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ABSTRACT  Wireless body area networks (WBANSs) are cyber-physical systems that emerged as a key
technology to provide real-time health monitoring and ubiquitous healthcare services. WBANSs could operate
in dense environments such as in a hospital and lead to a high mutual communication interference in
many application scenarios. The excessive interferences will significantly degrade the network performance,
including depleting the energy of WBAN nodes more quickly and even eventually jeopardize people’s lives
because of unreliable (caused by the interference) healthcare data collections. Therefore, it is critical to
mitigate the interference among WBAN:S to increase the reliability of the WBAN system while minimizing the
system power consumption. Many existing approaches can deal with communication interference mitigation
in general wireless networks but are not suitable for WBAN s because of ignoring the social nature of WBANSs
by them. Unlike the previous research, we for the first time propose a power game based approach to mitigate
the communication interferences for WBANS based on the people’s social interaction information. Our major
contributions include: 1) modeling the inter-WBANSs interference and determine the distance distribution
of the interference through both theoretical analysis and Monte Carlo simulations; 2) developing social
interaction detection and prediction algorithms for people carrying WBANS; and 3) developing a power
control game based on the social interaction information to maximize the system’s utility while minimize
the energy consumption of WBANSs system. The extensive simulation results show the effectiveness of
the power control game for inter-WBAN interference mitigation using social interaction information. Our
research opens a new research vista of WBANS using social networks.

INDEX TERMS Wireless body area networks (WBANS), inter-network interference mitigation,
power control, game theory.

I. INTRODUCTION

In recent years, WBAN development has been driven by the
needs to reduce the healthcare cost, and to support disease
prevention and early risk detection. WBANS are operated
around human bodies, using low power wireless technol-
ogy to interconnect tiny sensors either implanted in or worn
on human bodies. These devices enable continuously real-
time remote monitoring of physiological signals. A typical
WBAN system consists of a number of lightweight and
miniature sensors, each featuring one or more physiologi-
cal or physical sensors, such as electrocardiogram (ECG),
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electroencephalograph (EEG), electromyographic (EMG),
blood PH, glucose, accelerometer and gyrometer, which can
communicate with a network coordinator in a star topology of
WBANS.

WBANS are cyber-physical system (CPS) that are designed
to provide real-time health-care, emergency medical and per-
sonal entertainment services. The physical nature of WBANs
lie in the fact that it operates on human body and requires
sensing, control and Quality of Service (QoS). Some stud-
ies in cyber-physical WBANs system include a systematic
design approach in [1] and model based engineering (MBE)
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approach [2]. A cyber-physical game controller for WBANs
is proposed to broaden users’ view and provide more realistic
interaction experiences in [3]. The authors in [4] character-
ized the energy footprint of a cyber-physical security solution
for WBANS and proposed a physiological signal based key
agreement (PKA).

In this paper, we mainly focus on addressing the problem of
the interference that degrades the system performance of the
cyber-physical WBANSs system. WBANs must function well
even in a dense network environment, such as in a shopping
center, a school or a hospital. However, one WBAN may
interference with another if they are close to each other. The
excessive interference called inter-WBANS interference will
severely degrade the system’s performance including deplet-
ing the system’s power quickly. Especially, in many medical
applications, the collected health data are critical and must be
delivered to the data center reliably. Thus, the inter-WBANs
interference must be dealt with in an appropriate manner.
In a dense WBAN environment, each user carrying WBAN
is more likely to be close to others, and they will interfere
with each other due to using same frequency bands. The
interference decreases the signal to interference plus noise
ratio (SINR) and thereby cause throughput degradation and
more packet losses, which could also consume the power of
sensor nodes more quickly. It should be noted that the power
is a scarce resource in WBANs due to the fact that most
sensors are battery-powered.

The interferences among adjacent wireless networks have
been extensively studied for wireless cellular networks such
as in [5]-[11]. In these papers, analytical co-channel interfer-
ence models are proposed and the methods based on coding
or Media access control (MAC) are presented for the interfer-
ence mitigation. A variety of game theory based approaches
have also been investigated for the interference compensation
in cellular networks [12]-[15]. However, WBANSs are differ-
ent from wireless cellular networks in the nature: Firstly, in
WBANS, sensors nodes tend to be more dense in the body
area; Secondly, the power control is more difficult due to
the low-energy consumption requirements of WBAN nodes;
Thirdly, the communication coverage of WBANs nodes is
much shorter than mobile cellular phones; Last, the inter-
WBANS interferences are closely related to the social activ-
ities of users carrying them. Considering these features of
WBAN:S, in this paper, we propose a novel power control
game based on the social interaction prediction to reduce
the inter-WBAN interference without sacrificing the system’s
performance.

The transmission power control plays an important role
in the interference mitigation problem in WBANs. Game
theory has been applied to address the power control problem.
In a cooperate power control game, as long as each node
in the WBANS follows the game rules, a equilibrium solu-
tion can be reached, which is optimal for all individuals.
The inter-network interference mitigation for WBANs has
been studied in paper [16]-[18]. Based on a small random
network graph, power control games are used to coordinate
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the power supply among the nodes. Due to the fact that
WBANSs are carried by human bodies, the inter-network inter-
ference occurs when people are close to each other. The
interference is closely related to the social activities of people
carrying WBANSs. According to the social network theory,
the activities of social nodes are not random but satisfy some
certain distributions [19]. In a continuous time frame, some
social interaction information such as state of social inter-
action may not change, as shown in Fig. 1. Fig. 1 shows
an example of the social interaction information in three
continuous time frames. The nodes in the figure present indi-
viduals carrying WBANSs and the links mean the occurrence
of social interaction such as chatting. Because the social
interaction may last for some time, some interactions do
not change in the next time period as marked by dashed
arrows in the figure. It helps to improve the performance
of the interference mitigation if the unchanged social inter-
action information is considered. Thus, the social interac-
tion information will play an important role in inter-network
interference mitigation. In this paper, both social interaction
information and the movement of individuals are considered
when a power game is used to mitigate the inter-network
interference.

o
o

G. 1 G[ Gt—l

FIGURE 1. lllustration of the social interaction information in
three continuous periods.

Our main contributions in this paper can be summarized as

follows.

« We formulate the inter-network interference model
based on social interaction information. Because peo-
ple’s interaction is not random but satisfies certain distri-
bution, to better understand the interference scenario, we
build a inter-network interference model for WBAN:S, in
which the number of interference nodes for the WBANSs
satisfies power law distribution, a typical social network
model.

o We give the probability density function (PDF) about
the interference distance distribution. Due to the fact the
distance between interference nodes is a key factor to
the SINR, the PDF is important for the inter-network
interference mitigation.

« We develop social interaction detection and prediction
algorithms for people carrying WBANS.

« We design a cooperate power control game including
social networks information to solve the inter-network
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interference mitigation problem. We also validate the
performance of the proposed power control game under
social interaction scenarios.

The rest of this paper is organized as follows. In Section II,
we present an overview of the related works. In Sections III
and IV, we introduce the system design and power game for-
mulation, respectively. We validated our designs in Section V,
and conclusions are reached in Section VI.

Il. RELATED WORKS

The WBAN is a cyber-physical system. Many researchers
have put their attention on WBANs design [20]-[22].
Paper [20] proposes a usable and secure key agreement
scheme for WBAN using biometric. A heartbeat driven
medium access control scheme for WBAN is proposed
in [21]. The authors in [22] propose BAND-Aide, a tool
for CPS oriented analysis and design of WBANs. However,
in these works the authors don’t consider the interference
between co-existing WBANS.

Scheduling mechanism can be used to reduce the com-
munication interference [23], [24]. Paper [23] proposes a
wireless link scheduling scheme under physical interference
model. The authors of Paper [24] proposes an Intra-site
scheduling for interference avoidance in LTE system. How-
ever, when WBANSs are carried by each of people individ-
ually, it is challenging to schedule the transmissions among
multiple WBAN:S. In the literature, there are few works on
interference mitigation using scheduling for WBANSs.

Media access control (MAC) based interference control
has been studied for wireless networks [25], [26]. Paper [25]
presents a MAC protocol that can achieve high throughput
bulk communication for data-intensive applications. A cog-
nitive MAC protocol using statistics channel allocation is
proposed in paper [26] to coordinate the spectrum resources.
Several centralized and distributed algorithms using power
control have been proposed for wireless networks. In cen-
tralized approaches [27], [28], there is always a central coor-
dinator which controls the medium access and transmission
power so as to control the inter-network interference. For
instance, in cellular network, the base station (BS) acts as a
network coordinator which control the medium access and
transmission power for each network node. In [29]-[31],
the authors consider the inter-network interference mitigation
for WLAN. However, these approaches are not suitable for
the inter-network interference mitigation for WBANs. One
reason is that the topology structure of WBANSs is unique and
is different from other types of wireless networks. The second
reason is that the nodes in WBAN is low-power and energy-
limited, so achieving energy efficiency is more important in
WBANS than in other wireless networks.

Game theory has been applied to solve the inter-
network interference mitigation problem for wireless network
[16], [32], [33]. In [16], game theory based distributed power
control algorithms, named ADP and MADP algorithms, are
introduced both for single channel and multiple channel
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wireless networks. In [33], game theory is used to solve the
flow control problem for variable rate traffic at a bottleneck
node. The authors in [32] use game theory to do both channel
allocations and power control for interference mitigation in
wireless networks. They formed a cooperate game in which
each node can be viewed as a rational player and different
users adjust their transmission power levels to maximize
system utility in a distributed fashion. However, they either
consider a random network topology or an uniform network
topology, which is not the case for the inter-WBANS inter-
ference in a social interaction scenario. The authors in paper
[17], [18] propose using power control game to mitigate the
inter-WBAN interference. However, they do not consider the
social interaction of people carrying WBANSs nodes, which
have significant impact on inter-WBANS interferences.

Besides the above interference mitigation techniques that
are all above the physical layer, the communication inter-
ference can also be reduced by physical layer techniques.
For example, the authors in [34] proposed a hybrid MMSE
and interference cancellation scheme. Due to the mobility
of human beings who carry the WBAN:S, the inter network
interference may change with individuals’ social activities.
However, it is a challenging task to monitor people’s social
interaction. Bluetooth technology is used in paper [35] to
detect social interaction. However, the results are not accurate
in this method. In our previous work [36], an approach of
using acoustic signal to detect nearby nodes is proposed. The
distance detected by the acoustic waves is more accurate than
the Bluetooth method. To facilitate the theoretical analysis,
we also model the inter-network interference of WBANSs
based on the social interaction information. A PDF of the
distance distribution of the interference links is derived. The
result is validated through computer simulations. We also
formulate a cooperate power control game to minimize the
energy consumption while keeping the system’s performance.
The results are compared to the scenarios in random network
topology and uniform network topology.

lll. SYSTEM DESIGN
A. INTER-WBANs INTERFERENCE
In a WBAN system, The body sensors can communicate the
body central node via Bluetooth, ZigBee, or IEEE 802.15.6.
The central node can communicate with the mobile phones
through Bluetooth because most smart phones have built-
in Bluetooth transceivers. The mobile phone will forward
the collected data to the internet server via WiFi or cellular
network. The control center or the remote users are able
to access the sensor measurements and control the WBANs
through the internet. The system diagram is shown in Fig. 2.
In this paper, we consider the inter-network interference
mitigation for WBANSs based on social interaction informa-
tion. We assume that a TDMA based media access control
(MAC) control scheme is applied to control message schedul-
ing within a WBAN and thus the intra-network collision thus
can be avoided. However, nearby WBANSs will interfere each
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FIGURE 2. System diagram for WBANSs.

B Receiver
B @ Transmitter

—» Interference

FIGURE 3. Inter-network interference problem for WBANSs.

other because their communication range may overlap. See
Fig. 3 as an example. Each individual user carries a WBAN,
which consists of a central node (receiver) and several sensor
nodes (transmitters). These WBANs may interfere with each
other during the social interaction period because people
carrying them are close to each other. The arrows in Fig. 3
show the inter-network interference links in WBANS.

In our system, the body sensors send their collections to
the central nodes through IEEE 802.15.6 or ZigBee. The
mobile phone then forwards the collection from central nodes
to the health data center or remote users via WiFi or cellu-
lar network. It is assumed that the central node does have
an extra gateway interface that bridges sensor nodes and
smartphones.

A geometric social network G(V, E) with radius r is a
graph with node set V in a metric space and edge set £ =
Hu, v}{{(u,v € V) A0 < |lu—v| =< r)}, where || is
an arbitrary distance norm in this space. Thus, two nodes
are adjacent if the distance between them is at most r. The
distance between two points (x1, y1) and (x, y2) is calculated
in the I, norm by /(x| — x2)?> 4+ (y; — y2)?. In this paper,
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we build the network model based on the social interaction
model.

In a system that contains many WBANS, their transmission
ranges may be overlapped, which cause the interference.
In this paper, we model the system in a scale free network
in which the nodes’ degree should satisfy a power law dis-
tribution. In the scale free network, the distribution of the
nodes’ degree does not change with the size of the network.
By power law distribution, the fraction of the nodes that have
k neighbors, denoted by P(k), is proportional to k=% for a
large value of k, or

P(k) oc k™ (1)

where « is a positive constant value. The typical value of « in
social network is in the range of [2], [3]. If we define a coef-
ficient C, the probability that a node has deg(x) neighbors,
where deg(k) follows the power law distribution

prob(deg(x) = k) = Ck™@ )

where C is a constantand C )~ 22 k™% = 1.

In this paper, to investigate how the social interaction
information will help the interference mitigation, we propose
to use social networks as a tool to build a social interaction
network (SIN) to model the social interactions among people
based on their location information. In SIN, if two nodes are
close to each other, we make an edge between them. Next,
based on the SIN, we know that some nodes’ communication
ranges are overlapped and they interfere with each other.
We formulate a power control game to maximize the system’s
performance while minimizing the total power consumption.

Algorithm 1 Social Contact Network Consisting of WBANs
Require: Number of WBANSs N, radius of a WBAN r, grid
size of the graph L and power law exponent «

Ensure: Social contact network G

1: Setup a grid G with length L

2: Randomly place N’ (1 < N’ < N) nodes in the grid

3: for i from N’ to N do

4:  Randomly choose L position in the grid to add a new

node i
5. forjfrom 1to L do
6: Calculate the fitting coefficient f; if node i is placed

in position j
7:  end for
Put node j at the position whose fitting coefficient is
the biggest among the L fitting coefficients
9: end for
10: Add links between any two WBAN:Ss if they are adjacent
11: Output the social contact network G

The proposed algorithm of building a SIN that contains
many WBANS is shown in Algorithm 1. First, we set values
for the number of WBANS in the graph, the radius of each
WBAN r, the size of the grid in the graph L and the power law
exponent «. Then, we randomly put N’ nodes in the graph.
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Next, we put nodes into the graph one by one. For each node,
we select L potential positions and finally place the node
to the place where the fitting coefficients is the biggest among
the L positions. After placing all the N nodes in the graph,
the algorithm outputs the social interaction graph in which an
edges exists if the two nodes are close to each other.

B. DYNAMIC SOCIAL INTERACTION DETECTION

In our proposed design, the social interaction information will
be used to reduce the inter-network interference for WBANS.
However, it is challenging to detect and measure the social
interaction in the social networks. Nowadays, most people
have mobile phones and use them in daily lives. In particular,
the mobile phones have more and more sensors that could
sense the context data and deliver them among the networks.
For example, most of the mobile phones have speakers and
microphones which could send and receive acoustic waves.
So it is convenient to exploit the acoustic signal processing
techniques along with the Bluetooth technology to measure
the physical distance among the mobile phones which play as
a gateway of WBAN:S.

FIGURE 4. Dynamic social interaction detection.

In this paper, we proposed a social interaction detection
strategy that detects nearby WBANs and the distance among
them using both Bluetooth and acoustic wave technology.
Bluetooth is a proprietary open wireless technology standard
for exchanging data over a short distance. In most cases,
the effective communication range of the Bluetooth signal is
10 meters. The acoustic wave could be sent and received by
mobile phones with speakers and microphones. One device
sends an acoustic wave and wait until it receives the acknowl-
edge back. Then the two-way distance could be estimated by
the waiting time multiplying the speed of acoustic wave in
the air. As shown in Fig. 4, at time 7, node A broadcasts
an acoustic wave. Node B receives the wave at time 7, and
replies the wave at time 73. If node A is able to get an acoustic
wave back at time Ty, the social interaction is detected and
also the distance between them can be estimated by

D—Sx (TZ—TI)';(T4—T3))
» (Ty = T1) — (T3 — T2))
2

=S

3)
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where S is the propagation velocity of acoustic sound in
air, T3 — T, is a constant. The procedure of the proposed
nearby WBAN nodes detection and distance measurement is
as follows: (i) The mobile phone (WBAN gateway) opens
Bluetooth to search the nearby devices that have Bluetooth
enabled. (ii) If nearby nodes are detected, the node records
their ID and goes to next step. (iii) The mobile phone runs
acoustic meters [36] to send a acoustic wave and wait until
the acknowledge is received. Then the the delay time multi-
plying the propagation velocity of the acoustic wave in the
air is the estimation of two-way distance between the two
devices.

The social interaction among people will be detected even
if two people only have a short conversation. If they keep stay
closely to each other for a long time, their interaction will
be detected for multiple times, which is not energy efficient.
If we can predict the social interactions among individuals
within a certain period, the social detection will consume less
energy by skipping Bluetooth broadcast process. In addition,
the predicted information will be helpful to the power game
design for interference mitigation. In the paper, we proposed
a four-state dynamic social interaction prediction algorithm,
shown in Fig. 5. It is worth noting that there are other potential
predictors such as static predictor, last time predictor and
statistic prediction models. The static predictor always makes
the same predictions while the last time predictor makes
prediction only based on the last time state. However, both of
them achieve worse performance than our proposed four-state
prediction algorithm. In the future, we may further investigate
some more complex static predictors such as Markov Chain
predictive models.

Rig€ Strong Wrong Weak
Interaction Right Interaction
ioA
s =
o o
> >
oo
- Ri
Richt Strong Right Weak
'g Non-Interaction Non-Interaction
------------ Wrong-»

FIGURE 5. Social interaction prediction.

As shown in Fig. 5, the social interaction predictor has
four states: Strong Interaction, Weak Interaction, Strong Non-
Interaction and Weak Non-Interaction. The predictor outputs
Yes, meaning the occurrence of a social interaction, if it is
in the first two states; The predictor outputs No, meaning no
social interactions if it is in the last two states. The predictor
changes its states to others based on whether the prediction
is right or not. For example, if the predictor is in the state
of Strong Interaction at time ¢, then it predicts there will be
interaction at time ¢ + 1. If the interaction is detected at time
t 4 1, the prediction is correct and the predictor remains in
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the state of Strong Interaction. If not, the prediction is wrong
and the predictor changes to the state of Weak Interaction.

C. CHANNEL GAIN MODEL FOR INTERFERENCE LINKS
The strength of the interference signal is a function of the
distance between the transmitter and the receiver. The inter-
ference channel gain gj; can be obtained before using power
control to mitigate the interference. When we consider the
interference among the WBANS, where their communication
ranges may overlap to cause interferences, the WBAN topol-
ogy has a significant impact on the total interference level.
Base on [17], the channel gain gj; of the link from person j’s
transmitter to person i’s receiver is calculated by

gi = di* )

in which dj; is the distance between person j’s transmitter to
person i’s receiver.

Bl Transmitter
@ Receiver

—>» Distance

FIGURE 6. Network topology.

As shown in Fig. 6, node A is the coordinator of tagged
WBAN, and there are six WBANSs which are closest to it. We
call these six WBANS as tier-1 neighbors. Node B belongs to
tier-1. The WBAN nodes outside tier-1 and closest to tier-1
belong to tire-2. In this case, node C belongs to tier-2. The
WBANS outside tier-2 and closest to tier-2 nodes belong to
tier-3. Node D is outside tier-2 and belongs to tier-3. Because
of the low energy requirements and short communication
range of WBAN nodes, in this paper we do not consider the
interference from tier-3 and even further.

Based on the topology shown in Fig. 6, the distance from
the center of any WBAN in tier-1 to the center of tagged
Node A Dy is 2r, and the distance from the center of any
WBAN in tier-2 D is either 2./3r or 4r. Howeyver, the inter-
ference are from the links between one person’s transmitter
and other receivers. For example, when the receiver of person
A receives the message sent from person B’s transmitter
to person B’ receiver, and the transmitter of person A is
sending message to person A’s receiver at the same time,
then a collision occurs and the link from B’s transmitter to
A’s receiver causes the communication interference. If we
know the distance between B’s transmitter and A’s receiver,
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we can estimate the interference channel gain. Assuming that
person B’s transmitter is randomly placed within r centered
to B’s receiver, we can compute the Cumulative Distribution
Function (CDF) of the distance d. Through the same process,
we can get the CDF of the interference distance dp from
tire-2 to the tagged WBAN. The CDFs for d; and d; can be
written as

0 z<r
51(X1>y1)+n5r1(2r*x1»y1) r<z<?2r
CDFd1 (2) = Sl(xl,)’l)-i;izz(xl—Zr,yl) 2r <z <3r ®)
1 z>3r
0 2<2V3=Dr
CDF,.(2) — S1(X2,)’2)+n5r1(4r—XZ»y2) (zﬁ —Dr <z<dr
A Sl(Xz,yz)-i;TSrzz(X2—4r~YZ) 4r <z < 5r
1 z>5r
(6)
in which
2 +3r?
X = —
4r
V=74 +10z2r2 — 9r*
1=
4r
22 + 15r2
Xy = ———
8r
N =74+ 3472r2 — 225r%
Y2 =
8r
S1(x,y) = 2% arctan - Xy
X
S2(x,y) = (r — arctan X)rz + xy. N
X

When the CDFs of d; and d; are known, we can calculate
the Probability Density Functions (pdf) for di and d» by
formulation of pdf(x) = %CDF(x). Fig. 7 plot the CDFs
of the distance d; and d, with r = 0.5. The validity of
the CDFs is also cross-checked using Monte Carlo simula-
tion. There are 100000 randomly generated transmitters in
tier-1 and tier-2 within r to the center in the simula-
tion. From the figures it is observed that the theoret-
ical analysis of the CDF of the interference distances
matches with the Monte Carlo simulation results. There-
fore, in the following studies, we use the derivative of the
CDF, which is PDF, to generate the interference distance
values.

According to (3), the interference channel gain gj; is the
exponential function of the distance dj;, which is the distance
from the node j’s transmitter to node i’s receiver. In our
following studies, we estimate the interference power by the
PDFs of d; and d>.

IV. POWER CONTROL GAME

In this section, we propose a power control game to do the
inter-network interference mitigation for WBANSs. Because
the WBANS are battery-supported, it is critical to reduce the
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FIGURE 7. Theoretical analysis vs. numerical results. (a) Tier-1.
(b) Tier-2.

energy consumption of WBAN system, prolong its lifetime
and enhance the system’s reliability. Therefore, the goal of
the power control is to maximize the network utility while
minimizing the power consumption.

A. OPTIMIZATION PROBLEM

We consider a scenario in which some of WBANS are close
to each other. Because their transmission ranges may overlap,
they could interfere with each other. As shown in Fig. 6, we
assume that a TDMA based Media Access Control (MAC)
scheme is used within the WBANSs to avoid the intra-network
collision. Due to the block fading based wireless channel
where the channel gain is constant within each block, we
also assume the channel gains of each transmitter and the
interference gains are fixed. Assuming there is a network
graph that consists of N WBANS, and there are interference
among them if their transmission ranges are overlapped with
each other. Then node i’s SINR can be expressed as

qii(diDpi
% =i 4ji(djipj + no

®)

rp =

where B is bandwidth. p; and p; are the transmission power of
node i and node j. ng is the white noise power at receiver i.
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gii and gj; are the channel gain between transmitter i and
receiver i, and the channel gain between transmitter j and
receiver i, respectively. In this paper, we define the utility as
u; = log(r;), then the system utility is

N
U=>log(r). ©)
i=1

In a social interaction network, the social interactions usu-
ally last some time duration. If each individual carries a
WBAN, there will be inter-network interference due to the
overlapping of their communication ranges. In this paper,
based on the prediction of the interference distances, we
optimize the transmission power of the node to mitigate the
interference. For example, if a social interaction is detected
between nodes i and j at time ¢ and the interference distance
is dy, then the interference distance at the next time ¢t + 1
will be

it =df. (10)

In this paper, we want to maximize the system’s perfor-
mance while minimizing the total power consumption. The
optimization problem can be written as

{ma.leog(ri) an
min )_ p;

where 0 < p; < P, for each transmitter, P is the maxi-
mum transmit power. Then we apply game theory to solve
the power control problem to maximize the system’s utility
while minimizing the total power consumption. The power
control game is formulated by (i) The N transmission links
between the transmitters and the corresponding receivers in
the N WBANSs acting as N players in the game. (ii) The
transmission power for the N players should be in the range
of 0 to P. (iii) Each player in the game are assumed to be
cooperative, which means they correctly follow the algorithm.
(iv) The price for player i if the transmission power is p; is
defined as

wi(pi, p—i) = W1 X i — W2 X p; (12)

where the price function for each player is the difference
between weighted utility and weighted power. For simplicity,
we cansetw) = l andw = w), = 2. Then the above formula

. wy*
can be written as
wi(pi, P—i) = Fi — W X pj (13)

in which the weight w can be set according to the WBANS’
wireless channel state, power state and different constraints
on power and Quality of Service (QoS) requirements.

B. POWER CONTROL GAME ALGORITHM

According [17], there exists a Nash Equilibrium in the
power control game defined above if and only if pf =
arg maxp, 7w;( p;, p—1) for all player i and for all g. The proof is
as follows. According to [37], if the power control game has
non-empty compact convex subsets of an Euclidean space for
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power p; and the price m; are continuous, there must be a pure
strategy Nash Equilibrium. For player i, we have

omi( pi, p—i)
api
e
— 1 Aq”( ll) _ —W=0(14)
B 2ji 9i(djdpj + qii(di)pi + no
which can be solved for all p;, to get
. R
1 g2z 9ildipj + no
pi=—— 2= . (15)

w qii(d;i)
It can be easily shown that for all p; € [0,p'], 7; is
strictly non-decreasing and then strictly non-increasing for

! v
§ Sz ai@ipi+no .
M. Thus m; is a

pi € [p/,P], where p/ = e
strictly concave function. Thereforeq[tlhé[ existence of the Nash
Equilibrium in the power control game is proved.

We have proved the existence of a Nash Equilibrium in the
power control game defined above. If each user in the game
gets the optimal transmitting power, the system has reached
to a point that balances the overall transmission power and
the system utility. As shown in Equation (15), the optimal
power for each player is based on the distance between the
users. Therefore, our social interaction detection is based on
distance measure between users. If the interactions are not
detected correctly, the system will not reach to the balance
point. In the future, we may develop a validation scheme that
detects the social detection errors.

Algorithm 2 Power Control Game Algorithm

Require: Each player i € N is initialized with a ran-
dom transmission power and price p;(0) € [0, P] and
7i(0) = 0

Ensure: Optimal transmitting power for all players in the
game {p1, p2, ..., pn}

1: Distance update: At each turn, the estimated distance
equals to the previous distance if social interactions are
detected. Otherwise, update the distance by interference
distance detection

2: Power update: At each turn, player i updates its power
according to p;(t) = Wi(p—i(t™), m—i(t 7))

3: Price update: At each turn, player i updates its price value

according to m;(¢) = [1(pi(t™))

. if all p; don’t change in the last continuous five turns then

Ouput {p1,p2, ..., PN}
else

Go to Distance update
: end if

® NN A

In the proposed power control game, each player has an
initial transmission power and the players are able to update
their powers and prices at each turns. When the transmission
power of all the players do not change, the algorithm stops
and outputs the optimal transmission power for all the trans-
mitters. The algorithm of the power control game is shown is
Algorithm 2.
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Not only the powers and prices generated in a distributed
fashion in the power control game introduced above, but also
the each player only needs to acquire very limited informa-
tion. Note that the power and price update function can be
written as follows.

1
>z it ~)gji(d;i)
1
> j2iDilt )gji(d;i) + Bng

Wilp—i(t™), m_i(17)) =

(16)

H(pi(t7)) = a7

where ¢~ represents the next time moment. From these
equations, we can find that the player i needs to
know the following information to implement the update,
(1) its own channel gain g;;, current SINR r and own utility
u;. (ii) The nearby players channel gain gj;, j #i & i, j € N.

The nearby channel gains account for only 1/N of the total
channel gains in the system, each player does not need to
know the other gains. Due to each player announces only
a single price value, the number of prices scales linearly
with the size of the WBANSs. What’s more, because of the
short communication ranges in WBANSs, only the nearby
transmitters cause the interference. If the two players are far
away form each other, the interference is very small and can
be ignorable.

The power game design is based on the social interaction
information (i.e., distance between users). The social inter-
action information provided us with the changes of network
topology. In the proposed interference mitigation scheme, we
use 4 state predictors to predict the topology change based
on this information. The advantage of this approach is the
adaptation to the network topology change and to reduce
the frequency of topology information collections. Compared
with traditional game control approach, the communication
overheads have been significantly reduced. In the paper, the
proof of the existence of a Nash Equilibrium of the proposed
power control game uses the social interaction information.

V. SIMULATION RESULTS
In this section, we conduct the simulation and demonstrate
the performance of the proposed algorithms.

A. NETWORK MODEL

We simulate a network in a 20 m x 20 m square area. The sim-
ulation setting are: P;/ng = 40 dB and B = 128. Individuals
are placed in this area according to the procedure introduced
in Section III to SIN, which follows a power law distribution.
Each person carries a receiver and the transmitters are placed
inal m x 1 m circle centered around the corresponding
receivers.

Fig. 8(a) shows an example of the generated networks of
WBANS at time ¢, which has 40 WBAN nodes. From time ¢
to time ¢ + 1, we make 10% WBAN nodes in the network to
randomly move, and we get Fig. 8(b) as the network graph
for time ¢ + 1. In the two figures, the circles are the areas
that taken by individuals. The centers are receivers and the
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(b)

FIGURE 8. Network topology for WBANSs. (a) Network of WBANs
at time t. (b) Network of WBANSs at time t + 1.

transmitters are randomly placed in the corresponding circles.
From time ¢ to time ¢ 4 1, only 10% nodes could move. Then
we can find from the figures that the two networks has many
common interference links.

B. PERFORMANCE EVALUATION

First, we examine the convergence of the power control game
with 40 nodes and each with utility u; = log(r;). Fig. 9 shows
the convergence of the powers for each node under the power
control game starting with random initializations.

Next, we show the performance of using power control
game from time ¢ to time ¢ + 1. We know that most (90%)
WBAN nodes do not change from ¢ to t 4 1, we expect that
the convergence in the power control game at time # + 1 to
be much faster than that at time ¢, which is shown in Fig. 9.
In Fig. 9, each curve corresponds to the power for one user.
At the beginning, each user is initialized to a random trans-
mitting power, and then it updates the power according to
Equation (16). The users’ price will be updated as shown in
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FIGURE 9. Convergence of the power with a random initiation.

1600

1400

1200

1000

Total Price

400 i i i - L
0 5 10 15 20 25 30
Iterations

FIGURE 10. Convergence of the price with a random initiation.

Equation (17) when their transmitting powers have changed.
All users in the game keep updating their power and price
until their powers do not change. The convergence of the total
price is shown in Fig. 10. The results of the power control
game at time ¢ + 1 are shown in Fig. 11. It should be noted
that the power control game converge more quickly compared
to that at time 7, which demonstrates the advantage of using
social interaction information in inter-WBANS interference
mitigation.
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FIGURE 11. Convergence of the price at t + 1 from time t.
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FIGURE 12. Average power as a function of the number of nodes
in the network.

Then, we examine the performance of the power control
game with the number of the nodes increasing from 40 to 80.
Fig. 12 shows the nodes’ average power is a function of the
number of the nodes in the network. From the figure, we find
that the average power decreases when the network contains
more nodes. That is because if there are more nodes in the
network, the interference increases and most of nodes need
to reduce their power to reduce the interference according to
the power control game. Fig. 13 shows the total utility is also a
function of the number of nodes in the network. It is observed
that, in the power control game, the total utility of the network
is increased when there are more nodes in the network.
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FIGURE 13. Total utility as a function of the number of nodes in
the network.

Next, we apply the power control game in the uniform
interaction network topology that contains the same number
of nodes. The dashed line with squares in Figs. 12 and 13
show that the average power and total utility are closely
related to the number of nodes in the network, respectively.
It is also observed that the SIN topology save nodes’ power
by 50% by sacrificing only about 12% of system utility, which
outperforms the one in uniform topology where no social
interaction patten is considered. The proposed power control
game is a distributed interference mitigation scheme. Each
user in the game decides its transmitting power based on the
information it collected. The algorithm will run on the sensors
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according to the power updating function of Equation (16).
Therefore, the time complexity of the algorithm is O(1).

We also study the effectiveness of social activity prediction
in the proposed social information based power control game.
A four-state predictor as shown in Fig. 5 is used to estimate
the activity of the WBANS’ users at next moment. Compared
with the existing scheme in [17] which requires frequent
distance update when the person carrying WBANSs move, our
scheme can achieve the better performance even under the
same overheads by an effective social interaction prediction.
As shown in Fig. 8(a) and (b), we allow 10% WBAN nodes
move and apply our scheme for social interaction prediction
in the scenario. We compare our scheme with the one without
social predictions (i.e. [17]). Fig. 14 shows the total price
reduced up to 7% by using social information when 90% of
these node movements are predicted accurately. In the scheme
without using social interaction prediction, since the peo-
ple’s social activities are changed dynamically. The WBAN
system has to report the network topology changes and update
the transmission power frequently, which is energy-intensive
and may not be realistic. Our proposed social information
based approach can reduce the frequency of the report and
power update, and thus reduce the communication overheads.
Even under the same frequency of the report and update, our
proposed scheme can achieve more optimal power price.
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FIGURE 14. Total price with difference number of nodes in the
network.

C. MIT REALITY DATASET

In the above, we evaluate the performance of the proposed
social information based power control game based on the
simulated contact network. In this section, we further evaluate
the performance of the prosed algorithm based on the real
social contact dataset. The Reality Mining project was con-
ducted from 2004-2005 at the MIT Media Laboratory [38].
The Reality Mining study following ninety-four subjects
using mobile phones pre-installed with several pieces of soft-
ware that recorded and sent the researcher data about call logs,
Bluetooth devices in proximity of approximately five meters
and other context information. In the Reality Mining project,
when a Bluetooth device conducts a discovery scan, other
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Bluetooth devices within a range of 5-10 meters respond
with their unique information, such as user defined name,
the device type, and MAC address. When a subject’s MAC
address is discovered by a periodic Bluetooth scan performed
by another subject, the two devices are 5—10 meters close to
each other.

Then we assume that the ninety-four individuals are in a
area of 30 meters by 30 meters, and the distance between
two individual who have contact is a random number in
the range from 1 meter to 10 meters. The communication
range of the WBANSs is 10 meters and the transmitter is
located within 2 meters from its corresponding receivers for
each WBAN. Fig. 15 shows the average power and sys-
tem utility for six continuous times. The number of con-
tacts are {95, 153, 157, 14, 26, 107} for these time moments.
The results show that when the contact rate is higher, which
means people are closer to each other, both the average
transmission power and system utility are lower. Due to the
limitation of acquiring large set of real social data, our studies
are more focused on the theoretical analysis and model based
approach.
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FIGURE 15. Average power and system utility for MIT reality
dataset.

VI. CONCLUSION

In this paper, we have presented a social interaction informa-
tion based power control game for inter-WBANSs interference
mitigation for cyber-physical WBANs system. Unlike the
previous works, our game is designed based on social inter-
action detection and prediction, which considers the unique
social interaction features of cyber-physical WBANSs system.
Firstly, we built the interference model based on social inter-
action information. Secondly, we model the social interaction
and presented the PDF of the network interaction distances.
Monte Carlo simulations are used to verify correctness of
our proposed model. Thirdly, we applied game theory to
control the WBANSs’ transmission power effectively in order
to mitigate the interference. We proved the existence of
the Nash Equilibrium in the power control game and gave
the power update and price functions. The effectiveness of
the proposed algorithm are demonstrated through expensive
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simulations and MIT reality Dataset. Our future work will
focus on designing more effective MAC protocol that works
with the proposed approach in order to further mitigate the
inter-WBANSs interference.
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