains
sin(2π(fc+fs−)t

′), will be removed by low–pass filter. Thus,
remaining term is a sine function with the frequency of the
original modulation wave, fm. By substituting Eq. 4 into
Eq. 2, we derive that ∂p/∂x contain the following term,

2βπpcps−fm

ρ0c03
sin(2πfmt

′) (5)

By integrating the term with respect to x, we derive that p
contains the following term

2βπpcps−fm

ρ0c03
x sin(2πfmt

′) (6)

which indicates that the observed sound pressure includes
the component of the original modulation wave. This is
how the nonlinearity of the air demodulates the modulated
sound wave.

Figure 3 presents an overview of the parametric phe-
nomenon. After emitted from a parametric loudspeaker, the
sound pressure of the audible sound wave, fm, gradually
increases. Although both the audible sound wave and in-
audible ultrasound wave are to be attenuated over time,
inaudible ultrasound waves attenuate faster due to the fact
that in the air, high frequency sound wave attenuates faster
compared to low frequency sound waves. The parametric
phenomenon is observed only along the direction in which
the ultrasound was emitted because the waves have the
same phase along the path.

Finally, we show the intuitive explanation of the forma-
tion of directional sound beam. The demodulated sound
traveling in the forward direction is amplified because the
phase is aligned. On the other hand, sound traveling in a
direction other than the forward direction is not amplified
because the phase is not aligned. The mathematical descrip-
tion of the theory can be found in Refs [7], [8].

2.3 Voice Presentation Attack
In the ISO/IEC standard, presentation attacks are defined
as ”presentation to the biometric data capture subsystem
with the goal of interfering with the operation of the bio-
metric system. [12]” There have been several approaches
for evading speaker recognition or, more broadly, voice au-
thentication. These attacks are known as voice presentation
attacks [9]. Well-known voice presentation attacks include

1. If we compute the partial differentiation of the first and second
terms in a way like Eq 4, sine functions with the frequencies of 2fs− ,
2fc, and so on, appear. Because these frequencies are not associated
with fm and will be removed by the low–pass filter on the microphone,
all these sine functions can be omitted in the remaining calculation.
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Fig. 3. Illustration of the demodulation in the air. fc is a carrier frequency
and fs− is a sideband frequency, where fs− = fc − fm and fm
represents a frequency of the sound wave to be injected by an attacker.
In a short distance, the sound pressure of the demodulated sound, fm
will increase in proportion to the distance, x, following Eq. 6. However,
due to the attenuation of the ultrasonic wave, the sound pressure of the
demodulated sound will decrease over a long distance.

the replay attack [13], [14], speech synthesis attack [13], and
voice conversion attack [15].

During a replay attack, an attacker pre-records the
speech of the victim in advance. The attacker then replays
the recorded speech to the target device. Distinguishing be-
tween genuine and replayed speech from the time-domain
and spectrum-domain representations of speech data is dif-
ficult task [16]. The drawback of a replay attack is that an
attacker needs to pre-record speech, including voice com-
mands for both activation and recognition. Speech synthesis
and Voice conversion are techniques that alleviate this limita-
tion. Speech synthesis (Text-to-speech, TTS) is a technique to
generate natural speech sound from the text. Wavenet [17]
is one example that creates synthesized voices by using
deep learning models. Voice conversion aims to convert an
attacker’s voice to a victim’s voice in real time. We do not
need to prepare text, unlike in TTS. These attacks offer an
effective way to generate synthetic speech in a manner such
that the generated output is perceived as a sentence uttered
by a target. In [15], the author demonstrated that an attacker
can successfully execute a voice impersonation attack by
using an off-the-shelf voice-conversion tool, even against
state-of-the-art voice verification systems. They reveal that
the attacker can convert his/her voice if they collect just a
few minutes’ worth of audio.

While these attack techniques aim at impersonating the
victim’s voice, our goal focuses on the different attack
vector, i.e., secretly delivering the voice signal to the target
voice assistant device. As our attack is agnostic to the voice
content, voice presentation attack techniques can be directly
mounted on our attack.

3 THREAT MODEL AND ASSUMPTIONS

In this section, we describe the Audio Hotspot Attack
threat model by making several assumptions to evaluate the
threat.
Target of the attack

The goal of an attacker is to manipulate the target
voice assistance device without being noticed by people.
Although the attack is applicable to various voice assistance
systems in principle, a smart speaker is used herein as an
example of the target device. Because smart speakers can
control smart home devices, the attack vector ranges are

Smartphone

Parametric Loudspeaker

Circuit(AM & Amplifier)

Battery

Fig. 4. An example of device setup. We use a battery to allow attackers
to use this device anywhere. The circuit contains amplifier and amplified
modulator. The details of the circuit are presented in Fig. 5.

widespread. We evaluated the attack using two smart speak-
ers, Amazon Echo and Google Home. For these devices, an
attacker must activate the device with a wake-up word, and
then transmit a voice command. In this study, we assume
that the target device is not moving (i.e., it is set on a fixed
place, for example, on the table). This assumption is natural
in the case of smart speakers.
Attacker’s equipment

As shown in Figure 1, the Audio Hotspot Attack has
the two attack modes: linear attack and cross attack. An
attacker needs to setup a parametric loudspeaker for the
linear attack, and two parametric loudspeakers for the cross
attack. The parametric loudspeaker that performs the attack
is small and portable. The attacker also needs to carry a
smartphone in order to generate malicious voice commands
from the parametric loudspeakers. Figure 4 shows an ex-
ample of a device setup used by an attacker to execute an
attack.
Speaker recognition

As mentioned in Section 2, modern devices equipped
with voice assistance systems such as smartphones or smart
speakers have increasingly adopted the speaker recognition
functionality. If the owner of a device has turned on this
functionality, an attacker may not be able to succeed in the
attack even when he/she has successfully transmitted an
inaudible voice command to the target device.

Here, the attacker collects voice samples by being in close
physical proximity to the target, by making a phone call, or
by searching for clips online. For the purposes of this work,
we assumed that an attacker was able to bypass the speaker
recognition by leveraging voice presentation attacks, which
are discussed in Section 2.3. As shown in Section 7.2.3,
there are some methods that detect presentation attacks
(PAD method). We assume that the voice assistance systems
do not have a PAD method. We confirm that presentation
attacks are successful on practical devices, i.e., Google Home
and Amazon Echo, before the experiments.

4 EXPERIMENTAL SETUP

In this section, we describe the design of our experiments,
including details pertaining to the devices, equipment, and
software used, together with their settings.
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Fig. 5. Circuit diagram. The circuit first applies AM to the input sound-
wave, using the generated ultrasonic wave as a carrier wave. Next,
the sound pressure of the AM wave will be amplified. The amplified
soundwave will be the output for the parametric loudspeaker.

4.1 Materials

4.1.1 Experiment room
Sound wave dynamics depend on the material makeup of
the room. As these attacks were performed using sound
waves, the choice of the experiment room was key. Oth-
erwise, the obtained results will be valid only for a specific
environment. To overcome this concern, we used a room
designed for acoustic experimentation. To eliminate the ef-
fects of the material makeup of the room, all wall and ceiling
surfaces were made of sound-absorbing material (Appendix
B, Figure 2).

The average sound pressure level (SPL) of the room was
around 12 dB(A). Here, dB(A) denotes A-weighted SPL,
which is applied to instrument-measured sound levels. A-
weighting is used because the human ear is less sensitive to
lower audible frequencies.

4.1.2 Target devices
Following the assumption that the target device is station-
ary, Google Home and Amazon Alexa are the primary target
devices used for the analysis. These devices were chosen
because they accounted for more than 95% of the smart
speaker market share in 2018 [18].

4.1.3 Equipment used for the experiments
Table 1 shows a list of equipment used for the experiments.
While there are several commercial parametric loudspeaker
products, we intended to take a white-box approach. That
is, as the details of the board and elements are publicly
available on the manufacturers’ websites, we can obtain the
technical specifications of the speaker, such as frequency
response. To this end, the Switch Science Super direc-
tional speaker [19] was adopted as a primary parametric
loudspeaker. The kit comprises two printed circuit boards
(PCBs). One PCB has an AM circuit, an amplifier circuit, an
audio input (3.5 mm stereo mini jack), and a power input
(DC 12V/1A). Figure 5 presents a diagram of the circuits.
Another PCB implements 49 ultrasonic ceramic transducers
connected in parallel. The first PCB applies the AM to
the input sound wave and then amplifies the signal level.
The amplified signal is transmitted to the second PCB, i.e.,
ultrasound transducers. Another parametric loudspeaker—
directional speaker ACOUSPADE—is also used, to study the
maximum distance at which the attack can succeed. The
sound level meter is capable of measuring the SPL of 28–
138 dB(A) for a frequency range of 20 Hz to 20 kHz. The

TABLE 1
A list of equipment used for the experiments.

Equipment manufacturer / model number
Parametric loudspeaker Switch Science / SSCI-018425 [19]
Amplifier Accuphase / Power Amplifier

PRO-15 [20]

Parametric loudspeaker Ultrasonic audio technologies / Di-
rectional Speaker Acouspade [21]

Dynamic loudspeaker YAMAHA / MONITOR SPEAKER
MS101 III [22]

Sound level meter RION / NL-32 [23]
Ultrasonic microphone B&K / 4939-A-011 [24]
Audio Interface MOTU / UltraLite mk4 [25]

meter was used to measure the SPL of several areas in the
experiment room under various conditions. The ultrasonic
microphone was also used for measuring the ultrasonic
components in the measured sound waves.

4.2 Voice generation

To generate a malicious voice speech command, we used
Amazon Polly [26], a cloud service that turns text into
natural sounding speech. As the basis for the analysis,
the voice named “Ivy” was used, which is a female, US
English accent. The voice parameters (e.g., speaking rate or
fundamental frequency) were set to default values. All voice
assistance systems that were tested to check whether they
accept synthesized voice commands. As speech synthesis
services can change in the future, we plan to make our data
available to any researchers who wish to replicate or extend
our work.

5 EVALUATION OF THE ATTACK

We evaluated attack feasibility using the following aspects:
maximum successful attack distance, noise tolerance of the
attack, and the impact of voice commands. For simplicity,
and to evaluate the impact of these factors, we applied
a linear attack. For the cross attack, we evaluated attack
feasibility using the parameters obtained through the lin-
ear attack experiments. The attack success depends on the
type of voice command (i.e., activation or recognition).
Therefore, for each attack mode, we applied both types of
voice commands. In general, activation commands (“wake-
up words”) are more likely to succeed.

5.1 Distance versus Attack success rate

The aim of this study was to clarify how the distance
between the target device and adversary’s parametric loud-
speaker affected the success rate of the Audio Hotspot
Attack. Throughout the experiments, the SPL of the output
power from the parametric loudspeaker was fixed. In par-
ticular, the audible sound of the parametric loudspeakers
was adjusted to 60 dB(A), and the SPL of the ultrasound
was 100 dB at a point 3 m away from the parametric
loudspeaker. Figure 6 presents the experimental setup. The
distance measured was between the parametric loudspeaker
and the microphone of the voice assistance systems.
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Fig. 6. Experimental setup of distance measurement experiments. The
distance measured was between the parametric loudspeaker and the
microphone of the voice assistance systems.

Fig. 7. Distance versus attack success rate. Noise SPL is set to 60
dB(A). For Google Home, the longest distance was 3.5 m. Activation
voice commands were more likely to be accepted compared to recogni-
tion voice commands.

To measure the distance, we used the experiment room
(described in section 4.1.1). We extended the study to three
different locations, including a hallway, seminar-room, and
outdoors.

5.1.1 Measurement within the experiment room

The distance between the target device and the parametric
loudspeaker was altered from 0.1 m to 5 m in increments
of 50 cm (i.e., 0.1, 0.5, 1.0,..., 5.0 m). By adjusting the output
power of the dynamic speakers, we were able to adjust the
SPL of the noise measured in the room to 60 dB(A) with
error bounds within 1 dB(A). Notably, a SPL of 60 dB(A)
corresponds to an environment where a person’s speech is
heard at a distance of 1 m. Thus, the noise level was fairly
high. This setting was purposively chosen to conservatively
evaluate attack success rate (i.e., a higher attack success
rate could be expected in quieter settings). We note that the
1/f noises better suited to emulate a realistic environment
than the white noise because it is natural that signals with
the lower or higher frequencies have more or less power
respectively.

For a given distance, a pair of activation and recog-
nition voice commands were generated. This process was
repeated 25 times. For each voice command, we noted if
the command was accepted by the voice assistance system
by observing the response of the device. For the activation
commands, “Ok Google” for Google Home and “Alexa” for
Amazon Echo were used. For the recognition voice com-

mands, “What’s on my next schedule?” for Google Home and
“What’s on my schedule?” for Amazon Echo2 were used.

The attack success rates were calculated, and the results
are shown in Figure 7. For a certain range of distances,
the attack was highly successful for both devices. This was
particularly true for Google Home, the longest distance
was 3.5 m. Activation voice commands were more likely to
be accepted than recognition voice commands. This makes
sense given the fact that the recognition voice commands
are much more variable than activation voice commands. In
the short distance, the success rate becomes low because the
acoustic sound was too loud to be properly processed by
the voice assistance systems. Finally, Google Home featured
a higher attack success rate than Amazon Echo. As these
commercial products are black box in nature, their behaviors
can be difficult to interpret. It is possible that circuits and
software used for Amazon Echo are somehow resistant to
the Audio Hotspot Attack; therefore, they will be investi-
gated in future studies.

5.1.2 Extended measurement in practical environments.
Next, we studied the distances of successful attacks using
different locations: a hallway, a seminar room, and outside.
The hallway and the room have much higher reverberation
compared to the room dedicated for acoustic experiments.
We used a commercial parametric loudspeaker product [21],
as listed in Table 1. The parametric loudspeaker can emit
full frequency-range speech with the audible SPL of 62–
63 dB(A) at a distance of 3 m. For reference, the location
photos are shown in Appendix B. Note that for these
locations, we did not add synthesized noise sounds. The
average SPL measured in the hallway was 39.3 dB(A), the
seminar room was 55.2 dB(A), and the average outside SPL
was 52.5 dB(A). The conditions outside were as follows:
the weather on the day was fine, with temperature was
23.2 ◦C (73.8 ◦F), a humidity of 36%, and a wind speed of
6 m/s southward. Note that, we do not use synthesized
noise in this measurement, to evaluate the effect of noise
on realistic environments. The purpose of the experiment
was to determine the longest distance at which the attack is
still effective, with the effectiveness being determined using
the following criteria: if three consecutive voice commands
are all accepted for a given distance, the attack is regarded
as effective for the distance. For each location, the starting
distance was 1 m and the tests were repeated until there was
an attack failure. Tables 2 summarize our results.

The hallway experiment demonstrated that the attack
was effective at a distance of 10+ m. The seminar room
and outside experiment demonstrated that the attack was
effective to a distance of 4+ m. The difference in the at-
tack success distances reflects the respective noise levels
within each location. These results indicated that the Audio
Hotspot Attack was feasible in three real-world scenarios.
We can succeed in the attack in two environments with
reverberation, i.e., the hallway and inside the room. We
also showed that the experiment was successful outside
the room. In addition, the attack success distances achieved
were much longer than the state-of-the-art inaudible voice

2. At the time of the experiment, Alexa did not support the ‘next’
voice command for the calendar.
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TABLE 2
The longest distance the attack was effective at a hallway, a seminar
room, and outside. In the hallway experiment, the attack was effective

at a distance of 10+ m. In the case of the hallway and room, the longest
distance is 4+ m. We show the picture of each place in Appendix.

Hallway [m] Room [m] Outside [m]
Devices Acti. Recog. Acti. Recog. Acti. Recog.
Google 15.0 11.7 4.2 4.0 4.2 4.2Home
Amazon 19.9 12.1 4.8 4.0 5.8 4.2Echo

command attack that uses ultrasound [6], which indicated
that the maximum distance for Amazon Echo averaged 1.65
m with a background noise of 55 dB SPL.

5.2 Noise tolerance
We studied how the noise affects the attack success rate.
For this study, we used the experiment room, as described
in Section 4.1.1. Because we were examining the effects of
noise, the sound generated by the parametric loudspeaker
was fixed at 60 dB(A) and the distance between the para-
metric loudspeaker and the target device was 1.5 m.

5.2.1 Stationary noise
Using the dynamic speaker, we generated 1/f noise with an
SPL ranging from 45 dB(A) to 78 dB(A) (the maximum SPL
for the dynamic speaker). the common environmental noise
levels are shown in [27]. To calculate the signal-to-noise
ratio (SNR), we use the following formula Eq. 7 [28]

SNR [dB] = SPL of sound [dB]− SPL of noise [dB] (7)

We use the sound level meter to measure the SPL of voice
command and noise. Figure 8 shows the results. For both
devices, the attack was most successful when the noise SNR
was over than 0 [dB], i.e., when the input command and
noise have the same volumes. Activation voice commands
were more tolerant of noise. This observation agrees with
those previously-described in Section 5.1.

5.2.2 Nonstationary noise
We evaluate noise tolerance in an environment that has non-
stationary noise. As nonstationary noise, we adopt babble
noise. We used the room dedicated for acoustic experiments.
We chose three types of noise settings: Default, Speech
Blocker, and Chic dinner, which are taken from Ref. [29].
These noise types contain conversations in English. We
summarize the results in Figure 9. We attempt to input the
voice command 10 times in each setup. For both devices,
the attack was successful when SNR was -5 [dB] and over.
When the SNR is 0 [dB], i.e., when the volumes of input
command and noise are same, attacks sometimes failed. In
other cases, these results follow the observation of Fig 8.

5.3 Impact of voice commands
To study the impact of voice commands, various commands
are inputted into the target devices. In this experiment, the
distance between the parametric loudspeaker and the target
devices was fixed at 1.5 m. Again, the output audible SPL
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Fig. 8. Stationary noise versus attack success rate. The audible sound
from the parametric loudspeaker was fixed to 60 dB(A). The attack was
most successful when the SNR was larger than 0 [dB].

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e 

of
 v

oi
ce

 re
co

gn
iti

on
20 10 0 10 20

0.0

0.5

1.0
Google Home

Default
Speech blocker
Dinner

20 10 0 10 20
SNR [dB]

0.0

0.5

1.0
Amazon Echo

Fig. 9. Non stationary noise versus attack success rate. We used the
recognition command for each device. These results follow the observa-
tion of Fig 8.

of the parametric loudspeaker was set to 60 dB(A). Each
command was tested 10 times.

Table 3 shows the results. As indicates by the results, the
attack success rate was high for commands of short lengths.
We note that although the lengths of these commands were
short, they can be used for malicious purposes; for example,
by starting with the recognition command “Set volume 0,”
an attacker can improve the probability of success for the
next attacks as a voice response from the device will not
be heard by a nearby person. The attacker can also turn IoT
devices on/off. If this device is a piece of heating equipment,
considerable physical damage is possible. In contrast, for
longer commands, the attack success rate was low.

We conjecture that there are several reasons behind this
observation, e.g., the occurrences of infrequent words or
the accumulation of recognition errors. These results agree
with [6], who showed that longer commands, emitted as
ultrasounds, were prone to failure.
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TABLE 3
Attack success rates for various voice commands. The attack success

rate was high for commands of short length (2–5 words.) The
commands “turn on / off [ device name ]” are used for many smart

home devices. The commands “turn in to 0” or “Set volume 0” change
the volume minimum, which can make the output of device stealthy.

Device Voice commands Success rate

Google

OK Google 10/10
Max volume 10/10
Turn in to 0 10/10
What’s on my next schedule 10/10
Turn on the light 10/10
Turn off the light 10/10
Play some music 10/10
Tell everyone my password is abc 5/10
Broadcast my credit card number

3/10is 1234567890

Amazon

Alexa 10/10
Pair devices 10/10
play some music 10/10
What’s on my next schedule 9/10
Set volume 0 9/10
Turn on the light 9/10
Turn off the light 10/10
Tell everyone my password is abc 2/10
Broadcast my credit card number

1/10is 1234567890

1 m 1 m

5 m

5 m

4 m

0.5 m

Measurement
Point

Dynamic Speaker
(for making noise)

Attacker’s Speaker 

1m 1m

5 m

5 m

4 m

Carrier Wave

Sideband Wave

Fig. 10. Overview of the experimental setup. Left: user study of the linear
attack in the acoustic room. Right: user study of the cross attack in the
acoustic room. We use four dynamic speakers to adjust the noise level.

5.4 Evaluation of the cross attack

To perform the cross attack, the AM sound wave was sep-
arated into the carrier wave and the lower sideband wave
using MATLAB [30]. The two sound waves were amplified
and emitted through the two parametric loudspeakers. The
amplifiers were adjusted so that the SPL of the audible
sound was at its maximum at the target area (center of the
room). The average SPL of audible sound was 42.7 dB(A).
The cross attack was tested by changing the position of
the target device, as shown in Figure 10 (Right). In the
figure, the blue circles indicate measurement points, where
a sound level meter was set. Two parametric loudspeakers
were set so that they would cross at the center point. Unlike
the linear attack setup, this setup was not symmetrical and
each parametric loudspeaker transmitted a different signal
(i.e., a carrier wave and a sideband wave, respectively). We
established 5×5 = 25 measurement points. As shown in the
figure, we installed four dynamic speakers to fine-tune the
SPL of ambient room noise. We configured the directions
of the dynamic speakers such that noises were equally
distributed throughout the room. We fixed the distance
between the target device and two parametric loudspeakers
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Fig. 11. Number of successful cross attacks at each position (max is 10).
Top: Activation and Bottom: Recognition. Left: Google Home, and Right:
Amazon Echo. The demodulation point was adjusted to the center, point
(200, 200).

to 2
√
2 m, and the SPL of noise was set to 43 dB(A).

At each position, the attack was repeated 10 times, with
the number of successes counted. Figure 11 shows the
results. The first finding was that the attack was successful
only in the area targeted by the cross attack. Second, for
the activation voice command, the attack success was 100%
for both devices. Finally, although the success rate was low
for voice recognition (“what’s on my next schedule?”), it
remains a realistic threat, given the fact that an adversary
can repeat the attack until it succeeds.

5.5 Summary
Throughout this section, we evaluated attack feasibility.
First, the experiments demonstrated that the attacks were
successful over long distances. In the experiment room (500
cm× 500 cm), Google Home attacks were 100% successful at
350 cm and Amazon Echo attacks were more than 90% suc-
cessful at 150 cm. The hallway experiments demonstrated
that, for both devices, attacks were successful at distances
greater than 10 m. Second, we discovered that the attacks
were tolerant of environmental noise. For both devices, the
attack success rate remained high at a noise SPL of 60 dB(A).
This SPL corresponded to the SPL used for the experiments
described in Section 6. Finally, the attacks were successful
with various types and lengths of voice commands.

6 HUMAN STUDY EXPERIMENTS

In psychoacoustics, hearing is different from objective SPL
measurements [31]. We tested to confirm whether the direc-
tional sound generated from parametric loudspeakers could
be perceived by humans around the targeted device. To
this end, we conducted extensive user study experiments
to answer the RQ3: “Is the attack stealthy for nearby people
and unrecognizable for them?” To complement the results
of our human studies (subjective evaluation), SPL measure-
ments were taken with the sound level meter (objective
evaluation).
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6.1 Experimental setups
Figure 10 presents an overview of the experimental setup.
For the linear attack mode, both a parametric loudspeaker
and a dynamic speaker were used to observe their differ-
ences. In the figure, the blue circles indicate measurement
points, where a participant was seated. As the setup was
symmetric in nature, 3 × 5 = 15 measurement points were
set only in the right half. We omitted the left half to reduce
the workload of the participants without sacrificing the gen-
erality of the results. The distance between the measurement
points was set to 1 m. For the cross attack, two parametric
loudspeakers were set so that they would cross at the center
point. We established 5×5 = 25 measurement points, with a
chair at each measurement point (See Appendix B, Figure 2).

The output power of the adversary’s parametric / dy-
namic loudspeakers was adjusted so that the SPL of the
audible sound (not the ultrasound) measured 3 m away
from the parametric loudspeaker was 60 dB(A). Accounting
for the inaudible sound wave, the total SPL was 120—130
dB(A) for all these settings. Finally, for the four dynamic
speakers that generate 1/f noise, we adjusted the output
power such that the audible SPL was 60 dB(A) at a distance
of 3 m. For reference, the SPLs of common environmental
noises are summarized in [27].

6.2 Human study overview
6.2.1 Participants
For the user study, we recruited 20 normal-hearing partici-
pants. Of these, 12 were female and eight were male, with
ages ranging from 19 to 27. Thus, the participants were
younger on average. Because younger people tend to have
better hearing, we selected a severe condition to evaluate
recognizability.

The participants consist of students at our university. We
let the participants choose the preferred language from the
two choices, Japanese and English. While 16 participants
who selected Japanese are all native speakers of Japanese,
other three participants who selected English were fluent
in English but not necessary were the native speakers of
English. Two of them are from Indonesia and the other
is from China. For each participant, consent was obtained
before enrolment. All participants were informed that they
could quit the experiment whenever they desired. Other
ethical considerations are discussed in section 7.

6.2.2 Procedure
For each setup, each participant was first directed to sit in
a chair set at the position marked with the star symbol in
Figure 10. Then, the height of loudspeaker(s) was adjusted
so that the participant’s sitting height matched the position
of the loudspeaker(s). For each participant, the heights and
angles of the speakers were fixed throughout the experi-
ments. After the beginning of a session, a random word
is emitted twice from the speaker at a random moment
in time. A participant reports whether they recognize the
word. If they recognize it, they write down the word that
they recognized.

From the set of random words, those containing between
3 and 6 phonemes were selected. It was also ensured that
the words would be difficult to predict beforehand, e.g.,

wake-up words typically used for voice assistance systems
were avoided. Each participant repeated the sessions after
moving to another chair.

To ensure the quality of the subjective evaluations, we
used a silent task with each participant. During the silent
task, no voice sounds were emitted. If a participant reported
that they heard something during the silent task, the other
results reported by the participant were considered unreli-
able and removed. Consequently, two participants’ results
were removed from the final analyses.

6.2.3 Evaluation of recognizability
To quantify the recognizability reported by the participants,
we used a Jaccard index for the sets of letters in two
words t and r, which are a test word and a reported word,
respectively. For instance, if a test speech word is ‘fest’ and
the reported word is ‘test’, the Jaccard index is computed
as J(‘fest’, ‘test’) = 3/5 = 0.6. For reference, a randomly
sampled answer sheet reported by one of the participants is
shown in Appendix B.

In total, for each measurement point, we collected 18
scores reported by the 18 participants. At least one score for
each measurement point was In total, for each measurement
point, we collected 18 scores , reported by the 18 partici-
pants. At least one score for each measurement point was
omitted, as there was one silent task for each participant.
To quantify the recognizability, the average of the reported
scores was taken for each measurement point.

6.3 Results of the human study
Figure 12 shows the linear attack results. The heat maps
represent the average Jaccard index scores. Notably, for the
dynamic loudspeaker experiment, most participants suc-
cessfully recognized the test speech words across a wide
range. In fact, the test words were audible even behind the
speaker. On the other hand, for the parametric loudspeaker
experiment, the audible space was limited to a narrow area
(i.e., the direction of directional sound propagation). The
generated sound wave was somewhat inaudible over a short
range owing to the fact that the generated ultrasonic beam
moved forward before it was demodulated in the air.

Figure 13 shows the cross attack results. It is important
to note that there seem to be no audible spaces in the room.
However, as shown in the previous subsection 5.4, the cross
attack was successful in emitting malicious voice commands
to the voice assistance systems. This contradiction can be
explained as follows: as the cross point was limited to a
very narrow area, it did not “hear” the areas close to the
participant’s ears. Even if a participant was able to catch
either a carrier wave or a lower sideband wave, they would
not recognize them unless they caught both sound waves at
a cross point. To complement the results of the human study,
the results of the objective sound level meter evaluations are
presented in Figure 14.

6.4 Summary
In this section, we examined the recognizability of sounds
generated from parametric loudspeakers. For comparison,
we also examined the characteristics of the sound generated
by a dynamic speaker. Both the subjective and objective
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Fig. 12. Average Jaccard index scores of the linear attack measured in
a 200 cm × 400 cm area. Left: dynamic speaker and Right: parametric
loudspeaker. The point (0, 0) is defined as the location of the loud-
speaker. User cannot hear the on space except in front of the parametric
loudspeaker.

Fig. 13. Average Jaccard index scores for the cross attack measured
in a of 400 cm × 400 cm area. The point (200, 200) is defined as the
demodulation point. We found that the users cannot hear sound waves
everywhere except in the center.

evaluations revealed that the directional sound generated
from the parametric loudspeakers achieved sufficient unrec-
ognizability to perform the Audio Hotspot Attack. Specifi-
cally, the sound generated with the cross attack was difficult
for a human near the target device to perceive.

7 DISCUSSION

In this section, we discuss the limitations and extensions of
Audio Hotspot Attack, possible countermeasures against it,
and ethical issues considered during the experiments.

7.1 Limitations and possible extensions

Because the Audio Hotspot Attack uses sound wave(s) to
inject malicious voice commands, it will not succeed if there
is an obstacle between the target device and the parametric
loudspeaker(s) (e.g., a wall or a window). This limitation
also applies to other inaudible voice command attacks [32],

[33], [34]. One possible method of overcoming this limi-
tation would be to install parametric loudspeaker(s) on a
ceiling, thus creating a “sound shower.” In fact, parametric
loudspeakers are often mounted on ceilings to make sounds
audible only at one point in the room, without the risk of
interruption form an obstacle. Even when it is unrealistic
to mount a parametric loudspeaker on the ceiling, it would
still be effective to place it at a raised or a side position to
ensure that the sound wave emitted avoids obstacles.

We used two smart speakers, Google Home and Amazon
Echo, as examples of popular devices with voice assistance
systems. Other types of voice assistance systems include
smartphones, in-car navigation systems, and commercially
available medical devices. Studying the effectiveness of the
Audio Hotspot Attack on most of these other devices will
be conducted in future studies; however, we did verify that
the attack worked on several smartphones. Although the
evaluation of the latter is not as thorough as that presented
in section 5, some results have been given in the Appendix
for reference.

Finally, although we sought to make these studies scien-
tifically reproducible, the target devices are updated regu-
larly. Furthermore, as the majority of the off-the-shelf voice
assistant devices today run the speech recognition on the
server side, it is prone to change over time. Therefore, once
changes are made to the hardware or software in the voice
assistance devices, other results may differ from the ones
we obtained. As off-the-shelf products are “black box” in
nature, it is difficult to fully understand how input sound
waves are processed by the device’s hardware and/or soft-
ware. Therefore, to make the results of the experiments
to be invariable and reproducible, it would be desirable
to develop open-source hardware and software platforms,
which would allow researchers to share and compare results
using similar tools. At present, we are developing such a
platform so that interested researchers can conduct further
work on security and privacy issues related to voice assis-
tance systems.

7.2 Countermeasures
Audio Hotspot Attack leverages the natural phenomenon
of ultrasound self-demodulation in the air; therefore, it is
not practical to try to block voice commands before they
reach the target device. One possible solution is to detect the
voice commands and differentiate them from others that are
legitimate. There are two ways to achieve this goal. An easy
and effective approach is to employ speaker recognition;
in fact, smart speakers such as Google Home or Amazon
Echo have already adopted this functionality. However, as
discussed in Section 3, such approaches are still vulnerable
to advanced replay or voice-morphing attacks. Therefore,
we require methods that can detect voice commands being
emitted from parametric loudspeakers. In the following
section, we discuss three potential approaches to achieve
this goal.

7.2.1 Detecting ultrasonic sounds
Although the ultrasounds emitted from a parametric loud-
speaker are demodulated in air, there are un-demodulated
ultrasonic components in the observed sound wave. Fig-
ure 15 shows the spectrogram of a speech signal emitted
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Fig. 14. SPL measured for the three attack modes. The unit for the numerical values is dB(A). The setup is same as in the human study. We have
the speaker on the point (0,0) in the case of the dynamic speaker and linear attack. In the case of the X-Audio attack, (0, 0) is the demodulation
point for voice commands.

Fig. 15. Spectrogram of a speech signal emitted from a parametric
loudspeaker. The signal was recorded with an ultrasonic microphone.
The frequency range was set above 20 kHz (inaudible frequency). The
content is “OK Google”.

Fig. 16. Spectrogram of a speech signal emitted from a dynamic loud-
speaker (top) and a parametric loudspeaker (bottom). The signals were
recorded with a normal microphone. The frequency range was set below
20 kHz (audible frequency). We can see the folding noise at 10 kHz and
20 kHz in the bottom spectrogram. The content is “OK Google”.

Fig. 17. Speech signals generated from a dynamic loudspeaker (top),
a parametric loudspeaker (middle, linear attack), and Bottom: two para-
metric loudspeakers (bottom, cross attack). The content is “OK Google”.

from a parametric loudspeaker. The original speech data
was “Ok Google,” which was generated using Amazon
Polly (Ivy). In the spectrogram, the power of the ultrasonic
component is around 40 kHz, which corresponds to the
carrier frequency of the AM-modulated sound. A harmonic
overtone around 80 kHz was also observed. Thus, even
ultrasound is self-demodulated in the air, and it is possible
to observe ultrasonic components of sound waves.

A straightforward approach to detecting such ultrasonic
components is to apply an ultrasonic sensor. Although ul-
trasonic microphones are expensive, ultrasonic sensors are
cheap and readily available. As Zhang et al. suggested [33],
using MEMS microphones on mobile devices could be
an alternative solution, as these microphones can sense
acoustic sounds with frequencies higher than 20 kHz. Once
a device detects the non-negligible amounts of ultrasonic
components of a received sound wave, it may suspend the
operation and require interaction with the device owner to
resume the operation.

7.2.2 Analyzing the frequency patterns of audible sounds
Figure 16 presents the spectrograms of a voice signal (“OK
Google” as spoken by Amazon Polly) emitted from a dy-
namic loudspeaker and a parametric loudspeaker. Although
the original voice data was the same, there are different
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characteristics in the frequency patterns of the observed
sound waves. As can be seen in Eq. 4 (Section 2), the SPL of
the sound wave generated from a parametric loudspeaker is
proportional to the frequency of the original sound signal.
This indicates that if the sound is emitted from a parametric
loudspeaker, higher or lower frequency components are
more or less likely to be observed, respectively, at the target.
The horizontal lines shown in the lower spectrogram corre-
spond to the folding noise, which is also known as aliasing.
We can detect attacks if we observe the folding noise in
spectrograms. To validate the effectiveness of this approach,
we performed a brief experiment. From a given sound wave,
we extracted components that had the frequencies above 10
kHz, which is over the audible frequency of 8 kHz. We then
computed the power of the extracted sound wave. While
the normal sound wave had almost zero power, the sound
wave of the directional sound beam had non-zero power. By
simply applying a threshold-based detection, we were able
to distinguish the sound emitted by a loudspeaker from the
one emitted by a parametric speaker with 100% accuracy.

Figure 17 shows speech signals emitted from a dy-
namic loudspeaker and parametric loudspeakers. Again,
these speech signals were generated by the same original
voice signal (“OK Google”), via Amazon Polly (Ivy). For
the speech signals emitted from parametric loudspeakers
(middle and lower panels in the figure), there is an intrinsic
spike at the beginning of the speech signal. These spikes can
be used as a fingerprint for detecting speech generated from
a parametric loudspeaker. These spikes and other intrinsic
characteristics can be used to differentiate speech gener-
ated from a parametric loudspeaker compared to speech
generated from a regular voice using heuristics or machine
learning-based approaches.

7.2.3 Voice Presentation Attack Detection (PAD) method
As inaudible voice command attacks will be combined with
the presentation attacks, we can apply the presentation at-
tack detection (PAD) method, which we assumed our target
voice assistant systems had not implemented, to detect an
Audio Hotspot Attack [9]. The ultimate countermeasure
against such an attack is to be able to distinguish a syn-
thesized voice from an authentic human voice. Liveness
detection [33], [35], [36], which judges whether an input
voice has come from a human or a dynamic speaker, is an
example of the PAD method that could achieve this goal.
In real environments, attacks on speech recognition devices
are by means of the latter. Therefore, it would be sufficient
for a voice assistance system to be able to judge whether a
sound comes from a human or a dynamic speaker, even if it
is unable to identify a specific individual. Voice Gesture [33],
as proposed by Zhang et al., attempts to detect the move-
ment of a person’s mouth, by using changes in ultrasonic
waves that occur as a consequence of the mouth movements
and the position of the tongue when an approximately 20
kHz ultrasonic wave is emitted from a smart device (e.g.,
a smartphone or tablet) to the mouth of the user. This
method detects differences in movement between a mouth
and a dynamic speaker. The mouth movement changes
for each pronunciation variation, whereas the surface of a
dynamic speaker exhibits very little movement. The liveness
detection method could be used to detect an Audio Hotspot

Attack because ultrasonic transducers use fewer movements
than the human mouth.

In our experiments, we have shown that simple rule-
based or threshold-based detection work as countermea-
sures against the Audio Hotspot Attack. However, more
robust countermeasures will be required in realistic environ-
ments. In [9], some typical countermeasure methods using
the machine learning model are proposed. On the contrary,
in [37], the authors pointed out that the machine-learning
model does not work well for the datasets obtained in
different setups. Overcoming the problem of overfitting to
the specific datasets and/or environments is left for future
work.

7.3 Ethical Considerations
7.3.1 Human study research
We performed a human study to test the unrecognizability
of the Audio Hotspot Attack using parametric loudspeakers.
The experiments were carefully designed such that they
did not impose a burden on either the hearing or psy-
chological states of the participants. The procedure for the
human study was approved by the ethical review board at
Waseda University. Prior to the experiments, we performed
a pilot study to ensure the validity of our measures. Then,
Participants were provided with all information required to
make a meaningful decision as to whether or not they were
willing to participate in the experiment (informed consent).
We explained the reasons for conducting the study, what
the experimental procedures, potential risks and benefits
were, and the ways in which participants could get more
information on the study. The SPL of the sound waves was
sufficiently low such that it did not cause the participants
any discomfort. Participants were also given two-minute
breaks every ten minutes and were able to stop participating
at any time without incurring any penalty.

7.3.2 Offensive security research
The objective of this work was to explore the feasibility of
the threats caused by inaudible voice command attacks. It
was demonstrated that inaudible voice command attacks
are viable through methods such as an Audio Hotspot
Attack. Although this attack was proof of concept, we
have also provided potential countermeasures by which
they can be counteracted. Furthermore, with the aid of the
national CERT, we have initiated communication regarding
this with several manufacturers of voice assistance systems.
Feedback, including plans for implementing the counter-
measures within the products concerned, has been received.
By the time of publication, vendor reaction will have been
received and will also be reportable.

8 RELATED WORKS

Voice command attacks
DolphinAttack [6], [34] is an attack that inputs inaudible
commands on a target microphone by AM modulating the
sound, with the ultrasound as the carrier wave. The basic
idea is based on the fact that the output of the MEMS
and ECM microphones that are mounted on smartphones
has nonlinearity [32], [38]. A nonlinear term is obtained
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by squaring the input signal in the output signal when
an AM ultrasonic signal by the prepared voice is inputted
to the microphone. That is, the output of the microphone
receiving the AM-modulated ultrasound includes the fre-
quency component of the original speech signal, and the
speech recognition algorithm of the system that received
the low-pass filtered signal is applied as recognized speech,
even though the input signal only generates high-frequency
waves. The output generated by the nonlinear term has a
smaller voltage value than the normal output and therefore
it is easy to detect.

On the other hand, in an Audio Hotspot Attack, there is
a marked difference in that audible sounds, which have been
self-demodulated from the ultrasound waves, are received
by a target device. This phenomenon is established because
air is nonlinear and demodulates the AM-modulated ul-
trasonic signal, as shown in Section 2. Indeed, we cannot
eliminate nonlinearity from the air because it is a natural
phenomenon. In other words, even if microphone non-
linearity is completely removed, Audio Hotspot Attacks
are still feasible even though inaudible voice commands
are infeasible. In addition, Audio Hotspot Attacks can be
employed from greater distances than DolphinAttacks be-
cause ultrasound has higher-than-audible frequencies, and
therefore, it decays faster.

Audio adversarial examples

Audio Adversarial Examples [39] apply Image Adversarial
Example [40], [41] techniques to voice waves. Adversarial
examples are input to machine learning models that an
attacker has intentionally designed to cause the model to
make a mistake. The recognition results of the machine
learning model are easily affected by a small amount of
perturbation (small noise). Adding a small amount of noise
to the original sound intentionally results in erroneous
recognition. Therefore, Audio Adversarial Examples can
be misidentified as arbitrary commands. The user cannot
notice the subtle additional noise and targeted malicious
commands are therefore executed on the voice assistant.

Existing attacks assume that software or hardware vul-
nerabilities are related to attack successes. Hidden voice
commands and Audio adversarial examples use the vul-
nerabilities inherent to machine learning, and DolphinAt-
tack uses vulnerabilities of MEMS microphones. On the
other hand, the Audio Hotspot Attack uses a physical phe-
nomenon i.e.,non-linearity in the air. Audio Hotspot Attack
countermeasures are therefore more difficult to create given
they do not rely on any existing vulnerabilities.

9 CONCLUSION

In this work, we proposed a new inaudible voice com-
mand attack named “Audio Hotspot Attack.” Its feasibility
was evaluated through extensive user studies and repro-
ducible experiments. We demonstrated that when direc-
tional sounds are emitted from parametric loudspeakers and
not perceived by a nearby person, attacks can succeed over
relatively long distances (2–4 m in a small room and up
to 10+ m in a hallway); further, these attacks are tolerant
against environmental noises. Although the Audio Hotspot

Attack is currently a proof-of-concept, possible countermea-
sures to render the threats unsuccessful have been provided.
The proposed attack uses ultrasound self-demodulation,
which is a parametric phenomenon. We believe that this
concept sheds new light onto ongoing security research
focused on mobile and IoT devices, from the viewpoint of
acoustic inputs.

ACKNOWLEDGMENTS

A part of this work was supported by JSPS Grant-in-
Aid for Challenging Research (Exploratory), Grant Number
18K19789.

REFERENCES

[1] R. Iijima, S. Minami, Z. Yunao, T. Takehisa, T. Takahashi,
Y. Oikawa, and T. Mori, “POSTER: Audio hotspot attack:
An attack on voice assistance systems using directional
sound beams, (poster presentation),” in Proc. of the 2018
ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 2222–2224. [Online]. Available:
http://doi.acm.org/10.1145/3243734.3278497

[2] Apple. (2018) ios - siri. [Online]. Available:
https://www.apple.com/ios/siri/

[3] Google. (2018) google-assistant. [Online]. Available:
https://assistant.google.com

[4] Amazon. (2018) Amazon alexa. [Online]. Available:
https://alexa.amazon.com/spa/index.html

[5] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields,
D. A. Wagner, and W. Zhou, “Hidden voice commands,” in
Proceedings of 25th USENIX Security Symposium, 2016, pp. 513–530.

[6] G. Zhang et al., “Dolphinattack: Inaudible voice commands,” in
Proceedings of the 2017 ACM SIGSAC, CCS, 2017, pp. 103–117.

[7] M. Yoneyama et al., “The audio spotlight: An application
of nonlinear interaction of sound waves to a new type of
loudspeaker design,” The Journal of the Acoustical Society of
America, vol. 73, no. 5, pp. 1532–1536, 1983. [Online]. Available:
https://doi.org/10.1121/1.389414

[8] P. J. Westervelt, “Parametric acoustic array,” The Journal of the
Acoustical Society of America, vol. 35, no. 4, pp. 535–537, 1963.

[9] M. Sahidullah et al., “Introduction to voice presentation attack
detection and recent advances,” in Handbook of Biometric Anti-
Spoofing - Presentation Attack Detection, Second Edition, 2019, pp.
321–361. [Online]. Available: https://doi.org/10.1007/978-3-319-
92627-8 15

[10] W.-S. Gan et al., “A review of parametric acoustic
array in air,” Applied Acoustics, vol. 73, no. 12,
pp. 1211 – 1219, 2012, parametric Acoustic Array:
Theory, Advancement and Applications. [Online]. Available:
www.sciencedirect.com/science/article/pii/S0003682X12000904

[11] S. N. Gurbatov, O. V. Rudenko, and A. I. Saichev, Waves and
Structures in Nonlinear Nondispersive Media [electronic resource] :
General Theory and Applications to Nonlinear Acoustics, 2nd ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[12] I. O. for Standardization, ISO/IEC 30107. Information technology –
biometric presentation attack detection. International Organization
for Standardization, 2016.

[13] T. Kinnunen et al., “The asvspoof 2017 challenge:
Assessing the limits of replay spoofing attack detection,”
in Proceedings of INTERSPEECH 2017, 18th Annual
Conference of the International Speech Communication Association,
Stockholm, Sweden, August 20-24, 2017, F. Lacerda, Ed.
ISCA, 2017, pp. 2–6. [Online]. Available: http://www.isca-
speech.org/archive/Interspeech 2017/abstracts/1111.html

[14] R. G. Hautamäki, T. Kinnunen, V. Hautamäki, T. Leino, and
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