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ABSTRACT The two-way energy and information flows in a smart grid, together with the smart devices,
bring new perspectives to energy management and demand response. This paper investigates an online
algorithm for electricity energy distribution in a smart grid environment. We first present a formulation that
captures the key design factors such as user’s utility and cost, grid load smoothing, dynamic pricing, and
energy provisioning cost. The problem is shown to be convex and can be solved with an offline algorithm
if future user and grid related information are known a priori. We then develop an online algorithm that
only requires past and present information about users and the grid, and prove that the online solution is
asymptotically optimal. The proposed energy distribution framework and the online algorithm are quite
general, suitable for a wide range of utility, cost, and pricing functions. It is evaluated with trace-driven
simulations and shown to outperform a benchmark scheme.

INDEX TERMS Convex optimization, demand response, electricity scheduling, online algorithm, smart
grid.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
A smart grid is an electrical grid that is enhanced with
communications and networking, computing, and signal pro-
cessing technologies [1]. Unlike the traditional power grid
that is strictly hierarchical, the smart grid is characterized
by the two-way flows of electricity and real-time informa-
tion, which offers tremendous benefits and flexibility to both
users and energy providers. With full-duplex information
flows, configuration of the grid devices can be customized
for timely response to the grid status. For example, energy
storage systems can cooperate with distributed renewable
energy resources (DRERs) to balance the supply and demand,
and users can adapt their demand for energy according to the
market price fluctuations [2].

The two-way energy and information flows, along with
the smart devices, also bring new perspectives to energy
management and demand response in the smart grid. Demand
side management is one of the most important problems in
smart grid research, which aims to match electricity demand
to supply for enhanced energy efficiency and demand profile
while considering user utility, cost and price [1]. Researchers
have been focusing on peak shift or peak reduction for reduc-

ing the grid deployment and operational cost [3], [4], as well
as on reducing user or energy provider’s cost [5], [6]. In
particular, some prior works aim to achieve a single objective,
such as to improve the users’ utility or reduce the cost of the
energy provider [7], while others jointly consider both the
user and energy provider costs, to increase the users’ utility
as much as possible while keeping the energy provider’s cost
at a relatively lower level [8]. Given the wide range of smart
grid models and the challenge in characterizing the electricity
demand and supply processes and the utility, cost, pricing
functions, a general model that can accommodate various
application scenarioswould be highly desirable. Furthermore,
it is important to jointly consider the utilities and costs of the
key components of the system to achieve optimized perfor-
mance for the overall smart grid system.

B. RELATED WORK
A comprehensive review on smart grid technologies and
research can be found in [1], where the research on smart
grid is classified into three major areas: infrastructure, man-
agement and protection. In the three areas, demand side man-
agement or demand response has been attracting considerable
research efforts [2], [3], [5]–[11]. Researchers work mainly
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on demand profile shaping, user utility maximization and
cost reduction. For example, machine learning is used in [5]
to develop a learning algorithm for energy costs reduction
and energy usage smoothing, while [7] aims to achieve a
balance between user’s cost and waiting time. In [8], the
authors propose an optimal real-time pricing algorithm to
maximize the social welfare, considering user utility max-
imization and energy provider cost minimization. In [10],
the authors formulate a Stackelberg game between utility
companies and end-users aiming to maximize the revenue of
each utility company and the payoff of each user. In [11],
the authors discuss the architecture of home machine-to-
machine (M2M) networks for energy management, which is
an important component in the smart grid. In these works,
convex programming, machine learning and game theory are
mostly used.

On the other hand, online algorithms [12] are widely
used in wireless communications and networking, where pre-
cise channel and network information are hard to obtain.
Recent research on solving wireless networking problems
using online algorithms can be found in [13]–[16]. In [13],
two online algorithms are developed from the optimal offline
algorithms to maximize the amount of unit-length packets
scheduled in a packet-switching mechanism. The authors
of [14] address the energy-efficient uplink scheduling prob-
lem in a multiuser wireless system. With an online algorithm,
an optimal scheduling is achieved without prior knowledge
on arrival and channel statistics. In [15], online algorithm is
applied to overcome the dynamic nature of the time-varying
channels in wireless networks and then the throughput of
the single-transmitter is maximized by optimal power assign-
ment. In [16], online algorithm is used for multi-user video
streaming in a wireless system so that user’s perceived video
quality and its variations are jointly considered for a max-
imization with almost no statistical information about the
congested channels.

C. APPROACH
In this paper, we consider real-time energy distribution in
a smart grid system. As shown in Fig. 1, the distribution
control center (DCC) collects real-time information from the
three key components, i.e., the users, the grid, and the energy
provider, makes decisions on, e.g., electricity distribution,
and then sends the decisions back to the key components to
control their operations. The smart meters at the user side
will be responsible for the information exchange with the
DCC and for enforcing the electricity schedule received from
the DCC. The information flows will be carried through a
communications network infrastructure, such as a wireless
network or a powerline communication system [1].

For optimizing the performance of such a complex network
system, the utilities and costs of the three key components,
i.e., the users, the grid, and the energy provider, should be
jointly considered. In this paper, we take a holistic approach,
to incorporate the key design factors including user’s utility
and cost, grid load smoothing, dynamic pricing, and energy

FIGURE 1. Illustration of the key elements and interactions in the
smart grid.

provisioning cost in a problem formulation. To solve the real-
time energy distribution problem, we first present an offline
algorithm that can produce optimal solutions but assum-
ing that the future user and grid information are known in
advance. Based on the offline algorithm, we then develop an
online algorithm that does not require any future information.
As the name suggests, an online algorithm operates in an
online setting, where the complete input is not known a pri-
ori [12]. It is very useful for solving problems with uncertain-
ties [16]. We find the online algorithm particularly suitable in
addressing the lack of accurate mathematical models and the
lack of future information for electricity demand and supply
in this problem. We also prove that the online algorithm
converges to the optimal offline algorithm almost surely.
The proposed framework is quite general. It does not

require any specific models for the electricity demand and
supply processes, and only have some mild assumptions on
the utility, cost, and price functions (e.g., convex and dif-
ferentiable). The proposed algorithm can thus be applied to
many different scenarios. The online algorithm also does not
require any future information, making it easy to be imple-
mented in a real smart grid system. It is also asymptotically
optimal, a highly desirable property. Since there is no need for
communications among the users, their privacy can be easily
protected. The proposed algorithm is evaluated with trace-
driven simulation using energy consumption traces recorded
in the field. It outperforms a benchmark scheme that assumes
global information.

D. ORGANIZATION
The remainder of this paper is organized as follows. We
present the system model and problem formulation in
Section II. The offline algorithm is introduced in Section III,
and the online algorithm is developed and analyzed in
Section IV. We present the simulation studies in Section V.

VOLUME 1, NO. 1, JUNE 2013 11



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING WANG et al.: Online Algorithm for Optimal Real-Time Energy Distribution

Section VI concludes this paper with a discussion future
work.

II. PROBLEM STATEMENT
A. SYSTEM MODEL
1) NETWORK STRUCTURE
We consider a power distribution system in a smart grid
environment where one energy provider supports the power
usage of N users. The users could be residential, commercial
and industrial energy consumers. Each user has a smart meter
that manages the schedule of electrical devices [1]. We envis-
age that the smart meters could be a controller of electrical
appliances in a house and are connected to the DCC of the
energy provider through a communication network. At each
time cycle, the smart meters update user information to, and
receive control information from the DCC, while the DCC
decides the power distribution among the users based on the
real-time system information such as grid load, user demand
and provider’s cost. The DCC manages the entire system
as a whole to achieve an optimum distribution scheme that
balances the users’ utility, supply cost of the energy provider,
and the variance of the grid.

Here, the time cycles or slots indexed by t ∈ {1, 2, . . .}
could be, e.g., 1 hour, 0.5 hour, 15 minutes and even shorter,
according to the updating period of the smart meters and
the size of the smart grid. Usually, the DCC takes a one-
day operation cycle based on the daily periodical nature of
electricity usage.1 Let N = {1, 2, . . . ,N } be the set of users.
We denote the power consumption of user i at time t as pi(t).
At each time slot, user i’s minimum demand pi,min(t) should
be guaranteed, i.e.,

pi(t) ≥ pi,min(t), ∀ i ∈ N, t. (1)

Besides, we assume that the users are rational, which means
that at each time slot, power demand of each user has an
upper bound, i.e., pi(t) ≤ pi,max(t). This will not become a
constraint in our problem, because we aim to satisfy the user
demand as much as possible under other constraints. How-
ever, this assumption together with (1) guarantees a closed set
P which includes all the possible value of power demanded
and used, that is, pi(t) ∈ P.

2) USER UTILITY FUNCTION
We assume independent users with their own preferences of
power usage. For example, each user could have its own time
schedule for using different electrical appliances. Also, the
user demandmay vary as weather changes. Usually the power
consumption is larger in a hot summer day than that in a
mild day in the spring. Besides, different users may have
different reactions to different price schemes [6]. Therefore,
it is difficult to characterize user preference with a precise
mathematical model. In prior work, user preference is usually

1Note that this is not a requirement for the model and the proposed
algorithms, but a typical scenario in most practical cases, which will be
applied in the simulation studies.

represented by a utility function [5]. Similarly, we use func-
tion U (pi(t), ωi(t)) to represent user i’s satisfaction on power
consumption. We assume U (·, ·) to be a strictly increasing,
concave function of the allocated power pi(t); its form could
be general. One example is the widely used quadratic utility
function [5], [6], [8]. For each user i, the other parameterωi(t)
of the utility function indicates the user’s flexibility at time t .
A largerωi(t) means higher flexibility.ωi(t) could be different
for users or vary over time. Its values are sent to the DCC at
each updating cycle by the smart meter.

3) ENERGY PROVISIONING COST
For energy providers, when demand is in the normal level, the
generation cost increases only slowly as the demand grows.
However, it will cost much more when the load peak is
approaching the grid capacity, because the provider has to
transmit more power from the outside or backup batteries
to avoid a blackout. Therefore, we use an increasing and
strictly convex function to approximate the cost function for
energy provisioning. Similar to [6], [8], we choose a quadratic
function to model the provider’s cost.

C(L(t)) = a · L2(t)+ b · L(t)+ c, (2)

where a > 0 and b, c ≥ 0 are pre-selected for the power
grid and L(t) =

∑
i∈N pi(t) denotes the grid load, i.e., the

total power consumption for time slot t . From the provider’s
perspective, we assume that it aims to meet the user demand
under an acceptable cost constraint c(t) at time t , which shall
not be exceeded.

C(L(t)) ≤ c(t), ∀ t ∈ {1, 2, . . . ,T }. (3)

We call c(t) budget in the rest of this paper. Without loss of
generality, we assume c(t) to be a stationary ergodic process,
which is taken from a set C, i.e., c(t) ∈ C.

4) PRICE MODEL
Dynamic pricing like real-time pricing (RTP), critical peak
pricing (CPP) and time of use pricing (TUP) [17] could
be incorporated in the smart grid environment. However,
real electricity market is still dominated by simple pricing
schemes. In this paper, we use a simple price model that
can characterize most real electricity markets, especially for
residential usage. As shown in [4], [18], without dynamic
price demand, the price load curve has the shape of a hockey
stick; it remains flat over a long range of grid load and
then grows upward steeply as demand approaches the grid
capacity. Let f (·) be the price function and f (L(t)) the price at
time t . Therefore, we assume f (·) to be a twice-differentiable
increasing convex function that maps the total load to a price.
Similar to the utility function U (·), the price function f (·)
could have a general form as well.

B. PROBLEM FORMULATION
As mentioned in Section I, we aim to minimize the load
variance in the grid while maximizing user satisfaction. Large
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load variance is undesirable for grid operation. It brings about
uncertainties that affect not only user satisfaction but also
the stability of the power system. Furthermore, the energy
provisioning cost should be bounded and users’ necessary
power needs should be guaranteed.

We first consider an offline scenario where the DCC dis-
tributes the power to users during time t = 1, 2, . . . ,T , and
all the information on users’ flexibility ωi(t) and provider’s
budget c(t) are assumed to be known in advance. Let Pi(t)
denote the power usage for user i at time t , for t ∈
{1, 2, . . . ,T }. In this paper, we use upper case P in the offline
problem (see Section III), where all the necessary constraints
are known a priori. In the corresponding online problem,
which will be examined in Section IV, we use lower case p
for the corresponding variables. A vector with subscript i is
used to denote a time sequence, e.g., EPi for the power usage
by user i for t ∈ {1, 2, . . . ,T }. The offline problem can be
formulated as follows:

max:
T∑
t=1

∑
i∈N

[
U (Pi(t), ωi(t))− f

(∑
i∈N

Pi(t)

)
Pi(t)

]

−
αT
2

Var

(∑
i∈N

EPi

)
(4)

subject to:

Pi(t) ≥ Pi,min(t), ∀ i ∈ N, t ∈ {1, 2, · · · ,T } (5)

C

(∑
i∈N

Pi(t)

)
≤ c(t) ∀ t ∈ {1, 2, · · · ,T }, (6)

where

Var

(∑
i∈N

EPi

)
=

1
T

T∑
t=1

(∑
i∈N

Pi(t)−
1
T

T∑
k=1

∑
i∈N

Pi(k)

)2

.

The objective function (4) consists of two parts. The first
part represents users’ satisfaction and preference as the differ-
ence between user utility and cost. The second part represents
the load variance of the grid. These two parts are integrated
with a parameter α > 0, allowing a trade-off between the two.
Constraint (5) indicates the minimum user demand should
be guaranteed, while constraint (6) represents the cost upper
bound for the energy provider. In section III, we present an
algorithm that can solve this offline problem and explain how
we can move from offline to online. In Section IV, we present
an algorithm to solve the corresponding online problem that
does not require any a priori user/grid information, and show
that the online algorithm is asymptotically optimal.

III. OFFLINE ALGORITHM
In the offline problem (4), the user power consumption Pi(t)’s
are independent. Hence the variance term can be rewrit-
ten as Var

(∑
i∈N EPi

)
=
∑

i∈N Var(EPi) and the price func-

tion f
(∑

i∈N Pi(t)
)
is the same for each user, which means

that
∑

i∈N f
(∑

i∈N Pi(t)
)
Pi(t) = f

(∑
i∈N Pi(t)

)∑
i∈N Pi(t).

Therefore, we rewrite the price term and variance term respec-
tively. Then the problem can be reformulated as follows

(termed Prob-OFF).

max: 9(P) =
T∑
t=1

∑
i∈N

U (Pi(t), ωi(t))

−

T∑
t=1

f

(∑
i∈N

Pi(t)

)∑
i∈N

Pi(t)−
αT
2

∑
i∈N

Var
(
EPi
)

(7)

subject to: (5)− (6),

where P is an N × T matrix that denotes the power allocated
for each user i at time t ∈ {1, 2, . . . ,T } and Var(EPi) =
1
T

∑T
t=1

(
Pi(t)− 1

T

∑T
k=1 Pi(k)

)2
.

In Prob-OFF, U (·) is concave and C(·) is convex. Since the
price function f (·) is convex, f (

∑
i∈N Pi(t))

∑
i∈N Pi(t) is also

convex. We only need to show the convexity of Var(EPi) to
establish a convex optimization problem. The convexity of
Var(EPi) can be easily proved by its definition.

Lemma 1: Prob-OFF is a convex optimization problem
and has a unique solution.

Proof: For two vectors EP1i , EP
2
i and for any i ∈ N,

0 < θ < 1, it follows from the variance definition and the
strict convexity of quadratic function f (x) = x2 that

Var(θ EP1i + (1− θ )EP2i ) ≤ θVar(EP
1
i )+ (1− θ )Var(EP2i ).

We conclude that Var(EPi) is strictly convex unless Var(EP1i ) =
Var(EP2i ). Since all the constraints of Prob-OFF are also con-
vex, we conclude that Prob-OFF is a convex problem.
We next prove that Prob-OFF has a unique solution.

Assume EP1i and EP2i are two optimal solutions to Prob-OFF.
Because the objective function is concave, θ EP1i + (1 − θ )EP2i
is also optimal, for 0 < θ < 1. Note that we have three terms
that are all concave (or convex) in (7). Thus θ EP1i + (1− θ )EP2i
is optimal only if

U (θP1i (t)+(1−θ )P
2
i (t)) = θU (P1i (t))+(1−θ )U (P2i (t)) (8)

f
(
θ EP1i + (1− θ )EP2i

)
·

(
θ
∑
i∈N

P1i (t)+ (1− θ )
∑
i∈N

P2i (t)

)
= θ f (EP1i )

∑
i∈N

P1i (t)+ (1− θ )f (EP2i )
∑
i∈N

P2i (t) (9)

Var(θ EP1i +(1−θ )EP
2
i ) = θVar(EP

1
i )+(1−θ )Var(EP

2
i ) ∀ i ∈ N.

(10)
Since U (·) is assumed to be a strictly increasing function in
Section II-A.2, (8) holds true if and only if P1i (t) = P2i (t),
for all i ∈ N, t ∈ {1, 2, . . . ,T }. Eqs. (9) and (10) are also
sufficient for this result. Therefore, we conclude that Prob-
OFF is a convex problem with a unique solution.
As Lemma 1 holds, we can carefully choose Pi,min(t)

to meet Slater’s condition [19], and thus the KKT condi-
tions [19] are sufficient and necessary for the optimality
of Prob-OFF. Let P∗ be an optimal solution to Prob-OFF.

VOLUME 1, NO. 1, JUNE 2013 13



IEEE TRANSACTIONS ON

EMERGING TOPICS
IN COMPUTING WANG et al.: Online Algorithm for Optimal Real-Time Energy Distribution

Let η(t) and γi(t) be the Lagrange multipliers and variables,
respectively, for i ∈ N and t ∈ {1, 2, . . .¸ T }. We have



U ′(P∗i (t), ωi(t))− h
(∑

i∈N P
∗
i (t)

)
− α

(
P∗i (t)− P̄

∗
i

)
−η(t)C ′

(∑
i∈N P

∗
i (t)

)
/c(t)+ γi(t) = 0

η(t)
(
C
(∑

i∈N P
∗
i (t)

)
/c(t)− 1

)
= 0

γi(t)
(
P∗i (t)− Pi,min(t)

)
= 0

η(t), γi(t) ≥ 0,∀ i ∈ N, t ∈ {1, 2, · · · ,T },
(11)

where

h

(∑
i∈N

P∗i (t)

)
= f ′

(∑
i∈N

P∗i (t)

)∑
i∈N

P∗i (t)+ f

(∑
i∈N

P∗i (t)

)

and

P̄∗i =
1
T

T∑
k=1

P∗i (k). (12)

From the above equations, we can solve for η(t) as

η(t) =
(
α
(
P̄∗i − P

∗
i (t)

)
+ U ′(P∗i (t), ωi(t))

−

(
h

(∑
i∈N

P∗i (t)

)
+ γi(t)

)/(
C ′
(∑
i∈N

P∗i (t)

)
/c(t)

)
. (13)

Therefore, to achieve optimality, there is an identical η(t)
for all users in a time slot t . The optimal solution guarantees
that the right-hand-side (RHS) of (13) has the same value
for all users. Furthermore, we observe that only the P̄∗i term
requires information from other time slots. This implies that
if P̄∗i could be accurately estimated, the optimal energy distri-
bution P∗ could be determined using only information in the
current time slot, such as c(t) and Pi,min(t). This is essential,
because in the offline scenario, our assumption that future
information are known a priori is not a possible case in the real
smart grid. Based on this observation, we are able to present
an online algorithm for the energy distribution problem in the
next section which requires no future information.

IV. ONLINE ALGORITHM
In this section, we present an online algorithm for energy dis-
tribution, and prove that the online solution is asymptotically
convergent to the offline optimal solution, i.e., asymptotically
optimal. The online energy distribution algorithm consists of
the following three steps.

Step 1: For each i ∈ N, initialize p̂i(0) ∈ P.

Step 2: In each time slot t , the DCC solves the following
convex optimization problem (termed Prob-ON).

max:
∑
i∈N

U (pi(t), ωi(t))− f

(∑
i∈N

pi(t)

)∑
i∈N

pi(t)

−
α

2

∑
i∈N

(pi(t)− p̂i(t − 1))2 (14)

subject to: pi(t) ≥ pi,min(t), ∀ i ∈ N (15)

C

(∑
i∈N

pi(t)

)
≤ c(t), ∀ t. (16)

Let Ep∗(t) denote the solution to Prob-ON, where each element
p∗i (t) represents the optimal power allocation to user i.
Step 3: Update p̂i(t) for all i ∈ N as follows.

p̂i(t) = p̂i(t − 1)+
α

t + α
· (p∗i (t)− p̂i(t − 1)). (17)

Ep∗(t) is indeed the short term of Ep∗(Êp, c(t)). For brevity,
we use Ep∗(t) instead in the paper when it is clear in con-
text. Comparing to (7), the variance term is approximated by∑

i∈N(pi(t) − p̂i(t − 1))2 in (14). In Prob-ON, (17) can be
viewed as a stochastic approximation updating equation, if
the budget of the energy provider, c(t), is viewed as a sta-
tionary stochastic process. This interpretation can be justified
because c(t) is assumed to be stationary and ergodic.
Similar to Prob-OFF, problem Prob-ON is also a convex

optimization problem satisfying Slater’s condition. Its KKT
conditions with KKT multipliers λ(t) and KKT variables
νi(t), for i ∈ N, are as follows.



U ′(p∗i (t), ωi(t))− h
(∑

i∈N p
∗
i (t)

)
− α

(
p∗i (t)− p̂i(t − 1)

)
−λ(t)C ′

(∑
i∈N p

∗
i (t)

)
/c(t)+ νi(t) = 0

λ(t)
(
C
(∑

i∈N p
∗
i (t)

)
/c(t)− 1

)
= 0

νi(t)
(
p∗i (t)− pi,min(t)

)
= 0

λ(t), νi(t) ≥ 0, ∀ i, t.

(18)
In the remainder of this section, we firstly prove that p̂i(t)

approaches a limit for t goes to infinity and then we show that
p̂i(t) converges to themean of the power allocated to each user
i ∈ N over time, as given in (12).
We begin with the definition the function g(Êp, c(t)):

g(Êp, c(t)) =
∑
i∈N

U (p∗i (Êp, c(t)), ωi(t))

−f

(∑
i∈N

p∗i (Êp, c(t))

)∑
i∈N

p∗i (Êp, c(t))

−
α

2

∑
i∈N

(p∗i (Êp, c(t))− p̂i)
2. (19)

Note that the optimized function g(Êp, c(t)) share the same
form with (14), but with a different meaning. Here we regard
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the optimizer Ep∗(Êp, c(t)) and the optimized objective g(Êp, c(t))
as stochastic processes. We need to show the process Êp(t)
converges almost surely, for given stationary stochastic pro-
cess c(t). We have the following immediate properties of
Ep∗(Êp, c(t)) and g(Êp, c(t)).

Property 1: Continuity of Ep∗(Êp, c(t)) and g(Êp, c(t)). For
any c(t) ∈ C, we have
i) Ep∗(Êp, c(t)) and g(Êp, c(t)) are continuous functions of Êp;
ii) E[Ep∗(Êp, c(t))], E[g(Êp, c(t))] are continuous functions of Êp.

Proof: i) From (14), g(Êp, c(t)) is a continuous func-
tion of Êp. The continuity of Ep∗(Êp, c(t)) could be guaranteed if
all the four conditions of Theorem 2.2 from [20] are satisfied.
The conditions are verified because Prob-ON is always fea-
sible on a closed set and Êp is bounded on a set P in our case.
Therefore, Ep∗(Êp, c(t)) is continuous with respect to Êp.
ii) Take Êpn as any sequence such that limn→∞ Êpn = Êp. Then

we have

lim
m→∞

E[p∗i (Êpn, c(t))] = E[ lim
m→∞

p∗i (Êpn, c(t))]

= E[p∗i (Êp, c(t))],

which follows the Bounded Convergence Theorem (see [21])
since we already have the continuity of Ep∗(Êp, c(t)) and the
closed set P of p∗i (see II-A.1). Consequently, E[g(Êp, c(t))]
is also continuous.

Property 2: Differentiability of g(Êp, c(t)) andE[g(Êp, c(t))].
For any c(t) ∈ C and each i ∈ N, we have
i) ∇p̂ig(Êp, c(t)) = α(p

∗
i (Êp, c(t))− p̂i);

ii) ∇p̂iE[g(Êp, c(t))] = α(E[p
∗
i (Êp, c(t))]− p̂i).

Proof: i) The differentiability of g(Êp, c(t)) follows
directly from Theorem 4.1 in [22].

ii) Similar to the proof in Part ii) of Property 1, take any
sequence p̂i,n such that limn→∞ p̂i,n = 0. We have that∣∣∣∣ g(Êp+p̂i,nEe)−g(Êp,c(t))p̂i,n

∣∣∣∣ = α

∣∣∣p∗i (Êp+ p̂0,nEe, c(t))− p̂i − p0,n
∣∣∣ ≤

αpmax , for 0 < p0,n < p̂i,n, which follows the Mean Value
Theorem and part (ii) of Property 2. For each i ∈ N,

∂

∂ p̂i
E[g(Êp, c(t))] = lim

n→∞
E

[
g(Êp+ p̂i,nEe)− g(Êp, c(t))

p̂i,n

]

= E

[
lim
n→∞

g(Êp+ p̂i,nEe)− g(Êp, c(t))
p̂i,n

]
= α(E[p∗i (Êp, c(t))]− p̂i).

With Properties 1 and 2, we are able to show the following
result, which is an important step to the proof of the conver-
gence of process Êp.

Lemma 2: The solution of the following fixed point equa-
tion is unique

E[Ep∗(Êp, c(t))] = Êp. (20)

Proof: We define several notations to be used in this
proof. Define ρi =

√
αpi and ρ∗i ( Êρ, c(t)) =

√
αp∗i (Êp, c(t))

for each i ∈ N and pi ∈ P, and function Eρi
∗( Êρ, c(t)). Also

define dist(Ep1, Ep2) =
√∑

i∈N(p
1
i − p

2
i )

2 =
∣∣∑

i∈N(p
1
i − p

2
i )
∣∣,

for any Ep1, Ep2 ∈ PN .
We next show the following two intermediate results that

will be used to prove the lemma. The first result is that the
solution of the next fixed point equation exits.

E[ Eρi
∗( Êρ, c(t))] = Êρ. (21)

It follows Property 1 that E[ Eρi
∗( Êρ, c(t))] is a continuous

function and it maps a convex compact subset of PN to itself.
Hence from Brouwer’s Fixed Point Theorem in [23], the
existence of the solution to (21) can be shown.
Secondly, we show that E[ Eρi

∗(., c(t))] is a pseudo-
contraction. Since PN is a compact set, we need to show
equivalently that for any two different Êp1and Êp2 ∈ PN ,

dist(E[ Eρi
∗( Êρ1, c(t))],E[ Eρi

∗( Êρ2, c(t))]) < dist( Êρ1, Êρ2).

Here, let Êρ1 be a solution to (21) and Êρ2 6= Êρ1.
To prove this, we modify the Prob-ON to obtain a new

problem New-Prob-ON as

max : g0( Eρ, Êρ)

subject to:
ρi
√
α
≥ pi,min∀ i ∈ N

C

(∑
i∈N

ρi
√
α

)
≤ c(t), ∀ t, (22)

where g0( Eρ, Êρ) =
∑

i∈N U ( ρi√
α
, ωi)−f (

∑
i∈N

ρi√
α
)
∑

i∈N
ρi√
α
−

α
2

∑
i∈N(

ρi√
α
−

ρ̂i√
α
)2. For brevity, we drop the time index (t)

in the remainder of this proof, when their meanings are clear
in the context. Note that Eρi

∗( Êρ, c(t)) is the optimal solution
for New-Prob-ON.
Now, we use Proposition 6.1 from [22] to achieve the

Lipschitz continuity and acquire the Lipschitz constant of
Eρi
∗(., c(t)) in a neighborhood of Êρ1. Two conditions are nec-

essary to hold the proposition: the Lipschitz continuity of the
difference function in a neighborhood of Êρ1 and the second-
order growth condition.
We define the difference function 1g0( Eρ, Êρ1, Êρ2) as

1g0( Eρ, Êρ1, Êρ2) = g0( Eρ, Êρ2)− g0( Eρ, Êρ1)

=
1
2

∑
i∈N

(ρ̂1i − ρ̂
2
i )(2ρi − ρ̂

1
i − ρ̂

2
i ).

Then it follows that

dist(1g0( Eρ1, Êρ1, Êρ2),1g0( Eρ2, Êρ1, Êρ2))

=

∣∣∣∣∣∑
i∈N

(ρ̂1i − ρ̂
2
i )(ρ

1
i − ρ

2
i )

∣∣∣∣∣ ≤ dist( Êρ1, Êρ2)dist( Eρ1, Eρ2),

(23)

where the inequality holds from Cauchy-Schwarz inequality.
Hence, the first condition of Proposition 6.1 in [22] holds.
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Next, we show that the second condition also holds. In our
case, the second-order growth condition requires that there
exists a positive constant a such that

g0( Eρ∗( Êρ1, c(t)), Êρ1)− g0( Eρ, Êρ1) ≥ a(dist( Eρ, Eρ∗( Êρ1, c(t))))2.

We find a sufficient condition for this second-order growth
condition in [24], in which Theorem 6.1 states that if
the Slater qualification hypothesis holds, the second-order
growth condition (Theorem 6.1 (v)) is equivalent with three
other conditions (Theorem 6.1 (vi)−(viii)). Because the
Slater qualification hypothesis could be satisfied if we care-
fully choose pi,min (see Section III). We thus verify that an
equivalent condition Theorem 6.1 (vii) is satisfied. For this,
define:

L( Eρ, λ, (νi : i ∈ N))
= g0( Eρ∗( Êρ1, c(t)), Êρ1)− g0( Eρ, Êρ1)

+λ

(
1
c(t)

C

(∑
i∈N

ρi
√
α

)
−1

)
−

∑
i∈N

νi

(
ρi
√
α
−pi,min

)
. (24)

Then, we can write the function ϕ in Theorem 6.1 (vii), for
any Ed ∈ RN , as

ϕ
Eρ∗( Êρ1,c(t))(

Ed) = Ed ′
∂2

∂ Eρ2
L( Eρ∗( Êρ1, c(t)), λ∗, (ν∗i : i ∈ N))Ed,

where λ∗ and (ν∗i : i ∈ N) are the optimal Lagrange
multipliers and variables. Substituting (24), we have that

ϕ
Eρ∗( Êρ1,c(t))(

Ed) =
∑
i∈N

d2i

(
1−

1
α
U ′′

(
ρ∗i ( Êρ

1, c(t))
√
α

, ωi

)

+
1
α

(
2f ′

(∑
i∈N

ρ∗i ( Êρ
1, c(t))
√
α

)

+ f ′′
(∑
i∈N

ρ∗i ( Êρ
1, c(t))
√
α

)(∑
i∈N

ρ∗i ( Êρ
1, c(t))
√
α

))

+
λ∗

α
C ′′
(∑
i∈N

ρ∗i ( Êρ
1, c(t))
√
α

)
/c(t)

)
.

Since λ∗ is the optimal Lagrange multiplier, λ∗ ≥ 0. Also
U is a strictly increasing, concave function, and C and f are
strictly increasing, convex functions. Moreover, pi ∈ P so
that ρi lies in a closed set P0, for i ∈ N. Therefore, there exist
positive constants ξU ′′ , ξf ′ , and ξf ′′ such that U ′′(ρi) ≤ −ξU ′′ ,
f ′(ρi) ≥ ξf ′ , and f ′′(ρi) ≥ ξf ′′ , for all ρi ∈ P0. So we have
that for any Ed ∈ RN ,

ϕ
Eρ∗( Êρ1,c(t))(

Ed) ≥
(
1+

ξ

α

)∑
i∈N

d2i >
∑
i∈N

d2i , (25)

where ξ = ξU ′′ + 2ξf ′ + ξf ′′ is a positive constant. Now,
we have verified the condition of Theorem 6.1 (vii) and
hence from Theorem 6.1 of [24], Theorem 6.1 (v) is satisfied,
which equals to the second-order growth condition. Thus,

for proposition 6.1 of [22], both conditions are satisfied. We
could use it safely and conclude that:

dist( Eρ∗( Êρ1, c(t)), Eρ∗( Êρ2, c(t))) ≤
(
1+

ξ

α

)−1
dist( Êρ1, Êρ2)

< dist( Êρ1, Êρ2).

Thus, we can conclude that

E
[(

dist( Eρ∗( Êρ1, c(t)), Eρ∗( Êρ2, c(t)))
)2]

<
(
dist( Êρ1, Êρ2)

)2
.

Further, we have that

dist(E[ Eρi
∗( Êρ1, c(t))],E[ Eρi

∗( Êρ2, c(t))])

=

√∑
i∈N

(
E
[
ρ∗i ( Êρ

1, c(t))− ρ∗i ( Êρ
2, c(t))

])2
≤

√√√√∑
i∈N

E
[(
ρ∗i ( Êρ

1, c(t))− ρ∗i ( Êρ
2, c(t))

)2]

=

√
E
[(

dist( Eρ∗( Êρ1, c(t)), Eρ∗( Êρ2, c(t)))
)2]

< dist( Êρ1, Êρ2).

The first inequality is due to Jensen’s inequality. This proves
our second intermediate result.

Then, suppose that the fixed point equation (21) has two
distinct solutions Êρ1 and Êρ2. We have that

dist( Êρ1, Êρ2) = dist(E[ Eρi
∗( Êρ1, c(t))],E[ Eρi

∗( Êρ2, c(t))])

< dist( Êρ1, Êρ2),

which is an contradiction. This implies that (21) has at most
one solution. We conclude that (20) has a unique solution.
We next show the convergence of p̂i(t) as stated in the

following lemma.

Lemma 3: p̂i(t) converges almost surely to the unique
solution Êp of the fixed point equation E[Ep∗(Êp, c(t))] = Êp.

Proof: Given that c(t) is a stationary ergodic process,
the updating function (17) can be considered as a stochastic
approximation update equation. We can apply Theorem 1.1
of Chapter 6 in [25] for the convergence proof. We verify
the assumptions in Theorem 1.1 of Chapter 6 in [25] in the
following.

We first list the variables used in Theorem 1.1 and corre-
spond them to our problem and our notation style: Eθt = Êp∗(t),
ξt = c(t + 1), (Yt )i = α(p∗i (Êp

∗(t), c(t + 1))− p̂∗i (t)),∀ i ∈ N,
εt =

1
t+α , g(Êp, c(t)) = α(p

∗
i (Êp, c(t))− p̂

∗
i ),∀ i ∈ N, δ EM = E0,

Eβt = E0 and EZt = E0 for each t .
Now we need to verify that all the assumptions in Chapter

6 of [25] from (A.1.1) to (A.1.8) are satisfied. According
to Property 1, E[Yt ] is a continuous function of p̂∗i (t) and
Ep∗i (Êp

∗(t − 1), c(t)) ∈ PN for any t . Thus, (A.1.1) is satisfied.
(A.1.2) also follows from Property 1 that g(Êp, c(t)) is a con-
tinuous function of Êp, which guarantees (A.1.7) as well. For
(A.1.3), we can take the following form of the function

(ḡ(Êp∗(t)))i = α(E[p∗i (Êp
∗(t), c(t + 1))]− p̂∗i (t)).
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According to [25], (A.1.3) holds due to the strong law of large
numbers, because c(t) is a stationary ergodic process. Since
Eβt = EZt = E0 for each t , we have both (A.1.4) and (A.1.5)
hold true. For (A.1.6), it holds because g(Êp, c(t)) is bounded.
Hence, all the assumptions are satisfied. It follows Theorem
1.1 in [25] and Property 2 that p̂i(t) converges almost surely
to the unique solution of E[Ep∗(Êp, c(t))] = Êp.

Based on the convergence of p̂i(t), we are ready to prove
the asymptotic optimality of the online algorithm, which
indicates that for a sufficiently long time period, the time
averaged difference between the online and offline objective
values will become negligible. We introduce the following
lemma for the optimality proof.

Lemma 4: The following limit exits and converges for
i ∈ N:

lim
T→∞

(
1
T

T∑
t=1

p∗i (t)− p̂i(T )

)
= 0.

Proof: Rewrite (17) and sum from t = 1 to T . We
have

T∑
t=1

(
t + α
α

)
(p̂i(t)− p̂i(t − 1)) =

T∑
t=1

(p∗i (t)− p̂i(t − 1)).

Expanding the sum on the LHS, it follows that

1
α

(
T · p̂i(T )−

T∑
t=1

p̂i(t − 1)

)
− (p̂i(T )− p̂i(1))

=

T∑
t=1

(p∗i (t)− p̂i(T )+ p̂i(T )− p̂i(t − 1)).

Take limit over T on both sides and it follows that

lim
T→∞

T · p̂i(T )−
∑T

t=1 p̂i(t − 1)
α · T

− lim
T→∞

p̂i(T )− p̂i(1)
T

= lim
T→∞

1
T

T∑
t=1

(p∗i (t)− p̂i(T )+ p̂i(T )− p
∗
i (t − 1)).

The second term of the LHS is zero as T →∞. Rearranging
the terms, we have

lim
T→∞

(
1− α
α

)(
p̂i(T )−

1
T

T∑
t=1

p̂i(t − 1)

)

= lim
T→∞

1
T

T∑
t=1

(p∗i (t)− p̂i(T )).

Since the sequence p̂i(t) converges as shown in Lemma 3,
limT→∞

(
p̂i(T )− 1

T

∑T
t=1 p̂i(t − 1)

)
= 0, and the LHS will

be zero. Thus the limit on the RHS will also be zero.
Based on Lemma 4, we have the following theorem.

Theorem 1: The online optimal solution converges
asymptotically and almost surely to the offline optimal solu-
tion.

Proof: The proof is equivalent to showing that
limT→∞

1
T (9(p∗) − 9(P∗)) = 0 holds true almost surely,

where p∗ is online optimal solution and P∗ is the offline
optimal solution. Recall that λ∗(t) and ν∗i (t) are the non-
negative multipliers that satisfy the KKT conditions of the
online problem (see (18)). We define a new differentiable
concave function 8(·) as follows:

8(P∗)

=

T∑
t=1

∑
i∈N

U (P∗i (t), ωi(t))−
T∑
t=1

f

(∑
i∈N

P∗i (t)

)∑
i∈N

P∗i (t)

−
αT
2

∑
i∈N

Var(EP∗i )−
T∑
t=1

λ∗(t)
(
C(
∑

i∈N P
∗
i (t))

c(t)
− 1

)

+

T∑
t=1

∑
i∈N

ν∗i (t)(P
∗
i (t)− Pi,min(t)). (26)

Note that the sum of the first three terms on the RHS of (26)
is equal to9(P∗), while the last two terms on the RHS of (26)
are both non-negative. It follows that

9(P∗) ≤ 8(P∗). (27)

Furthermore, with the concave and differentiable properties
of function 8(·), we have [19]

8(P∗) ≤ 8(p∗)+58(p∗) • (P∗ − p∗), (28)

where • denotes the inner product operation. Combining (27)
and (28), we have

9(P∗) ≤ 8(P∗) ≤ 8(p∗)+58(p∗) • (P∗ − p∗) (29)

=

T∑
t=1

∑
i∈N

U (p∗i (t), ωi(t))

−

T∑
t=1

f

(∑
i∈N

p∗i (t)

)∑
i∈N

p∗i (t)−
αT
2

∑
i∈N

Var(Ep∗i )

−

T∑
t=1

λ∗(t)
(
C(
∑

i∈N p
∗
i (t))

c(t)
− 1

)

+

T∑
t=1

∑
i∈N

ν∗i (t)(p
∗
i (t)− pi,min(t))

+

T∑
t=1

∑
i∈N

(P∗i (t)−p
∗
i (t))

(
U ′(p∗i (t), ωi(t))−g

(∑
i∈N

p∗i (t)

)

+
α

T

T∑
k=1

p∗i (k)−αp
∗
i (t)−λ

∗(t)
C(
∑

i∈N p
∗
i (t))

c(t)
+ν∗i (t)

)
.

As λ∗(t) and ν∗i (t) are the Lagrange multipliers and vari-
ables of Prob-ON, we can substitute (18) into the above
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inequality (29) to have

9(P∗) ≤
T∑
t=1

∑
i∈N

U (p∗i (t), ωi(t))

−

T∑
t=1

f

(∑
i∈N

p∗i (t)

)∑
i∈N

p∗i (t)−
αT
2

∑
i∈N

Var(Ep∗i )

+

T∑
t=1

∑
i∈N

α(P∗i (t)− p
∗
i (t))

(
1
T

T∑
k=1

p∗i (k)− p̂i(t − 1)

)
.

Adding −p̂i(T )+ p̂i(T ) to the last component of the RHS of
the above inequality, we have

1
T

T∑
k=1

p∗i (k)− p̂i(t − 1)

=
1
T

T∑
k=1

p∗i (k)− p̂i(T )+ p̂i(T )− p̂i(t − 1). (30)

From Lemma 4, the limit of the above equation is zero for all
users. We can take limit of (30) and it follows that

lim
T→∞

9(P∗)
T
≤ lim

T→∞

1
T

(
T∑
t=1

∑
i∈N

U (p∗i (t), ωi(t))

−

T∑
t=1

f

(∑
i∈N

p∗i (t)

)∑
i∈N

p∗i (t)−
αT
2

∑
i∈N

Var(Ep∗i )

)

= lim
T→∞

9(p∗)
T

.

Thus limT→∞
1
T (9(P∗) − 9(p∗)) ≤ 0 holds for all users.

Because P∗ is optimal to the offline problem and 9(P∗) is
the offline objective value, we also have9(P∗) ≥ 9(p∗). We
conclude that Theorem 1 holds true.

V. PERFORMANCE EVALUATION
A. SIMULATION CONFIGURATION
In this section, we evaluate the proposed online algo-
rithm with trace-driven simulations. The simulation data and
parameters are acquired from the traces of power consump-
tion in the Southern California Edison (SCE) area recorded
in 2011 [26]. We first study the performance of the proposed
algorithm on convergence, grid load variance and peak reduc-
tion. We then compare the online algorithm with an existing
scheme under different numbers of users.

Consider a power distribution system in a small area with
N = 20 users and 15 minutes updating periods. Note that a
quarter is a practical set which allows DCC to have sufficient
time to coordinate all the users so that the system could
support more users and that in most cases, 15 minutes is
short enough to show the users’ change of demand. We will
show results within a 24-hour time pattern for an evaluation
of the daily operations. We choose users’ utility function
from a function set U in which the functions are generated
as widely used quadratic expressions (see [5], [6], [8]), with

ωi(t) ∈ (0, 1) randomly selected.

U (pi(t), ωi(t))

=

{
ωi(t)pi(t)−

1
8
pi(t)2, if 0 ≤ pi(t) ≤ 4ωi(t)

4ωi(t), if pi(t) ≥ 4ωi(t).
(31)

We also assume the basic user demand pi,min(t) and the initial
value pi(0) are selected from the set of P = [0.5, 3], for all i.
The parameters in the energy provisioning cost function (2)
are set as a = 0.05, b = c = 0, and c(t) is selected randomly
from the set C = [1, 20] for each time slot. These parameters
are carefully determined after studying the characteristics of
the SCE trace. In addition, we choose the price function as

f (L(t)) = 0.047 · L(t)2 − 0.38 · L(t)+ 27.67. (32)

It is a quadratic function and also a twice-differentiable
increasing convex function as discussed in Section II-A.4.
This model is formulated from the predicted and actual prices
from the SCE trace [27]. We simulate two scenarios with α
set as 1 and 0.01, respectively, to examine how it affects the
result.
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FIGURE 2. Convergence of p̂i (t) for different users (α = 1).
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FIGURE 3. Convergence of p̂i (t) for different users (α = 0.01).

B. ALGORITHM PERFORMANCE
We first study the convergence of p̂i(t). Earlier discussions in
Sec. IV show that p̂i(t) is convergent. Fig. 2 illustrates that
for α = 1, one day is sufficient for p∗i (t) to converge to
steady state values. In Fig. 3, it takes more time to converge.
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FIGURE 4. Online power distribution p∗i (t) and p̂i (t) for different
users when α = 0.1.

FIGURE 5. Online power distribution p∗i (t) and p̂i (t) for different
users when α = 0.01.

In the online problem Prob-ON, α is not only a parameter
integrating different objectives, but also an important coeffi-
cient affecting the convergence of the algorithm. In the online
updating equation (17), it is clear that a large α will cause rel-
atively a large disturbance, especially at the very beginning.
However, a large α will also lead to fast convergence, and
vice versa, as shown in Figs. 2 and 3. Besides, α also affects
the impact of the variance (or, smoothness) on the overall
objective value (14). It shapes the grid load curve to some
degree, as we will see in Section V-C.

Lemma 4 states that p̂i(t) will converge to the time aver-
aged p∗i (t) if we run the simulation sufficiently long. For a
larger α, the convergence will be faster, shown in Fig. 4,
where we find that p̂i(t) fluctuates uniformly along the p∗i (t)
curve for different users. For a smaller α, the convergence
could be very slow. Fig. 5 demonstrates the slow convergence
when α = 0.01. However, the convergence of p̂i(t) is proved
to be true as T → ∞ (see the proof of Lemma 4). In Fig. 5,
it can be seen that p̂i(t) is still approaching p∗i (t), although
slowly. Therefore, the value of α should be carefully chosen
to trade-off between convergence and other objectives.

More importantly, our main objective is to develop an
optimal online algorithm to reduce the variance of the grid
load and to balance electricity demand and supply. In Fig. 6,
we plot the total power consumption achieved with the online
algorithm and the actual load. The real power usage is the
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FIGURE 6. Real power usage and total power usage by the online
algorithm when α = 1.

summation of 20 independent users’ consumption generated
by the average real load in the SCE trace on a hot day (i.e.,
Sept. 1, 2011) [26]. The constraints are derived from the real
load in the 2011 SCE trace. For better presentation, we only
plot the result of the online algorithm with α = 1. The results
with α = 0.01 will be shown in Section V-C.
In Fig. 6, we find that the online algorithm achieves a well

smoothed grid load. Interestingly, although the power usage
of each user varies over time (as shown in Fig. 4), the total
power usage is effectively smoothed out by the online algo-
rithm. This result demonstrates the effectiveness of variance
detection and reduction of the online algorithm. Although
the controlled curve lies slightly above the average level of
the real load, it reduces the cost of energy provisioning by
achieving a considerable peak reduction, which is about 35%
in this scenario with only 20 users.

C. COMPARISON WITH A BENCHMARK
We next compare the online algorithm with the Optimal
Real-time Pricing Algorithm (ORPA) presented in [8] as a
Benchmark. Comparing to prior work, this one formulates a
similar but simpler problem to our problem. It adopts a real-
time pricing strategy to maximize social welfare of the smart
grid, as

max
∑
i∈N

(
U (pi(t), ωi(t))− C

(∑
i∈N

pi(t)

))
, (33)

for t ∈ {1, 2, . . . ,T } and for all independent user i. As we can
see, (33) is similar to but simpler than (14). With the same
parameters as in the online algorithm, this is also a convex
optimization problem. We can solve (33) with a centralized
interior-point method as discussed in [8].

Firstly, we show the total power consumption of different
algorithms in Fig. 7. From the aspect of smoothness, we could
see clearly that the online optimal real-time energy distri-
bution algorithm with α = 1 (termed OORA(1)) achieves
the best performance. The figure also shows that the online
algorithm with α = 0.01 (termed OORA(0.01)) also outper-
forms the benchmark ORPA. All the three algorithms achieve
smoother total loads than the real consumption (RC). The
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FIGURE 7. Total power consumption for OORA(1), OORA(0.01),
ORPA and RC.

peak reductions over RC are 35% for OORA(1), 28% for
OORA(0.01), and 12.5% for ORPA. Therefore, OORA(1)
achieves the largest peak reduction, while OORA(0.01) still
outperforms ORPA with considerable gains.
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FIGURE 8. Total power variance by OORA(1), OORA(0.01), ORPA
and RC.

Next, we plot the variance of the total load in Fig. 8 for
different system settings. These results are consistent with
that in Fig. 7. We find that OORA(1) achieves the mini-
mum variance for all the cases simulated, while OORA(0.01)
still outperforms ORPA with a much smaller variance.
This is because variance is explicitly incorporated into the
objective function in the online problem formulation, while
ORPA is designed mainly to maximize the social wel-
fare as in (33) and cannot guarantee a smooth total grid
load.

Finally, we provide a more detailed comparison of the three
schemes in Table 1, where the simulation results of several
individual performance measures are listed for networks of
200, 500, and 1000 users. Note that the price function is differ-
ent for different network sizes, which is a function of the total
load. As defined in (34), V ,U , F , and PK denote the averages
across users of the total power variance, users’ utility, users’
cost, and the peak of the total load, respectively, while c is the

TABLE 1. Simulation results of several individual performance
measures as defined in (34) for OORA(1), OORA(0.01), ORPA
and RC.

total energy provisioning cost for the entire period.

V = 1
N

∑
i∈NVar(p∗i (t))

U = 1
N

∑T
t=1

∑
i∈N U (p∗i (t), ωi(t))

F = 1
N

∑T
t=1 f (

∑
i∈N p

∗
i (t))(

∑
i∈N p

∗
i (t))

PK = 1
Nmaxt∈[1:T ]

∑
i∈N p

∗
i (t)

c =
∑T

t=1 C(
∑

i∈N p
∗
i (t)).

(34)

For V , the best performer is OORA(1), which is consistent
with the earlier results. Also, the variance is increasing as
the user number grows. For F , we observe a relatively stable
number of the averaged cost on daily electricity consump-
tion for each user. In the first three algorithms, F is almost
the same while RC always has the largest number because
in reality where the RC curve was recorded, supply was
always matched to the user demand. This is confirmed by
the results of users’ utility U : as users could use electric-
ity freely, they should have the highest satisfaction level.
Observing U and F , we see that a higher satisfaction level is
achieved with a higher cost. Moreover, it is interesting to see
that utility U of OORA(1), OORA(0.01), ORPA are almost
the same for different numbers of users, with OORA(0.01)
being slightly better. This is because, as in ORPA, the utility
is incorporated in the objective function of OORA. When
α is small, the first two terms in (14) will have larger
weights.
For energy provisioning cost c, ORPA exhibits its advan-

tage as it includes this term in the objective function.
Also, if we take U − c, ORPA is also the best per-
former, which could be expected from its objective func-
tion (33). However, this advantage becomes insignificant
when the variance V and the peak PK are considered.
OORA has unique advantages on variance control and peak
reduction. It is also worth noting that OORA is an online
algorithm that requires minimal exchange of control/state
information within the grid, while the ORPA results are
obtained with a centralized solver assuming accurate global
information.
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VI. CONCLUSION
In this paper, we present a study of optimal real-time energy
distribution in smart grid.With a formulation that captures the
key design factors of the system, we first present an offline
algorithm that can solve the problem with optimal solutions.
We then develop an online algorithm that requires no future
information about users and the grid. We also show that
the online solution converges to the offline optimal solution
asymptotically and almost surely. The proposed online algo-
rithm is evaluated with trace-driven simulations and is shown
to outperform an existing benchmark scheme.
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