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ABSTRACT As a typical emerging application of cyber physical system, smart power grid is composed
of interdependent power grid and communication/control networks. The latter one contains relay nodes for
communication and operation centers to control power grid. Failure in one network might cause failures in
the other. In addition, these failures may occur recursively between the two networks, leading to cascading
failures. We propose a k-to-n interdependence model for smart grid. Each relay node and operation center is
supported by only one power station, while each power station is monitored and controlled by k operation
centers. Each operation center controls n power stations. We show that the system controlling cost is
proportional to k . Through calculating the fraction of functioning parts (survival ratio) using percolation
theory and generating functions, we reveal the nonlinear relation between controlling cost and system
robustness, and use graphic solution to prove that a threshold exists for the proportion of faulty nodes, beyond
which the system collapses. The extensive simulations validate our analysis, determine the percentage of
survivals and the critical values for different system parameters. The mathematical and experimental results
show that smart grid with higher controlling cost has a sharper transition, and thus is more robust. This is the
first paper that focuses on on improving smart power grid robustness by changing monitoring strategies from
an interdependent complex networks perspective.

INDEX TERMS Cyber physical system, smart power grid, interdependent networks, cascading failure,
percolation theory.

I. INTRODUCTION
Cyber-physical systems (CPS) transform our world with new
relationships between computer-based control and communi-
cation systems, engineered systems and physical reality. The
software programs, networking and computers are integrated
together rather than computation alone. In a CPS, physi-
cal devices such as battery, sensors are viewed as physical
components. The embedded computers and communication
networks are considered as cyber components. As one of
important CPS applications, smart power grid is composed
of interdependent power grid and communication/control
networks. Conventional electrical grids utilize centralized
command and control structures, e.g., SCADA (Supervisory
Control And Data Acquisition) system relying on human
monitors for identifying faults and decision making. Massive
blackouts have occurred in the past since the existing system
lacks real-time control ability, e.g., the very recent huge
blackout happened in July 2012, affected more than 600
million people in India [1].

The smart power grid concept addresses the real-time
control and energy efficiency. It is an electrical grid
that integrates information and communications technol-
ogy and different sources of power generation e.g., fossil-
fuel, solar and wind. It predicts the electricity demands
in different regions, monitors the power usage of cus-
tomers using smart meters, and deals with system failure
rapidly.
We study the reliability of smart power grid. The com-

munications and control infrastructures need energy to
properly operate, while the power stations and electricity
transmission are controlled by operation centers. Operation
centers can also transfer and exchange information with
other communication devices. The two networks are con-
nected and mutually dependent, and smart power grid can be
regarded as an interdependent network. The failure in either
of them may lead to the failure in another. The breakdown
of a power station would cause the outage of communi-
cation and control nodes, while the faults in communica-
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tions and control system might lead to an improper function
of power stations. Moreover, failures can occur recursively
between the two networks, causing cascading failures, and
potential blackout. One important parameter for discussing
the smart grid robustness is the fraction of properly func-
tioning nodes, i.e., survival ratio, after cascading failure
stops [18].

Each power station can be controlled by multiple distinct
operation centers, and functions as long as at least one of
its operation centers is working. We believe that the more
control relations (links) and devices the system has, the
higher cost is required. We define the system controlling
cost as proportionally dependent on the number of links
between operation centers and power stations. Our primary
interest is to find out the relation between controlling cost
and system robustness. In this paper, we design a mathe-
matical model of smart power grid to understand the inter-
action of the different components. This model enables us
to study how failures propagate within the system and what
are system robustness under different monitoring schemes.
Our analysis offers insights for building optimal smart grid
infrastructures.

Current research on robustness in smart power grid are
mainly focusing on load distribution and malicious attacks.
An architecture for distributed generation, which can help
prevent cascading failures, is described in [5], [13], [14]
study the cascading failure in electricity grid due to the
overload in a single station. To decrease the impact of cas-
cading failure or even to prevent it, [21] analyze the trip-
ping of overloaded lines and proposed a model to con-
trol these lines. [19] proposed three mitigation strategies
and simulate them on real-world network structures to find
an effective way for reducing cascading failure. Software
overlays and multiple routes to deliver critical data to pre-
vent failures were studied in [26]. Load distribution attack
was deeply investigated in [25] to provide effective pre-
vention on false data injection. However, none of previ-
ous papers considers the cascading failure between power
grid and communication network, or presents more reliable
architecture.

Interdependent network [2] was proposed to study the
interactions between networks. The models proposed in
[2], [3] are ‘‘one-on-one’’ interdependence models, within
which the node properly operates relying on one unique
node in the other network. Such models do not correctly
reflect the characteristics of smart grid since the power sta-
tion normally provides energy to multiple communication
devices. The ‘‘multiple-to-multiple’’ interdependence mod-
els developed in [24] assumed that each node is assigned
with the same number of inter links. Each node functions
as long as at least one of its supporting nodes is operat-
ing. [22] points out that the interdependence in real world
network is unidirectional rather than bidirectional. These
articles do not follow the ‘‘one-to-multiple’’ requirement
of smart power grid: each communication/control node is
supported by only one power station, while each power

station is monitored and controlled by multiple operation
centers.

A. OUR CONTRIBUTION
We propose a novel smart grid model where each power sta-
tion is operated by k distinct operation centers, and each oper-
ation center could monitor and control n power stations. The
defined ‘‘system controlling cost’’ is simply equal to k units,
and the ‘‘monitoring capability’’ for each operation center is
n. By calculating the fraction of functioning parts (survival
ratio) after the cascading failure stops, we mathematically
study the relation between system robustness, controlling cost
and monitoring capability.
We follow a three-step scheme to construct ‘‘one-to-

multiple’’ interdependent network to model smart power grid.
Both power grid and communication networks are type of
scale-free networks [18], in which the degree distribution
follows power law. This is the first paper to study the smart
power grid robustness (the effect of cascading failures) of
different monitoring strategies, using interdependent network
and percolation theory. We present detailed mathematical
analysis of the random failure propagation in the system.
Our results show that if the proportion of initial faulty nodes
exceeds a critical value, the entire system collapses. Our
analysis shows that the system robustness experiences a
sublinear improvement with the increase of k , while n has
no impact on system robustness when the size of network
is large.
The extensive simulation validates our analysis. The sys-

tem robustness against random failure can be improved by
increasing monitoring cost though they have nonlinear rela-
tion. Meanwhile, the critical value for a higher k is smaller,
which means the system can tolerate a higher fraction of
random failures. The robustness improves between k = 1
and k = 2 significantly, while the gap between k = 10 and
k = 15 is small. Hence, for building a smart power grid,
adding as many as possible control link is not good strat-
egy since the massive extra cost does not improve system
reliability significantly. The simulation also shows that for a
small k , the systemmeets a second-order continues transition,
while for higher k , the transition becomes sharper. Thus, the
system is easier to be predicted. Our experimental results
illustrate that higher n improves system robustness slightly
and at the same time decreases the critical value. But the
disadvantage is that the transition becomes flat so that the
system is harder to be predicted. Therefore, for building smart
grid infrastructures, we need carefully choose the value of k
and n depending on our demands.

B. ORGANIZATION
The paper is organized as follows. Section II reviews the back-
ground on cascading failure in power grid and interdependent
networks. A practical model for smart power grid and its
three-step construction procedure are proposed in Section III.
We introduce the math tools used in single complex networks
in Section IV. Themathematical approximation for cascading
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failure in smart grid is given in Section V, and we estimate
the size of the remaining functioning nodes after cascading
stops. Section VI shows our extensive simulations. We draw
the conclusions in Section VII.

II. RELATED WORK
A part of existing research on CPS are focusing on designing
analytical CPS model. A unique model of a generic CPS
appears to be infeasible due to specifics of actuation and
physical world reaction. Existing work on modelling is pri-
marily about extracting properties from physical systems and
assumed associated cyber system and matching with some
network families. For example, [23] proposed an algorithm
that generates random topology power grids featuring the
same topology and electrical characteristics derived from the
real data. [7] focused on the challenges of modeling CPSs
that arise from the intrinsic heterogeneity, concurrency, and
sensitivity to timing. Specific technologies applied in a par-
ticular CPS include hybrid system modeling and simulation,
concurrent and heterogeneous models of computation, the
use of domain-specific ontologies to enhance modularity,
and the joint modeling of functionality and implementation
architectures [7].

Moslehi and Kumar [16] critically reviewed the reliabil-
ity impacts of major components such as energy generator,
demand response, communications and electricity transporta-
tion in smart power grid. They presented a grid-wide IT archi-
tectural framework to improve the robustness of system, and
discussed the technical feasibility. A power generation and
distribution architecture has been discussed in [5], arguing
that a distributed generation enhances the robustness of the
system. Using optimization techniques and simulations, the
authors showed that fault tolerance increases with the number
of generators.

Blackouts during the past several decades were mostly
due to the overload cascading failure. Kadloor and Santhi
[13] modeled power grid as a graph and studied the system
robustness. By extensive mathematical analysis, they esti-
mated the disturbance levels the system can tolerate before
a few overloaded nodes trigger a large blackout. Kinney et al.
[14] used the real network structure of the North American
power grid and modeled it as a weighted graph. Combining
dynamical approach of the Crucitti-Latora-Marchiori model
and complex networks, they studied two types of node over-
load progression, and showed that the disruption of 40%
transmission substations leads to the cascading failure, and a
single node failure can cause up to 25% loss of transmission
efficiency.

The case of static overload failure was discussed in [6].
Optimization technique was used and a distance-to-failure
algorithm was proposed to predict the weak points in power
grid. They applied their algorithm to two real power grid
examples and concluded that the failures due to overload
are sufficiently sparse if the normal operational stations
are healthy. Load Redistribution (LR) attack was developed
and studied in [25] by analyzing their damage to power

grid operation. It proposed an attack model describing the
main goal of LR attack and then based on that, indicated
the theory and criterion of protecting the system from LR
attack.
Pfitzner et al. [21] proposed a model to focus on the analy-

sis of tripping of already overloaded lines. By simulating on
a real-world power grid structure, they showed that such con-
trolled tripping leads to significant mitigation of cascading
failure.
Infrastructures such as water supply, power grid, trans-

portation system, fuel stations are becoming increasingly
interconnected. Studying the interactions and understanding
how robustness is challenging due to the interdependence
among such networks.
Buldyrev et al. [2] studied the cascading failures robust-

ness with percolation theory [18] which was conventionally
applied in a single complex network. A ‘‘one-to-one’’ corre-
spondence model was proposed, where each node in network
A functions depending on exactly one node in network B,
and vice versa. The ‘‘multiple-to-multiple’’ correspondence
was proposed in [22], where a single node in network A
operates depending on more than one node in network B, and
vice versa. Each node functions as long as at least one of its
supporting nodes is operating. They also assumed that not all
the pairs of nodes aremutually dependent, and the interdepen-
dency is sometimes unidirectional. [20] described with two
types of inter links. The dependency link makes failure in one
network cause failure in the other network, while connectivity
link enables the nodes work cooperatively. High density of
dependency link makes networks more vulnerable.
The work of [2], [22] was extended in [24] by a ‘‘regular

allocation,’’ where every node in the system is assigned same
number of inter links. The regular allocation scheme is proven
to be optimal when the topology of each individual network is
unknown. A targeted attack was discussed in [11], where the
authors pointed out that protecting the high degree nodes can
improve system robustness significantly. Gao et al. [9] studied
the interacting networks and presented an percolation law for
a network of several interdependent networks. A survey of
interdependent networks can be found in [10].
In the previous work [12], the authors proposed an ‘‘one

on one’’ interdependent model for smart power grid and mea-
sured the size of survivals. In the proposed model, both power
grid and communication network are scale-free networks.
Since no closed-form solution can be derived, simulation was
used to determine the results.

III. SYSTEM MODEL
A. ASSUMPTIONS AND DEFINITIONS
We model the smart power grid as two interconnected net-
works NP and NI (power grid and communication/control
network, respectively). NI is envisioned as a part of the
Internet backbone, extended with some wireless links. Both
networks consist of a large number of components; some
of them are considered as terminals, with limited influence
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to the system reliability. For instance, the breakdown of a
smart meter in one house is not likely to cause the failure
of other components. We only consider the components that
have some dependencies or are providing connectivity. Nodes
in NP represent the power plants, substations, transformers
and new energy generators. Nodes in NI are Autonomous
Systems (AS). There are two types of ASs:Operation Centers,
whichmonitor and control power stations and exchange infor-
mation with other communication devices, and Relaying ASs,
for relaying messages in smart grid system, with no direct
impact on power stations. SP and SI are sizes of NP and NI,
respectively.

The distribution of power stations and edges in power grid
was studied andmodeled in [4], [17], which considered power
grid as a scale-free network. A scale-free network is a network
whose degree distribution follows a power law, P(z) ∝ z−γ ,
where P(z) is the probability that the degree of a node is z, γ
is power law exponent. Extensive data show that Internet is
also a scale-free network [8], [18].

B. INTERDEPENDENT MODEL
We refer to edges that connect the nodes from different net-
works as Inter Links.We assume that each power station inNP
is operated by k operation centers, and functions properly as
long as at least one of them works. Themonitoring capability
of each operation center is defined as the number n of power
stations it can control. Thus, each nodeNP has k CD (Control-
Dependency) inter links and each operation center has n
CD links. Meanwhile, each power station has multiple ED
(Energy-Dependency) links to ASs inNI, while each node in
NI has only one ED link.
We define the cost including hardware, software and labour

as Controlling Cost, measured based on two parameters: k
and the number of operation centers m. k determines k · SP,
the total number of CD inter links required. To minimize the
cost with a fixed k , we minimize m by fully utilizing the
control capability of each operation center. In other words,
the minimum controlling cost is achieved for m = k·SP

n . Thus
the minimum controlling cost is proportional to k . In the rest
of paper, we simply consider the controlling cost to be k .
For each k , we automatically calculate the minimum m in
the cost formula. Figure 1 gives a sketch of our model, with
k = 1,m = 3, n = 2.

We construct interlinks by applying a three step procedure.

1) ALLOCATING ED LINK
We consider each node in NP as a bin and nodes in NI
are balls. The allocation follows the well-known Balls and
Bins problem, where SI balls have to be independently and
uniformly put into SP bins, the probability that one ball is
assigned into i-th bin is 1

SP
. For each bin, the probability it

has t balls is given by:

P(t) =
(
SI
t

)
·

(
1
SP

)t
·

(
1−

1
SP

)SI−t
. (1)

FIGURE 1. Each node in NI has one energy inter link from NP,
and each node in NP is controlled by k = 1 operation centers.
Three dark nodes (m = 3) are operation centers and each
controls n = 2 nodes from NP.

Hence, the number of AS t that is supported by each power
station follows a binomial distribution with B(SI, 1SP ).

2) CHOOSING MINIMUM NUMBER OF OPERATION
CENTER
We choose uniformlym nodes at random as operation centers
from NI. The relation between m, n and k is given by

m =
k · SP
n

(2)

where each node in NP is monitored by k operation centers,
thus totally k ·SP links are required, and each operation center
can control n power stations.

3) ALLOCATING CD LINK
Subsequently, we match m operation centers and SP power
stations so that each operation center is allocated n power
stations, and each power station is controlled by k operating
centers. This can be done in a sequence, by operating centers
selecting power stations at random but only among stations
not selected k times already.

TABLE 1. Notations for the analysis.

IV. MATHEMATICAL ANALYSIS
In this section, we show how cascading failure propagates in
smart grid. Then we introduce the math tools that be used
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FIGURE 2. A sketch of cascading failure in smart grid. Initially, power grid NP has 6 nodes while Internet has 10 nodes. Each node in
NP is operated by one operation center, which implies k = 1. Each operation center in NI can operate 2 power stations, n = 2. Three
dark nodes are randomly chosen and assigned as operation centers. The random attack causes the failure of one operation center,
thus all its related links are removed. In stage 1, the remaining nodes in NI are mutually reachable, therefore consist of a giant
component. B2 and B4 lose control, thus in Stage 2 they are out of work. In Stage 3, due to the loss of energy inter links, some nodes
in NI are removed. As a result, nodes A4 is disconnected from the giant component, thus fails. Consequently, B1, B5 are faulty since
they lose the control inter links from A4. In Stage 5, the remaining nodes in NP are disconnected, therefore no giant component
exists. Due to our Condition 1, the entire NP collapses. As a result, the nodes in NI lost energy support, thus fail.

in a single complex network. Before starting, we list the
definitions and notations in Table 1. We introduce a notation
FN (φ) from [10], [24] to represent the expected fraction
of giant component in the subnetwork which occupies the
fraction φ of the nodes in the entire networkN . In our work,
we focus on a subclass of scale-free networks whose node
degree strictly follows the power law degree distribution.
Then, besides the fraction φ, FN (φ) only depends on the
node degree distribution of N , [2], [10]. Furthermore, since
we only consider the networks (including the sequence of
subnetworks and giant components) with infinite size, the
power law distribution is completely determined by the power
law exponent. Thus, in this paper, we let F(φ, λ) represent
the expected fraction of giant component in the subnetwork
which occupies the fraction φ of the nodes in the entire
scale-free network with a power law degree distribution,
where λ is the power law exponent. Accordingly, F(φ, λP)
and F(φ, λI) represent the fractions of giant components for
networkNP andNI whose power law exponents are λP and λI,
respectively.

A. FAILURE CASCADING PROCESS
We define system robustness in our model as the frac-
tion of survivals after the cascading failure stops, i.e.,
the nodes that still can operate. We focus on how this
failure cascading propagates and then estimate the sur-

vivals. Considering smart grid as two complex networks, we
assume two conditions should be satisfied if a node is in
work:

1) The node belongs to the giant component.
2) At least one inter link is connected to this node, where

this link comes from a functioning node in the other
network.

We begin with a random removal of (1 − φ) · SI nodes in
NI as the simulation of initial failures or attacks. After this
removal, the related intra links and inter links of deleted nodes
are removed. As a result, NI begins to fragment into discon-
nected components. Due to our Condition 1, only the nodes
belong to giant component can operate properly. Therefore,
the nodes in small components are considered as failure. Now
owning to the interdependence a part of nodes inNP lost inter
links so they are unsatisfied with Condition 2. Then these
nodes and related links are removed. The fragmentation inNP
might lead to further failures inNI, because now some nodes
in NI have no inter links. This cascading failure continues
recursively between two networks, and reaches one of the
following two final status: 1) all nodes are faulty and the
giant component disappears; 2) the two giant components in
NP and NI are mutually connected. One complete cascading
failure example is given by Fig. 2. Initially, ten nodes and
six nodes are in NI and NP respectively. After one node is
attacked in NI, the entire system collapses.
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B. GENERATING FUNCTION FOR AN INDIVIDUAL
NETWORK
Generating function and percolation theory are widely used to
solve the problems in complex network. We describe the gen-
erating function for a single network that will also be used in
studying interdependent networks. We introduce generating
function into our model. Let us assume the nodes in NP are
assigned a degree z with the same probability PP(z), which
follows power law in scale-free network. Thus PP(z) ∝ z−λP .
The generating function is defined as

GP(u) =
∞∑
z=0

PP(z) · uz (3)

where u is an arbitrary variable. The excess degree distribu-
tion [18] is the number of edges attached to a vertex other than
the edge we arrived along, and given by

HP(u) =
∞∑
z=0

QP(z) · uz (4)

QP(z) =
(z+ 1) · PP(z+ 1)

z̄
(5)

where z̄ is the average degree of network NP. Using Eq. (3),
z̄ is calculated

z̄ =
∞∑
z=0

z · PP(z) =
∂GP

∂u
|u→1 = G′P(1). (6)

Then HP(u) can be written as

HP(u) = z̄ ·
∞∑
z=0

(z+ 1) · PP(z+ 1)uz

= z̄ ·
∞∑
z=0

zPP(z)uz−1

= z̄
∂GP

∂u
=
G′P(u)

G′P(1)
. (7)

Once removing a fraction 1−φ of nodes from networkNP,
the remaining fraction φ of the network will have different
degree distribution [22], with a new argument 1 − φ + φu
[10]. According to the results of a single network, the propor-
tion of giant component F(φ, λP) of subnetwork φ is given
by {

F(φ, λP) = 1− GP[1− φ + φ · u]
u = HP[1− φ + φ · u].

(8)

The functional forms of GP(u) and HP(u) are complicated,
deriving the closed form of Eq. (8) is still a challenge [2], [3],
[18]. However, an approximation expression forF(φ, λP) was
introduced:
Lemma 1 ([8]): For a single scale-free network NP, for

2 < λ < 3, with some approximation and simplification,
it holds that F(φ, λP) ∝ ε · φ1/(3−λP), where ε is a predefined
constant.

We can analogously define GI(u),HI(u),F(φ, λI) for net-
work NI as counterparts to GP(u),HP(u),F(φ, λP) for NP.

V. MATH APPROXIMATION FOR FAILURE CASCADING
We analyze the dynamics of cascading failure using perco-
lation theory in this section. The objective of this study is
to quantify the system robustness with different k and n, by
means of estimating the functioning giant component size in
bothNP andNI. The notations needed in this section are listed
in Table 2.

TABLE 2. Notations for math approximation.

A. STAGE 1: RANDOM REMOVAL IN NI

We begin our estimation with random removal of a fraction
1 − φ of nodes in NI. The size of remaining network C ′1
is SI · φ, therefore µ′c1 = φ. We assume this value is a
positive integer if SI is sufficiently large. According to our
Condition 1, only the nodes belonging to the giant component
can operate properly, next step is to calculate the size of giant
component. The size of giant component C1 is

C̃1 = C̃ ′1 · F(µ
′
c1 , λI) = µ

′
c1 · SI · F(µ

′
c1 , λI) = µc1 · SI

µc1 = µ
′
c1 · F(µ

′
c1 , λI) (9)

where µc1 implies the fraction of C1 to NI. We notice only
the nodes in C1 are still in work at the end of this stage.

B. STAGE 2: FRAGMENTATION ON NP

As the network fragmentation from NI to C1, a part of inter
links are removed. Thus, some nodes in NP would be faulty,
because they lost the control inter links. As a result of Stage
1, the fraction 1 − µc1 of nodes are gone. If the network
size is large enough, then the fraction 1 − µc1 of operation
centers are removed since the initial failures are random.
Because each operation center has the same control capability
n, the probability for each control link to be removed can
be approximated by 1 − µc1 . With this respective, a node in
NP loses all its k control links (totally out of control) with
the probability of (1− µc1 )

k . Denoting P′2 is the subnetwork
belong which the nodes retain at least one control link, we
have

P̃′2 = (1− (1− µc1 )
k ) · SP

µp′2
= 1− (1− µc1 )

k . (10)

Within P′2, the probability for a node loses k − i of its
control links follows the binomial distribution B(k, µc1 ). The
size of giant component in P′2 is

P̃2 = P̃′2 · F(µ
′
p2 , λP) = µ

′
p2 · SP · F(µ

′
p2 , λP), (11)

µp2 = µ
′
p2 · F(µ

′
p2 , λP). (12)
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Each node in P2 can survive from P′2 with a probability
P̃2/P̃′2 = F(µ′p2 , λP). As a result, the expected number of
nodes with i control inter links in P2 is given by

P̃2|i =
(
k
i

)
µic1 (1−µc1 )

k−i
· F(µ′p2 , λP) · SP, i <= k. (13)

As a consequence of this fragmentation, the control inter
links which operate the nodes belong to P′2 but not to P2
become ineffectiveness even they are still alive. They will
have no impact on the cascading failure in the following
stages. Thus, we consider these links as faulty and remove
them from the system. From P′2 to P2, the probability for the
control link to be removed is approximate to 1− F(µ′p2 , λP),
then an operation center in C1 has i control links with the
probability of

Po(i)=
(
n
i

)
F(µ′p2 , λP)

i
·(1−F(µ′p2 , λP))

n−i, i<=n. (14)

C. STAGE 3: RECURSIVE FAILURE TO NI

The removal of nodes and inter links in Stage 2 affects NI.
The nodes in network NI may lose energy inter link thus
stops operating. We observe the number of energy inter links
subnetwork P2 provides is approximately P̃2 ·

∑SI
t=0 Pt · t ,

when P̃2 is large enough (law of large numbers is satisfied).
Initially the total number of energy inter links is SI since each
node in SI depends on only one power stations. With this
respective, the probability for one energy inter link removal
is

1−
P̃2 ·

∑SI
t=0 Pt · t

SI
= 1− µp2 .

The number of nodes in C1 that has an energy inter link
from P2 is given by

C̃ ′3 = C̃1 − C̃1 · (1− µp2 ) = µp2 · µc1 · SI.

That is, passing from C1 to C ′3, a fraction 1−µp2 of nodes are
broken. As we did in the previous stages, the next step is to
calculate the size of giant component of C ′3. As mentioned
in [2], it is indeed not an easy task. Instead, we consider
the joint effect of the node removal in Stage 1 and Stage 3
are equivalent, i.e., the effect of removing the fraction of
1 − µp2 of nodes in C1 has the same effect as taking out the
same fraction size from C ′1 in terms of calculating the giant
component size of C ′3. We find that the fragmentation from
NI to C ′3 can be modeled by removing node of a fraction of

1− φ + φ · (1− µp2 ) = 1− φ · µp2

in Stage 1. Thus, the equivalent µ′c3 = φ · µp2 , by which the
size of giant component C3 in subnetwork C ′3 is

C̃3 = µ
′
c3 · SI · F(µ

′
c3 , λI) = µc3 · SI. (15)

D. STAGE 4: FURTHER FRAGMENTATION IN NP

As network NI splits to C3 in previous stage, more control
inter links are removed and so forthmore nodes inNP is going

to be faulty. Notice the probability each operation center sur-
vives from C1 to C3 is

µc3
µc1

. The number of control inter links
the network C1 has is approximated to

∑n
i=1 i ·Po(i) ·µc1 ·m.

Since each operation center survives with same probability,
the number of existing control links in C3 can be given by∑n

i=1 i ·Po(i) ·µc3 ·m. Thus, the probability of a control inter
link to be removed is 1−

µc3
µc1

.
Consequently, the probability for a node inP2 with i control

inter links stopping function is (1 −
µc3
µc1

)i. Combining with
Eq. (13), the number of nodes that will be removed in P2 is

R = P̃2|i · (1−
µc3

µc1
)i

=

(
k
i

)
µic1 (1− µc1 )

k−i
· F(µ′p2 , λP) · SP · (1−

µc3

µc1
)i

= SP · F(µ′p2 , λP) ·
(
k
i

)
· (1− µc1 )

k−i
· (µc1 − µc3 )

i

= SP · F(µ′p2 , λP) · ((1− µc3 )
k
− (1− µc1 )

k ). (16)

So, the size of P′4 is

P̃′4 = P̃2 − R

= SP · F(µ′p2 , λP) · (1− (1− µc3 )
k ). (17)

Passing from P2 to P′4, the fraction 1 − P̃′4/P̃2 = 1 − (1 −
(1−µc3 )

k/µ′p2 of nodes are removed. As we do in Stage 3, in
terms of the size of giant component in P′4, that is equivalent
to remove the same fraction of nodes from P′2. The proportion
of nodes that has to be removed from SP to P′4 is

1− µ′p2 + µ
′
p2 · (1−

1− (1− µc3 )
k

µ′p2
) = (1− µc3 )

k .

Thus, the equivalentµ′p4 = 1−(1−µc3 )
k . The corresponding

fraction of giant component µp4 = µ
′
p4 · F(µ

′
p4 , λP).

E. TRANSCENDENTAL EQUATIONS FOR FAILURE
CASCADING
Following the previous steps, we can obtain the size of giant
component C̃1, P̃2, C̃3 · · · in a certain stage, but no one knows
in which stage the cascading failure stops. Our main aim is to
estimate the size of functioning parts in the final stage. When
repeating the above calculations, we can observe the pattern
of equations:

µ′c1 = φ, µc1 = µ
′
c1 · F(µ

′
c1 , λI)

µ′c3 = φ · µp2 , µc3 = µ
′
c3 · F(µ

′
c3 , λI)

· · · , · · ·

µ′c2j+1 = φ · µp2j , µc2j+1 = µ
′
c2j+1 · F(µ

′
c2j+1 , λI)

and
µ′p2 = 1− (1− µc1 )

k , µp2 = µ
′
p2 · F(µ

′
p2 , λP)

µ′p4 = 1− (1− µc3 )
k , µp4 = µ

′
p4 · F(µ

′
p4 , λP)

· · · , · · ·

µ′p2j = 1− (1− µc2j−1 )
k , µp2j = µ

′
p2j · F(µ

′
p2j , λP).
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To determine the state of the system in the end of cascading
failure, we look at j → ∞. The networks stop fragmenting
and the functioning giant components are fixed. Thus, the
following equations hold

µ′c2j+1 = µ
′
c2j+3 = µ

′
c2j−1

µ′p2j = µ
′
p2j+2 = µ

′
p2j−2 .

Let x = µ′c2j+1 = µ
′
c2j+3 = µ

′
c2j−1 and y = µ

′
p2j = µ

′
p2j+2 =

µ′p2j−2 , then we obtain a set of transcendental equations{
x = φ · y · F(y, λP)
y = 1− (1− x · F(x, λI))k

(18)

where F(·, λP),F(·, λI) are according to Eq. (8).
The fraction of nodes that still function in the final steady

state in both networks can be calculated by{
limj→∞ µpj = µp∞ = y · F(y, λP)
limj→∞ µcj = µc∞ = x · F(x, λI).

(19)

This analysis can be applied to any type of networks. This
gives us a complete solution for the fraction of survivals in
NP and NI. If we can find a non-trivial solution for x and y,
then we can compute the remaining number of survivals.

F. GRAPHIC SOLUTION
According to Lemma (1), let F(y, λP) = ε1 · y1/(3−λP) and
F(x, λI) = ε2 · x1/(3−λI), where ε1 and ε2 are predefined
constants. Eq. (18) comes to{

x = φ · y · ε1 · y1/(3−λP)

y = 1− (1− x · ε2 · x1/(3−λI))k .
(20)

In general, it is difficult to derive an expression for x, y
depending on k, φ. Instead, we can solve Eq. (20) with
graphic method [2] for a given set of λP, λI, ε1, ε2.
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FIGURE 3. Solutions for Eq. (20) for λP = λI = 2.5, ε1 = ε2 = 1.
The solutions are the corner points of two lines. It is clearly
shown for some cases there is no intersection (φ = 0.8,k = 4).
For some cases one intersection exists (φ = 0.6,k = 20). For
the others, two non-trivial solution exist.

We draw two function curves of Eq. (20) and the intersec-
tions are the solutions of x, y. Fig. 3 and Fig. 4 give complete
graphic solutions, based on which we obtain some insightful
findings as following:
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FIGURE 4. A solution for µp∞ and µc∞ , given λP = λI = 2.2, ε1 =
ε2 = 1. For k = 2,4,6,8, the threshold φc = 0.97,0.84,0.74,0.67
respectively. The first-order discontinues transition occurs at
each φc.

• A critical threshold φc exists, beyond which the system
collapses. For the case of k = 20, we find there is no intersec-
tion if φ < 0.6, i.e., no solution exists. While for φ > 0.6, the
two curves have two intersection points. So φc is approximate
to 0.6 for the case of k = 20. For φ < φc, both networks go
into complete fragmentation in the end. If φ > φc, the two
non-trivial intersections are corresponding to two sets of giant
component sizes. In this case, the solution is the point that is
closer to the initial status, because the system fragmentation
stops at this point and never goes to the small one.
• The φc varies for different values of k . For instance, it is

about 0.73 for k = 10 and 0.83 for k = 6 (λP = λI = 2.5).
We find φc becomes lower for a higher k , which matches with
the intuition that the smart power grid is more reliable if each
power station has more control inter links.
• The survival ratios of both networks experience first-

order transition at φc. Fig. (4) gives an example solution for
µp∞ and µc∞ . For the case of k = 4, φc equals 0.84, there is
no giant component existing for k < 4. While for k = 4, both
µp∞ and µc∞ have a step function.
• The improvements of µp∞ and µc∞ are sublinear with

the increasing of k , and reach upper bounds. Note that for
all the cases in Fig. (4), µp∞ approaches to 1. This gives us
a meaningful guide that adding control inter links improves
system robustness significantly when k is small. While when
k is sufficiently large, increasing k does not affect the robust-
ness except φc.
However, finding the non-trivial solution for scale-free

network is challenging since the exactly value of ε is still
unknown, [2], [8], [9], [18]. To the best of our knowledge,
deriving the closed-form solution of Eq. (8) is still open.
Therefore, in this work, we resort to the standard graphical
method for simulations.

VI. EXPERIMENTAL VALIDATION
In this section, we generate an interdependent network and
simulate cascading failure to obtain the fractions of func-
tioning parts (survival ratio) µp∞ and µc∞ . To generate the
scale-free network with different power-law distributions, we
adopt the generalized Barabási-Albert model [18], whose
power law exponent can vary in the range (2,+∞). In all
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the experiments the same approach is employed: first, we
construct two scale-free networks representing NP and NI;
then we remove the fraction of 1− φ nodes in NI as random
failure.

A. φc AND SYSTEM ROBUSTNESS
We firstly discuss the values of µp∞ and µc∞ with different
exponents of λP and λI.
Fig. 5 clearly shows with the decreasing of λP and λI,

which means that the more nodes with high degree, the better
robustness of entire system. Only 50% of nodes survives for
λP = λI = 2.33 when φ = 0.5, but it is approximate 0.9
for λP = λI = 2.2. φc is also highly influenced by λ. It
is 0.67 for λP = λI = 2.2, while this increases to 0.82 for
λP = λI = 2.5.
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FIGURE 5. The fraction of survivals in both networks with different
λP and λI. The initial networks size SP = 1000,SI = 10000, k = 2,
n = 5. The generalized Barabási-Albert model is used to constr-
uct the two scale-free networks. The initial random failure 1− φ
is occurs in network NI.

We notice when the initial failure or attack upon Internet
is small, i.e., less than 5%, the entire power grid is extremely
reliable for all three systems. The curves ofµp∞ remain stable
on the right of corner points (0.8 for λP = λI = 2.2), and drop
rapidly on the left. One more observation is thatµp∞ andµc∞
are either zero or nonzero simultaneously which indicates
that the power grid and Internet are either totally broken
or not.

B. COST AND ROBUSTNESS
Our main aim is to find the relation between system cost and
system robustness. Fig. 6(a) and 6(b) give detailed curves on
various values of k .

It is shown that as the increasing of k , µp∞ and µc∞
increase. This implies a practical meaning that if we let
more operation centers control each power station, the system
would has a much higher robustness. In the case of k = 1,
the system could not bear even 2% failure, the threshold
φc = 0.98. If we add one more control link to each node, i.e.,
k = 2, the system robustness experiences a huge improve-
ment. Not only the φc dramatically decreases to 0.67, but

FIGURE 6. System Robustness vs. k. The initial networks size
SP = 1000,SI = 10000, λP = λI = 2.2, n = 5. (a) Fraction of
survivals in Power Grid. (b) Fraction of survivals in Internet.

also the system can tolerate small scale of failure: there is no
impact to power grid even 10% of communication nodes are
initially faulty.
In the case of k = 15, the power grid remains totally func-

tion, even if 60% of communication network is destroyed.
The φc equals 0.2, approximate five times promotion com-
pared to 0.98 for the case k = 1. Noticing in Fig. 6(b), the
decrease of µc∞ is quite flat for k = 15. The loss of Internet
is almost all due to the initial failure.
The important finding according to Fig. 6(a) and 6(b) is

that the relation between robustness and cost is sublinear.
The improvement between k = 2 and k = 1 is significant,
while the gap between k = 15 and k = 10 is tiny. Hence,
for building a smart power grid, adding as many as possible
control link is not our choice since the massive extra cost does
not improve system reliability remarkably.
The proposed first-order discontinuous transition [2] in

interdependent networks says the size of giant component
meets a sharp transition when φ is approaching to φc. To
be specific, if the network size is infinite, the transition
becomes a step function. Since the real networks are all
non-infinite, this transition could never be first-order. Nor-
mally, there is a small transition interval including the value
of φc. Fig. 7 shows how our model transits around φc for
different k .
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FIGURE 7. The different probabilities varies with k for the entire
system to have a functioning part after cascading failure stops.
λP = λI = 2.2, n = 5. For the case of k = 3, the entire smart grid
system collapses if φ < 0.53; for φ > 0.6, giant components
always exist in both µp∞ and µc∞ . During the interval, there is a
probability for giant component existing.

In case of k = 5, the giant components always exist in
both µp∞ and µc∞ for φ > 0.42, while the system collapses
when φ < 0.36. Thus, the transition interval is [0.36, 0.42],
during which the system might either collapses or not. Note
that for larger k , the transition interval is smaller, i.e., the
transition is more sharp. Our finding validates the conclu-
sion proposed by [15], that is, when the coupling between
the networks is reduced, at a critical coupling strength
the transition becomes a second-order continuous phase
transition.

A sharp transition is preferred for the realistic smart grid,
since the smaller transition interval makes the system easy to
be predicted and controlled.

C. VARIOUS ALLOCATION STRATEGIES WITH SYSTEM
ROBUSTNESS
We now discuss the impact of different operation center
capability n. In this simulation series, the value of k is set
to 2. We change the value of n to explore the different system
robustness. Fig. 8(a) and Fig. 8(b) reveal the relations between
robustness and n.
Generally, the system performance improves with increas-

ing n. As shown in Fig. 8(a), in the case of n = 2,µp∞ is equal
to 0.95when the initial failure is 1−φ = 0.15.While it almost
equals 1 for the case of n = 200 under the same situation. We
observe promoting n decreases the threshold value φc in all
cases.

We notice for all the cases of n, on the right side of the
corner point φ = 0.8, both µp∞ and µc∞ approach to 1
steadily. While on the left side, the curves drop to zero more
rapidly. Note that for higher n, the slope is smaller. Comparing
Fig. 6(a) and Fig 8(a), it is clearly shown that the corner
point position is determined by k rather than n. A distinct k
completely has a different corner point, while there is only a
sightly change for different n with a specific k .
Now we consider the transition intervals. Fig. 9 gives the

detailed curves for different values of n. When n is equal to 2,

FIGURE 8. System Robustness vs. n. The initial networks size
SP = 1000,SI = 10000, λP = λI = 2.2, k = 2. (a) Fraction of
survivals in Power Grid. (b) Fraction of survivals in Internet.

FIGURE 9. Transition intervals for various allocation strategies.
SP = 1000,SI = 10000, λP = λI = 2.2, k = 2.

the interval is [0.71, 0.77]. It extends dramatically for the case
of n = 200, with the approximate value between [0.37, 0.77].
Hence, increasing n extends the transition internal, i.e., the
transition is much more flat.

D. VALIDATION OF THEORETICAL ANALYSIS
Our extensive simulations validate the mathematical analysis
in Section V-F. Some conclusions are listed as follows:
• The system robustness against random failure can be

improved by increasing controlling cost, i.e., adding more
control links for each target (power station). The robustness
improvement is nonlinear with cost promotion, which has
been demonstrated by our figures. Both mathematical and
experimental results show the power grid is intact against
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random failure when k is large enough.
• The critical threshold φc is inverse proportional to the

value of k . The transition at φc is first-order in mathematical
analysis, while it is second-order in simulation. The reason
is that the real world network is non-infinite. Meanwhile,
increasing controlling cost k shortens the transition interval
in real smart grid, and makes system easier to be predicted
and controlled.
• The monitoring capability n of each operation center has

no impact on system robustness according to the transcenden-
tal Eq. (18). While our simulations give a little bit different
story. The reason is that the network size for simulation is
finite, while our math calculation is based on the assumption
that the number of nodes is large enough so that Law of Large
Numbers is satisfied. The experimental results are meaningful
because the real world network size is always non-infinite.
• Based on our analysis, we would conclude that it is

important to find a trade-off between expenditure and per-
formance for building smart grid infrastructures. While if
the controlling cost is fixed and we still want to promote
the system robustness. Then one possible way is: increasing
monitoring capability n. Consequently, the total number of
operation center required decreases. By this way, the reliabil-
ity experiences a slight improvement. But the disadvantage of
this method is obvious: the transition interval is extended so
that the entire system becomes unpredictable.

VII. CONCLUSION
We study the system robustness of smart grid against cas-
cading failure between its power grid and communication
network. Using percolation theory, we calculate the size of
functioning giant component after the cascading failure stops.
Our work indicates that in smart grid, a threshold exists for
the proportion of faulty nodes, beyond which the system col-
lapses. Meanwhile, our mathematical analysis gives a relation
between system robustness and controlling cost. By extensive
simulations, we validate ourmathematical analysis and obtain
the accurate results. It is suggested that increasing monitor-
ing cost indeed improves robustness, but trade-offs between
expenditure and performance should be discussed. This work
is helpful to build a reliable smart grid infrastructure, with
considering the cost. In the future work, we will investigate
the issues on decreasing the impact of cascading failure.
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