
PlausMal-GAN: Plausible Malware Training Based
on Generative Adversarial Networks for Analogous

Zero-Day Malware Detection

DONG-OKWON , (Member, IEEE), YONG-NAM JANG , AND SEONG-WHAN LEE , (Fellow, IEEE)

CORRESPONDING AUTHOR: SEONG-WHAN LEE (sw.lee@korea.ac.kr)

This work was supported in part by the Institute of Information & communications Technology Planning & Evaluation (IITP) Grant funded by the Korea govern-
ment (MSIT) under Grant 2019-0-00079 and in part by Artificial Intelligence Graduate School Program (Korea University) under Grant 2021-0-02068, Artificial

Intelligence Innovation Hub.

ABSTRACT Zero-day malicious software (malware) refers to a previously unknown or newly discovered
software vulnerability. The fundamental objective of this paper is to enhance detection for analogous zero-
day malware by efficient learning to plausible generated data. To detect zero-day malware, we proposed a
malware training framework based on the generated analogous malware data using generative adversarial net-
works (PlausMal-GAN). Thus, the PlausMal-GAN can suitably produce analogous zero-day malware images
with high quality and high diversity from the existing malware data. The discriminator, as a detector, learns
various malware features using both real and generated malware images. In terms of performance, the pro-
posed framework showed higher and more stable performances for the analogous zero-day malware images,
which can be assumed to be analogous zero-day malware data. We obtained reliable accuracy performances
in the proposed PlausMal-GAN framework with representative GAN models (i.e., deep convolutional GAN,
least-squares GAN, Wasserstein GAN with gradient penalty, and evolutionary GAN). These results indicate
that the use of the proposed framework is beneficial for the detection and prediction of numerous and analo-
gous zero-day malware data from noted malware when developing and updating malware detection systems.

INDEX TERMS Analogous malware detection, generative adversarial networks, malware augmentation,
malware data, zero-day malware

I. INTRODUCTION

Malware can be defined as malicious software that is designed to
cause outages, denial of activity, collection of personal data
without user consent, unauthorized access to system resources,
and similar inappropriate behaviors.With the rapid development
of information technology, the exponential increase in malware
has become one of the main threats to computer security [1]–[3].
Malicious software detection has become more difficult as the
number and variety of applications increase in computer security
[4]–[6], with more than 143 thousand new malicious programs
targeting mobile devices detected during 2013 [5], and as Kas-
persky Lab’s research shows that nearly 30% of all computers
were threatened at least once during 2018 [7].
Zero-day malware is an unknown or unaddressed software

vulnerability that hackers use to do malicious things, such as

destroying programs, stealing data, or paralyzing networks
[8]. A range of antivirus systems and other strategies are
used to help protect against the introduction of malware,
which helps in detection if such malware is already present.
Antivirus systems typically fail to detect zero-day malware
because they rely on signatures to identify malware. Com-
puters are more vulnerable to zero-day malware than to gen-
eral malware because traditional antivirus systems typically
cannot detect zero-day malware. Zero-day malware is an
important threat to computer security, and zero-day malware
detection is a top priority for malware detection systems.
To detect zero-day malware, we propose a deep learning

method of generating arbitrarily modified malware features
using the malware’s raw code without running it. Malware
code based on specific rules and actions generates certain

Dong-Ok Won is with the Department of Artificial Intelligence Convergence, Hallym University, Chuncheon 24252, South Korea
Yong-Nam Jang is with the Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, South Korea

Seong-Whan Lee is with the Department of Artificial Intelligence, Korea University, Seoul 02841, South Korea

Received 23 February 2021; revised 12 March 2022; accepted 22 April 2022.
Date of publication 3 May 2022; date of current version 6 March 2023.

Digital Object Identifier 10.1109/TETC.2022.3170544

82
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see

ht _tps://creativecommons.org/licenses/by/4.0/ VOLUME 11, NO. 1, JAN.-MAR. 2023

https://orcid.org/0000-0002-2839-6524
https://orcid.org/0000-0002-2839-6524
https://orcid.org/0000-0002-2839-6524
https://orcid.org/0000-0002-2839-6524
https://orcid.org/0000-0002-2839-6524
https://orcid.org/0000-0001-5803-1094
https://orcid.org/0000-0001-5803-1094
https://orcid.org/0000-0001-5803-1094
https://orcid.org/0000-0001-5803-1094
https://orcid.org/0000-0001-5803-1094
https://orcid.org/0000-0002-6249-4996
https://orcid.org/0000-0002-6249-4996
https://orcid.org/0000-0002-6249-4996
https://orcid.org/0000-0002-6249-4996
https://orcid.org/0000-0002-6249-4996


patterns. Examples of the malware sample used in this study
are shown in Figures 1 and 11 [9], [10].
While, when dealing with classification tasks using neural

networks, data augmentation techniques have been used to
compensate for imbalance or data insufficiency problems. In
the malware detection research area, several papers also used
simple data augmentation techniques (e.g., sliding window,
transformation, etc.) to deal with these issues [11], [12].
In this study, we investigated and focused on the different

direction of malware training technique with generating zero-
day malware data, not focused imbalance or data insufficiency.
We proposed a plausible malware training framework capable
of detecting analogous zero-day malware that can handle newly
plausiblemalware (Plausible malware training framework based
on generative adversarial networks, PlausMal-GAN). Our main
contribution is the proposed malware training framework based
on generative adversarial networks (GAN) with generated anal-
ogous malware samples. The proposed framework trains a gen-
erator and discriminator based on real malware data and the
generated malware data in the first phase. In the second phase,
the generator is fixed and the discriminator is re-trained based
on real malware data and the generated malware data by the
fixed generator. Ideally, the proposed framework can apply any
kind of GANmodel, so we evaluated the performance by apply-
ing the latest and repetitive GAN models. Moreover, we
obtained stable performance for abundant analogous zero-day
malware test data in relatively few training data conditions.

II. BACKGROUND

A. MALWARE DETECTION

Owing to the increasing damage caused by malware and
zero-day malware, research on malware detection methods

have been continuously improving. We discuss two aspects
of malware detection: malware detection and zero-day mal-
ware detection.
Several reported studies have dealt with malware detec-

tion [10], [13]–[17]. Nataraj et al. presented a visualization
approach that differs from traditional approaches for malware
detection [10], where they transformed the malware’s binary
information into grayscale malware images. Ye et al. and
Ndibanje et al. used Windows Audit Log and API Call for
malware detection [18], [19]. Traditional machine learning
algorithms such as hidden Markov models, support vector
machines (SVMs) and random forests were also used for
malware detection [20]–[23]. Singh et al. proposed a Big
Data analysis framework based on random forests for mal-
ware detection [24]. Chen et al. attempted to detect malware
by analyzing mobile network traffic with machine-learning
methods [25]. Recently, there have been many methods to
use deep learning and generative adversarial networks
(GAN) because the available computing power has increased
[11], [12], [26]–[31]. Pascanu et al. used recurrent neural net-
works for time-series information in malware classifica-
tion [26], [32]. Ye et al. presented a heterogeneous deep-
learning framework composed of an autoencoder stacked up
with a layer of associative memory and multilayer restricted
Boltzmann machines [27]. Kabanga et al. used data from
converted malware images as input to the convolutional neu-
ral networks (CNNs) [28]. Yan et al. used CNN and long
short-term memory networks to learn from grayscale image
and opcode sequence, respectively, and takes a stacking
ensemble for malware classification [11]. The aforemen-
tioned methods have disadvantages that detect only certain
variants of malware. The developers of malware use obfusca-
tion techniques, such as null byte injection, code exchange,
and subroutine reordering, to create new variants with signa-
tures different from existing malware. However, the afore-
mentioned methods use malware that has been discovered so
far. Thus, unlearned malware will not be detected. To detect
attacks that bypass deep-learning methods [33], Wang et al.
proposed a resistant method that is robust to adversarial mal-
ware samples by nullifying arbitrary features [33]. However,
in this way, malware characteristics are randomly removed,
which risks removing not only unnecessary features but also
important ones. There are now hybrid methods that combine
static and dynamic methods [22], [34]. While these methods
can be effective for malware detection, they have the disad-
vantage of being time-consuming and highly complex.
Recently, there have been some methods developed for

zero-day malware detection [13], [14], [35], [36]. Venkatra-
man and Alazab used a similarity matrix of malware for visu-
alization in order to detect zero-day malware [14]. This
method can be used to visually observe that different mal-
ware families exhibit significantly different behavior pat-
terns. Gupta and Rani proposed a Big Data framework to
address the Big Data problem caused by increase in mal-
ware [35]. They also attempted to detect zero-day malware
using Big Data analysis techniques and machine-learning

FIGURE 1. Examples of nine type classes of malware images.

VOLUME 11, NO. 1, JAN.-MAR. 2023 83

Lee et al.: PlausMal-GAN: Plausible Malware Training Based on Generative Adversarial Networks for Analogous Zero-Day Malware Detection



algorithms. This method modeled a series of opcodes to
detect zero-day malware. Due to the increasing threat of mal-
ware in a cyber-physical system, Huda et al. proposed a
detection method that uses methods like SVM and K-means
to detect unknown malware by extracting knowledge and
essential structures from already unlabeled, cheap, available
data [36]. In the aforementioned zero-day malware detection
methods, certain rules are fixed, and zero-day malware that
does not follow these rules cannot be detected. Recently,
Kim et al. has proposed transferred deep-convolutional gen-
erative adversarial network (tDCGAN), which generates fake
malware and learns to distinguish it from real malware [13].
This method obtained not only enhanced performance in
malware detection but also showed possibility in a zero-day
attack experiment. Since the method is no consideration of
high diversity (e.g., plausible diversity) or quality in gener-
ated zero-day malware, nor was it measured numerically
(i.e., freA�chet inception distance, etc.), it is difficult to
assume that focused on zero-day malware detection. While,
we implemented analogous zero-day malware classifier with
GAN models to create new high-diversity and high-quality
malware images for generating plausible malware augmenta-
tion. The generated data is used to create a robust detector
for zero-day malware detection.

B. DATA AUGMENTATION

Data Augmentation encompasses a suite of techniques that
enhance the size and quality of training datasets such that bet-
ter deep learning models can be built using them [37], [38].
The simple data augmentations based on basic image manipu-
lations are flipping, cropping, rotation, translation, etc [37],
[38]. Recently, GAN based approach refers to the practice of
creating artificial instances from a dataset such that they retain
similar characteristics to the original set [39], [40]. In malware
detection, several papers applied data augmentation method
to solve imbalance or data insufficiency issues [12], [41].
To our best knowledge, there have been no studies to date

which focused on the high diversity and quality of plausible
malware in terms of analogous malware augmentation, which is
an important factor to be investigated for various transforma-
tions or analogous data augmentation using a zero-day malware
detection system. In this study, we proposed a plausible mal-
ware training framework based on GAN that could consider
high diversity in generating analogous zero-day malware data.
Moreover, the proposed method showed stable performance
even with relatively little training data. We applied different
kinds of several recent GAN models (i.e., deep convolutional
GAN (DCGAN) [42], least-squares GAN (LSGAN) [43], Was-
serstein GAN with gradient penalty (WGAN-GP) [44], evolu-
tionary GAN (E-GAN) [40]) to our design, it could be shown as
a potentially reliable adaptation in state-of-the-art GANmodels.

C. GENERATIVE ADVERSARIAL NETWORKS

GAN [39] is a deep-learning model that emerged for the pur-
pose of generating data similar to the training data using the
given training data. Unlike the original GAN, which uses only

one objective function (e.g., minimax), Wang et al. proposed E-
GAN [40] using several objective functions (i.e., minimax, heu-
ristic, and least-squares). Generators using each objective func-
tion are evaluated by a discriminator, and the best-performing
generator is chosen to evolve to the next stage. In the process of
evolution, the evolved generator is expected to gradually adapt
to the discriminator, which means that the evolved generator
can provide high-quality, high-diversity samples and learn the
real data distribution. The evolutionary process consists of three
stages (i.e., variation, evaluation, and selection):
First, the variation stage used the variation operators to pro-

duce its offspring {Gu1 , Gu2 ,... }, given an individual Gu in the
population. In particular, several copies of each individual or
parent were created, each of which was modified by different
mutations. Then, each modified copy is regarded as one child.
Second, in the evaluation stage, we evaluated the performance
or individual quality for each child by a fitness function F that
depends on the current environment (i.e., discriminator D).
Third, in the selection stage, we selected all children according
to their values and removed the worst ones. The rest remained
alive (i.e., free to act as parents) and evolved to the next iteration.
Compared to the generator using multiple objective func-

tions, the discriminator is the same as the objective function
of the original GAN. The discriminator D is trained to distin-
guish between the real data sample x � pdataðxÞ and the gen-
erated data sample x̂ � pgenðx̂Þ

LD ¼ �Ex�pdata ½logDðxÞ� � Ex̂�pgen ½log ð1� Dðx̂ÞÞ�: (1)

III. METHODS

In this section, we describe a plausible malware training
framework based on generative adversarial networks (GAN)
that generates analogous malware with a malware classifier
and training discriminator as a malware detector. Figure 2 is
an architectures of our proposed framework.

A. PLAUSMAL-GAN FRAMEWORK

To generate analogous malware samples for each kind of mal-
ware, the proposed framework trains a generator and discrimi-
nator based on GAN with a malware classifier using real
malware data and the generated malware data in the first step.
The discriminator not only discriminates real or fake, but also
learns to classify malware classes. In the second step, the gen-
erator is fixed and the discriminator is re-trained based on real
malware data and the generated malware data by the fixed
generator. Figure 3 shows the overview and process of the
proposed framework. The auxiliary classifier GAN (AC-
GAN) [45] proposed a structure that produces data that
matches class labels as well as data that are close to real data.
For malware classifier, the architectures of the proposed
framework is following the AC-GAN structures (Figure 2).
Our malware generator generates fake malware samples x̂ that
contain noise sample z by malware class c, and discriminator
not only distinguishes between real x � pdataðxÞ and fake x̂ �
pgenðx̂Þ but also class c. The difference between our method

84 VOLUME 11, NO. 1, JAN.-MAR. 2023

Lee et al.: PlausMal-GAN: Plausible Malware Training Based on Generative Adversarial Networks for Analogous Zero-Day Malware Detection



and the existing AC-GAN is that the discriminator does not
learn the class information of the generated malware sample,
only the class information of the real malware sample. Our
discrimination training loss is defined as follows:

LD ¼� Ex�pdata ½logDðxÞ � log pðcjxÞ�
� Ex̂�pgen ½log ð1� Dðx̂ÞÞ�: (2)

And, we considered standard GAN approach (minmax),
least-squares approach, heuristic approach, and combining
the preceding three-approach for DCGAN, LSGAN, WGAN-
GP, and E-GAN model in the proposed framework, respec-
tively. In E-GAN, we considered an evolutionary step consists
of three sub-steps: variation, evaluation, and selection. In the
variation step, we adopt three objectives that are interpretable
and complementary as mutations proposed by Wang et al.
[40]. As shown in Figure 4, the difference between the three
objective functions are minimax mutation, heuristic mutation,
and least-squares mutation. In addition, we added a classifica-
tion loss function to the existing mutation functions, because
not only the data is close to real but also data corresponding to
the class must be generated. The minimax mutation is similar
to the minimax objective function of the original GAN, which
aimed to minimize the log probability that the discriminator

FIGURE 2. The architectures of the proposed framework for anal-

ogous zero-day malware detection.

FIGURE 3. The proposed PlausMal-GAN framework consists of two-phases. (a) The generator and discriminator training based on GAN

with malware classifier. (b) Training the discriminator as a zero-day malware detector from plausible malware augmentation. For an

intuitive explanation, it is shown using evolutionary GAN, which is one of the representative GANs.

VOLUME 11, NO. 1, JAN.-MAR. 2023 85

Lee et al.: PlausMal-GAN: Plausible Malware Training Based on Generative Adversarial Networks for Analogous Zero-Day Malware Detection



would do well. In the original GAN, gradient vanishing can
occur when the discriminator produces a result close to zero
(i.e., Dðx̂Þ ! 0). In other words, if the discriminator is confi-
dent that the generated malware data is fake malware data, the
generator may not train well. However, we have been able to
solve this problem to some extent by adding a classification
loss. Unlike early gentle gradients, if the generated malware
distribution is somewhat similar to the real malware distribu-
tion, the minimax mutation provides a steep gradient, which
later allows stable learning

Mminimax
G ¼ Ex̂�pgen ½log ð1� Dðx̂ÞÞ � log pðcjx̂Þ�: (3)

The heuristic mutation minimizes the log probability that the
discriminator will do well, which maximizes the log proba-
bility that the discriminator will go wrong. Using this muta-
tion, the gradient is steep even though the discriminator is
convinced that the generated malware data is fake. Thus, the
heuristic mutation can avoid a vanishing gradient, unlike the
minimax mutation, which suggests the possibility of better
learning in the early stages than the minimax mutation

Mheuristic
G ¼ �Ex̂�pgen ½log ðDðx̂ÞÞ þ log pðcjx̂Þ�: (4)

Lastly, the least-squares mutation is similar to the least-
squares objective function of the LSGAN, which aimed at
deceiving the discriminator by penalizing the generator.
Using this mutation, we get a gentle slope overall and can
avoid a vanishing gradient as in a heuristic mutation.
Besides, least-squares mutations, when compared to heuristic
mutations, do not assign very high costs to generate fake
malware samples but do not assign very low costs to mode
dropping, which partially avoids mode collapse [43]

Mleast-s.
G ¼ Ex̂�pgen ðDðx̂Þ � 1Þ2 � log pðcjx̂Þ

h i
: (5)

Algorithm 1. Plausible Malware Training Framework (i.e.,
With E-GAN Case)

Require: batch size m ¼ 32: discriminator’s updating steps
per iteration nD ¼ 1; number of parents m ¼ 1;
number of mutations nm ¼ 3; Adam hyper-param-
eters a ¼ 0:0002;b1 ¼ 0:5;b2 ¼ 0:99; the hyper-
parameter g of evaluation function.

Require: initial discriminator’s parameters w0: initial genera-
tor’s parameters fu10; u20; . . .; um0 g:
for number of training iterations do
for k = 0,..., nD do
Sample a batch of fxðiÞgmi¼1 � pdata (training

data), and a batch of fðc; zÞðiÞgmi¼1 � pc;z
(noise sample z by class c).

gw  rw

"
1
m

Xm
i¼1

logDwðxðiÞÞ

þ 1
m

Xm
j¼1

Xm=m
i¼1

log ð1� DwðGujððc; zÞðiÞÞÞÞ

þ 1
m

Xm
j¼1

Xm=m
i¼1

log pðcðiÞjxðiÞÞ
#

w Adamðgw;w;a;b1;b2Þ
end for
for j = 0,..., m do
for h = 0,..., nm do
Sample a batch of fðc; zÞðiÞgmi¼1 � pc;z (noise
sample z by class c).

guj;h  ru j Mh
G ðc; zÞðiÞ

n om

i¼1
; uj

� �h i
u
j;h
child  Adamðgu j;h ; u j;a;b1;b2Þ
F j;h  F j;h

q þ gF j;h
d

end for
end for
fF j1;h1 ;F j2;h2 ; . . .g  sortðfF j;hgÞ
u1; u2; . . . ; um  u

j1;h1
child ; u

j2;h2
child ; . . . ; u

jm;hm
child

end for

In the evaluation step, the 1) malware quality and 2) diversity
of the generated malware samples are measured and evalu-
ated. To detect zero-day malware, it was important to gener-
ate samples of high-diversity malware with high quality, so
we adopted the evaluation step of the E-GAN architecture.
First, the quality fitness score was used as a measure of qual-
ity. This method puts the generated malware image based on
the noise sample by class into discriminator D and uses the
output value. We use the output of D multiplied by the prob-
ability of that class to measure the image quality score for
each class. And, we use the average output value. The closer
the value is to 1, the closer to reality the malware data is. In
other words, the closer to 1, the higher quality malware data

FIGURE 4. Mutation (or objective) functions with classification

loss function.

86 VOLUME 11, NO. 1, JAN.-MAR. 2023

Lee et al.: PlausMal-GAN: Plausible Malware Training Based on Generative Adversarial Networks for Analogous Zero-Day Malware Detection



F q ¼ Ex̂�pgen ½Dðx̂Þ � log pðcjx̂Þ�: (6)

Second, the diversity fitness score is used as a measure of
malware diversity. This method uses the minus log-gradient-
norm of the discriminator. When the generator generates data
that greatly changes the gradient of the discriminator, the dis-
criminator is likely to determine that the generated malware
data is fake. In contrast, when the generator generates data
that does not change the discriminator gradient significantly,
the generated malware data is not labeled as fake and tends
to achieve high diversity

F d ¼ �log rDj jj j: (7)

Using the two fitness scores mentioned above, the criterion
for the E-GAN evaluation is as follows:

F ¼ F q þ gF d (8)

where g > 0 is the balance between the quality and diversity
measurements.
In the selection step, the offspring with the highest fitness

score is selected and proceeds to the next variation step.
Throughout the evolution process, the generator will gradu-
ally generate data for each class as well as generating data
similar to real data. We use the converged generator for mal-
ware detection in the next step.

3.2 MALWARE DETECTION

For analogous zero-day malware augmentation, the malware
generator generates high-quality and high-diversity images.
We use the discriminator’s classifier as a malware detector.
The discriminator has trained anew as a malware detector
without adversarial training with the generator. As a malware
detector, the discriminator is trained using both generated
and real malware images. The objective function of the dis-
criminator is as redefined

LD ¼ �Ex�pdata ½log pðcjxÞ� � Ex̂�pgen ½log pðcjx̂Þ� (9)

when training the discriminator, the generator is not trained
and only generates malware images. Figure 3 shows training
the discriminator with data augmentation as a malware
detector.

IV. EXPERIMENTS AND RESULTS

This section describes the experiments and results for evalu-
ating the proposed framework.

A. DATASETS

1) MICROSOFT MALWARE CLASSIFICATION

CHALLENGE DATASET

To verify the data generation and detection performance of
the proposed framework, we used a malware data from the
Microsoft dataset [9]. The malware file was a byte file, and
we used binary code written to it. The total number of mal-
ware is 10,868, divided into 9,781 training sets and 1,087

test sets (9:1 train-test ratio). Appendix B, which can be
found on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TETC.2022.3170544,
shows the malware data types used and the number of mal-
ware for each malware type [9].

Algorithm 2. Training Discriminator Based on the Proposed
Framework

Require: batch size m ¼ 32; discriminator’s updating steps
per iteration nD ¼ 1; Adam hyper-parameters a ¼
0:0002;b1 ¼ 0:5;b2 ¼ 0:99.

Require: initial discriminator’s parameters w0; initial genera-
tor’s parameters u0.
for number of training iterations do
for k=0,...,nD do
Sample a batch of fxðiÞgmi¼1 � pdata (training
data), and a batch of fðc; zÞðiÞgmi¼1 � pc;z
(noise sample z by class c).

gw  rw

"
1
m

Xm
i¼1

log pðcðiÞjxðiÞÞ

þ 1
m

Xm
i¼1

log pðcðiÞjGuððc; zÞðiÞÞÞ
#

w Adamðgw;w;a;b1;b2Þ
end for

end for

As Nataraj et al. did [10], we convert malware binary code
into an image called malware image. If k is the length of the
binary code, C is the size of the converted column, and R is
the size of the converted row, this is how to calculate the size
of the converted columns and rows

C ¼ 2
log

ffiffiffi
16
p

k
log 2 þ1 (10)

R ¼ 16 k

C
(11)

The malware images were so large that they were reduced to
128 � 128 using Pillow which python image library. Then
we used jet colormaps to represent RGB color images.

2) MALIMG DATASET

In Supplementary Materials Appendix C, available in the
online supplemental material, we show the frequency distribu-
tion of malware families and their variants in the Malimg data-
set [10].Wewere able to findmalware data frommalware class
that shared the family name (i.e., Worm: Allaple.A and Alla-
ple.L, PWS: C2Lop.gen!G and C2Lop.P, Trojan: Lolyda.AA1
and Lolyda.AA2, TDownloader: Swizzor.gen!I and Swizzor.
gen!E). In Table 1 and Figure 11, eight different malware data
have four pairs with two different and similar family names
and shared similar properties. For the second zero-daymalware
experiments, we evaluated malware data with similar

VOLUME 11, NO. 1, JAN.-MAR. 2023 87

Lee et al.: PlausMal-GAN: Plausible Malware Training Based on Generative Adversarial Networks for Analogous Zero-Day Malware Detection

http://doi.ieeecomputersociety.org/10.1109/TETC.2022.3170544
http://doi.ieeecomputersociety.org/10.1109/TETC.2022.3170544


properties family in the Malimg dataset, which consists of
5,543 malware samples from 8 different malware families.

B. EXPERIMENTAL DETAILS

The experiment is divided into two parts: a existing malware
classification and a analogous zero-day malware attack
experiments. In the existing malware classification experi-
ment, we compared the proposed framework with representa-
tive GANs (i.e., DCGAN, LSGAN, WGAN-GP, and E-
GAN) and previous methods experimental results [13]. In
the proposed framework, we used the same network structure
(Supplementary Table S2, available online). In the first anal-
ogous zero-day malware attack experiment, we also com-
pared our framework with the four GAN models and
previous methods results (i.e., random forest, decision tree,
nearest neighbors, Naive Bayes, multi-layer perceptron
(MLP) [46], CNN [47], GAN [39], and tDCGAN [13]). In
the second zero-day malware experiment, we compared the
proposed framework phase 1 and phases 1&2 with the repre-
sentative four GAN models.
The operating system of the computer used in the experi-

ments was Ubuntu 16.04.2 LTS, and the central processing
unit was Intel Xeon Gold 6148. The random-access memory
was Samsung DDR4 16 GB � 4, and the graphics processing
unit was TITAN XP. When implementing the proposed
framework, we used the Pytorch library. The generative and
discriminative network architectures used in the generator
and discriminator respectively, are shown in Supplementary
Table S2, available online.

C. ANALYSIS OF GENERATED MALWARE DATA

Figure 5 shows examples of the generated malware images
using the Microsoft dataset [9]. In qualitative terms, Figure 5
shows the generation of malware images that are similar to
the real malware images, which shows that the proposed
framework can also generate modified malware or analogous
zero-day malware.
We choose the Fr�echet inception distance (FID) [48] as a

quantitative metric for evaluating generator convergence.
The FID uses pre-trained Inception v3 networks to extract
features of the generated images and real images. Then
model the data distribution for extracted features using a
multivariate Gaussian distribution with mean m and covari-
ance S. The FID between the real images x and generated
images g is computed as below

FIDðx; gÞ ¼ mx � mg

�� ��2
2

þ Tr Sx þ Sg � 2 SxSg

� �1
2

� �
; (12)

where Tr is the sum of all the diagonal elements.
A lower FID implies that the distribution distance between

the real images and generated images is closer. It also means
that the generated images have high quality and high diver-
sity. As shown in Table 2, our proposed framework has the
lowest FID score. This means that the generator of our pro-
posed framework generated a high-quality and high-diversity
malware sample. While low FIDs do not actually produce
new malware, it is likely a variant of existing malware. This
allows us to expect data augmentation with the generated data.

D. MALWARE CLASSIFICATION

To derive a more accurate estimate of model prediction perfor-
mance, we used 10-fold cross-validation for all methods and it
was used for the existing malware classification experiment

TABLE 1. Malware Data With Similar Family Names in the Malimg

Dataset for the Second Zero-Day Malware Experiment.

Malware family names Type No. of Variants

Allaple.A Worm 2949
Allaple.L Worm 1591
C2Lop.gen!G PWS 200
C2Lop.P PWS 146
Lolyda.AA1 Trojan 213
Lolyda.AA2 Trojan 184
Swizzor.gen!I TDownloader 132
Swizzor.gen!E TDownloader 128

FIGURE 5. Examples of (a) real malware images and (b) generated malware images in the proposed framework.

TABLE 2. FIDs Between Generated Malware Images and Real Mal-

ware Images in the Proposed Framework.

Model DCGAN LSGAN WGAN-GP E-GAN (r = 0.1, r = 0.5)

FID 220.16 190.70 206.23 146.39, 127.96

88 VOLUME 11, NO. 1, JAN.-MAR. 2023

Lee et al.: PlausMal-GAN: Plausible Malware Training Based on Generative Adversarial Networks for Analogous Zero-Day Malware Detection



using the Microsoft dataset [9]. The average classification
accuracy achieved by the proposed framework was 95.56%,
which means that the performance of our proposed framework
was much better than the previous methods. Table 3 shows the
numerical classification results with four difference models (i.e.,
DCGAN, LSGAN,WGAN-GP, and E-GAN). Because the per-
formance was the most dominant when using the E-GAN
model, only the proposed framework with this model was used
for some further analysis (i.e., Table 4, Figures 7 and 9).
To verify the performance of the proposed malware classi-

fier model, we showed a confusion matrix in Figure 7. We
calculated the precision, recall, and F1-score for each mal-
ware type and summarized them in Table 4. Also, we com-
pared the classification accuracies for the proposed
framework with difference four GAN models according to
the training iterations in Figure 6. In results, the E-GAN
models showed higher classification performance than other
Representative models.

E. ZERO-DAY MALWARE

1) ZERO-DAY MALWARE EXPERIMENT I USING

GENERATEDANALOGOUS ZERO-DAY MALWARE

We modeled plausible zero-day malware for analogous zero-
day malware attack experiments using the Microsoft dataset
(Figure 8) [9]. The previous study assumed that the zero-day
attacks can be modeled by introducing noise into existing
malware data [13]. The noise was generated by the structure
similarity (SSIM) method, which uses the structural similar-
ity of images [49]. We likewise used the SSIM method for
systematic noise generation. The method of calculating the
SSIM values for a pair of images x; y includes calculating
mx;my as the means for the pixels of the images x, y.

SSIMðx; yÞ ¼ 2mxmy þ c1
� �

2sxy þ c2
� �

m2
x þ m2

y þ c1
� �

s2
x þ s2

y þ c2
� � (13)

where, c1 ¼ ðk1LÞ2; c2 ¼ ðk2LÞ2; k1 ¼ 0:01; k2 ¼ 0:03; L ¼
2# bits per pixel� 1:

We used altered malware images with 0.02 intervals between
0.60 and 0.68 (SSIM value) for analogous zero-day malware
evaluation [13], [49]. Then, for more diverse zero-day malware
evaluation, we regenerated the transformed malware images
with two combined ratios such as 7:3 and 8:2 ratios. We also
compared the proposed framework with previous methods
results (in 8:2 combined ratio) [13] (Table 5). The plausible
zero-day malware modeling with noise is calculated as follows:

Nkðx; yÞ ¼ ð1� �Þxþ �y; (14)

TABLE 3. Comparison of Malware Classification Accuracies in the Proposed Framework With Four Representative GAN Models and

Previous Methods.

Model MLP CNN GAN tGAN Proposed Framework (PlausMal-GAN)

DCGAN LSGAN WGAN-GP E-GAN

Accuracy (%) 83.06 94.63 87.81 88.10 94.99 96.02 94.86 96.35
Std. dev. 7.54e-04 2.12e-05 3.44e-05 8.05e-05 0.596 0.351 0.255 0.539

TABLE 4. Results of Precision, Recall, and F1-Score for Each

Malware Type in the Proposed Framework.

R L K3 V S T K1 O G

Precision 0.954 0.971 0.996 0.854 0.666 0.864 1.000 0.982 0.960
Recall 0.961 0.975 0.993 0.979 0.500 0.933 0.975 0.894 0.950
F1-score 0.957 0.973 0.994 0.912 0.571 0.897 0.987 0.936 0.955

FIGURE 6. Classification accuracy according to the training itera-

tions for the proposed framework with four representative

models.

FIGURE 7. Confusion matrix for malware classification results in

9:1 train-test ratio.

VOLUME 11, NO. 1, JAN.-MAR. 2023 89

Lee et al.: PlausMal-GAN: Plausible Malware Training Based on Generative Adversarial Networks for Analogous Zero-Day Malware Detection



where SSIMðx; yÞ > k, � is 0.3, 0.2 in combined ratio 7:3
and 8:2, respectively. Figure 8 shows examples of deformed
plausible zero-day malware.
The results of the analogous zero-day malware attack

experiment in Table 5 divided the malware images into an
experiment with an 8:2 combined ratio and a 7:3 combined
ratio. We used 10-fold cross-validation (i.e., the train-test
ratios: 9:1). In 8:2 combined ratio experiments, the proposed
frameworks’ models were more accurate than other previous
recent methods [13], and we obtained stable accuracy perfor-
mance in our frameworks with tested GAN models in all
SSIM conditions. Moreover, in the 7:3 combined ratio

experiments, we also obtained reliable high averaged perfor-
mance 98.62%, 98.37%, 98.51%, and 99.49% for the pro-
posed framework methods with DCGAN, LSGAN, WGAN-
GP, and E-GAN model, respectively. In particular, the
decreasing SSIM values or combined high noise ratio could
be an analogous zero-day attack compared to existing mal-
ware, but the proposed framework showed stable performan-
ces in any SSIM values or combined ratios. As a result, the
proposed framework obtained high and stable performance
even the large variations of existing malware (e.g., combined
ratio 7:3 or SSIM value 0.6) in a analogous zero-day mal-
ware attack. Moreover, we were conducted in few training
data condition by the changing train-test ratios experiment
(9:1!5:5) for a thorough performance verification

FIGURE 8. Examples of plausible zero-day malware with SSIM values of (a) 0.60 and (b) 0.68.

TABLE 5. Comparison of Analogous Zero-Day Malware Attack

Performances in Two Difference Combined Rates (CR) for the

Proposed Framework and Previous Methods (%).

Model n SSIM 0.60 0.62 0.64 0.66 0.68 CR

Random Forest 91.28 95.19 92.88 95.58 91.40

8:2

Decision Tree 95.64 96.46 96.71 96.41 96.18
Nearest Neighbors 97.71 97.72 98.36 98.34 98.09
Naive Bayes 90.60 90.89 91.51 91.16 90.45
MLP 96.78 96.46 97.26 97.23 96.82
CNN 98.16 98.23 98.63 98.61 98.41
GAN 96.32 96.96 96.99 96.95 96.50
tGAN 97.24 96.96 97.81 97.78 97.45
tDCGAN 98.39 98.73 98.63 98.61 98.41
Proposed framework
(with DCGAN) 99.59 99.66 99.60 98.58 99.54
(with LSGAN) 99.43 99.66 99.64 98.41 99.54
(with WGAN-GP) 99.59 99.66 99.60 98.58 98.63
(with E-GAN) 99.94 100.0 99.74 99.58 99.84

Proposed framework

(with DCGAN) 99.02 99.25 99.28 96.52 99.05

7:3
(with LSGAN) 97.28 99.10 99.42 97.00 99.05
(with WGAN-GP) 99.02 99.70 99.38 96.52 97.94
(with E-GAN) 99.86 100.0 99.51 98.42 99.68

FIGURE 9. Confusion matrix for zero-day malware classification

results in 5:5 train-test ratio with 8:2 combined ratio and 0.64

SSIM.

90 VOLUME 11, NO. 1, JAN.-MAR. 2023

Lee et al.: PlausMal-GAN: Plausible Malware Training Based on Generative Adversarial Networks for Analogous Zero-Day Malware Detection



evaluation with 2-fold cross-validation (10-fold ! 2-fold
cross-validation). This experiment was able to evaluate more
various zero-day malware data by increasing the number of
existing test data (the average number of zero-day malware
data: 506 (122�1,122) ! 14,850 (4,262�33,710)). As
shown in Table 6 and Figure 9, we obtained stable test per-
formance even though not only the relatively few training
data (reduced to half) but also increased analogous zero-day
malware test data in the proposed framework (> 99%).

2) ZERO-DAY MALWARE EXPERIMENT II USING

MALWARE DATAWITH SIMILAR FAMILY NAMES

We conducted a zero-day malware attack experiment II with
different class malware data sharing the family name with
similar properties from Malimg dataset [10]. We discovered
data from the Malimg dataset that are very suitable for use in
zero-day malware experiments (Table 1 and Figure 11). We
trained and tested four classes using two different family
name data with similar properties (Four types (5,543);
Worm: Allaple.A (2,949) and Allaple.L (1,591), PWS:
C2Lop.gen!G (200) and C2Lop.P (146), Trojan: Lolyda.
AA1 (213) and Lolyda.AA2(184), TDownloader: Swizzor.
gen!I (132) and Swizzor.gen!E (128)). For richer interpreta-
tion and analysis, we designed the zero-day experiment into
two sessions and conducted training and testing. For session
A, the training dataset (3,494) consists of Allaple.A, C2Lop.
gen!G, Lolyda.AA1, Swizzor.gen!I, and the test dataset
(2,049) consists of Allaple.L, C2Lop.P, Lolyda.AA2, Swiz-
zor.gen!E. Inversely, session B consists of a training dataset
(2,049) and a test dataset (3,494). Session B has a challeng-
ing problem of learning with a small amount of training data.
This is a big issue not only in the field of machine learning
but also in developing malware detection, especially zero-
day malware detection technology. Even if it is derived from
the same malware family, it is zero-day malware that is not
previously learned, and it can cause a big performance degra-
dation problem in the initial period as there is a very limited
data to learn. To verify that the proposed framework can han-
dle zero-day malware problems and a few data issues, we
designed a second zero-day experiment using a similar mal-
ware family from the Malimg dataset. The experiment con-
sists of the training sessions that were not only composed of
session A and B, but also we evaluated the proposed frame-
work with only phase 1 and with phases 1&2. The proposed
framework deal with analogous new data by composing
phase 1 to train the generator and discriminator and phase 2

TABLE 6. Results of Performances for Zero-Day Malware Attack

Experiment in the Few Training Data Conditions (%).

Model n SSIM 0.60 0.62 0.64 0.66 0.68 CR

Proposed framework

(with DCGAN) 97.58 98.74 98.83 97.76 97.73

8:2
(with LSGAN) 98.79 99.17 99.29 98.79 98.74
(with WGAN-GP) 97.92 98.73 98.96 98.43 98.23
(with E-GAN) 99.11 99.42 99.51 99.06 99.25

Proposed framework

(with DCGAN) 97.99 98.82 98.96 98.00 98.09
7:3(with LSGAN) 98.98 99.18 99.64 99.06 98.78

(with WGAN-GP) 98.10 98.64 99.04 98.33 98.30
(with E-GAN) 99.40 99.67 99.70 99.31 99.13

TABLE 7. Comparison of Zero-Day Malware Classification Accu-

racies for Second Zero-Day Experiment (Malimg Dataset) in the

Proposed Framework With Only Phase 1 and Whole Phases.

Proposed
framework

Train
session

DCGANLSGAN WGAN-
GP

E-
GAN

with only A 87.70 82.67 85.06 90.53
phase 1 B 39.15 39.78 39.32 39.78
with phase A 100 98.19 99.95 99.21
1&2 B 98.42 97.82 96.88 98.74

FIGURE 10. Confusion matrix for zero-day malware classification results (session B) in the proposed framework (E-GAN) with (a) only

phase 1 and (b) whole phases (1&2) used similar malware family from the Malimg dataset.

VOLUME 11, NO. 1, JAN.-MAR. 2023 91

Lee et al.: PlausMal-GAN: Plausible Malware Training Based on Generative Adversarial Networks for Analogous Zero-Day Malware Detection



to train the discriminator on the analogous zero-day malware
data. In Table 7 and Figure 10, we showed that the models
trained up to phase 2 performed better than only phase 1
learned in all sessions (A and B). In particular, very interest-
ing results were obtained in session B, where training was
performed with a small amount of training data. In session B,
the result of learning only phase 1 of the proposed framework
was disastrous in all tested GAN models. This experiment
demonstrates that existing GAN studies (i.e., phase 1 in the
proposed framework) may not respond properly to new data.
On the other hand, the final model trained up to phase 2 of
the proposed framework showed very stable and high aver-
aged accuracy (> 98.65%) (Table 7 and Figure 10). Conse-
quently, the proposed framework can learn very effectively
when there is little data, showing excellent performance in
the zero-day malware detection problem.
In practice, it is known that zero-day malware is often

derived from variations of existing malware [8], [13]. To
explore the limits in the performance of proposed frameworks,
we performed on the restricted dataset for evaluation even
using two different datasets [9], [10]. The first zero-day exper-
iment designed assumes a plausible zero-day malware attack
by transforming existing malware instead of the actual zero-
day malware attack data. Additionally, we designed other
zero-day experiments using a similar malware family from
different malware types. Although we have obtained out-
standing results in various zero-day experiments, we might
have obtained more meaningful interpretation and discussion
if we measured and utilized a richer malware database.
While, the GAN based image-processing approach method

has a one-way limitation about malware code to the image in
the malware detection field [8], [13], [29]. However, conver-
sion to the malware code is not required to achieve the goals
and objectives of this study. In this paper, the proposed
framework is to detect a myriad of similar malware that can
be made with slight changes. Even if the proposed frame-
work cannot reproduce the malware code, it is a model that
can detect and classify the analogous malware with high sim-
ilarity to the learned sample malware data. In addition, if a
new type of zero-day malware that is not used for learning
appears, the proposed method also has the advantage of
being able to quickly learn about the new type of malware

and apply it. Therefore, in terms of practicality and conve-
nience, it is a very helpful framework when developed zero-
day malware detection software.
Meanwhile, as it is known from the adversarial attack, the

performance of many machine learning based systems is
greatly reduced and neutralized by small distortion (e.g.,
combining noise, etc.) [50], [51]. This is no different in this
field, and some hackers will be taking this vulnerability.
Therefore, it is necessary to build a robust and stability secu-
rity system from these easy modifications. The proposed
framework is intuitively generating and learning a plausible
new malware from existing malware, and it can be a comple-
mentary measure to deal with these challenge problems.

V. CONCLUSION

In the present study, the proposed framework based on plausible
malware training and augmentation using a generative adversar-
ial network was to solve the problems caused by malware and
analogous zero-day malware. In particular, because zero-day
malware is often created by the deformation of existing mal-
ware, the proposed framework with representative GANmodels
augmented even for the high-quality and high-diversity evolved
malware images. For detection and classification, the discrimi-
nator was trained using malware images generated by the gener-
ator and robust to zero-day malware. Moreover, the proposed
framework achieved high and stable averaged accuracy in the
analogous zero-day malware attack experiment. We believe that
the proposed framework based plausible zero-day malware
detection approach has important advantages for antivirus sys-
tems in the computer security because it does not require ineffi-
cient malware signatures analysis. In this study, the malware
code has been converted to malware images with fixed sizes
through crop and pad operations for efficient learning. In fact,
the processes could reduce the signatures of malware. In future
studies, wewill expand the malware types with variousmalware
datasets (including zero-day malware) and solve the problem of
various malware lengths. Moreover, further research should be
conducted to develop an optimized GAN model performing in
our proposed framework for extensive zero-day malware detec-
tion. In future studies it will be interesting to use explainable AI
techniques (e.g., [52]) to gain a further understanding of zero-
day malware features, thus allowing the zero-day malware
detection AI and its creators to learn better from their mistakes.
Moreover, cases of extreme changes, such as new type of zero-
day malware, deserve further investigation to extend the possi-
ble application spectrum.

ACKNOWLEDGMENTS

Dong-Ok Won and Yong-Nam Jang authors contributed
equally to this work.

REFERENCES

[1] A.Mosenia and N. K. Jha, “A comprehensive study of security of Internet-of-
Things,” IEEE Trans. Emerg. Topics Comput., vol. 5, no. 4, pp. 586–602,
Oct.–Dec. 2016.

FIGURE 11. Examples of eight malware images from Malimg data-

set for second zero-day experiment [10].

92 VOLUME 11, NO. 1, JAN.-MAR. 2023

Lee et al.: PlausMal-GAN: Plausible Malware Training Based on Generative Adversarial Networks for Analogous Zero-Day Malware Detection



[2] A. Li, S. Xue, X.-Y. Li, L. Zhang, and J. Qian, “AppDNA: Profiling app
behavior via deep-learning on function call graphs,” IEEE Trans. Emerg.
Topics Comput., vol. 10, no. 1, pp. 414–427, Jan.–Mar. 2022.

[3] S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, and
R. Khayami, “Know abnormal, find evil: Frequent pattern mining for ran-
somware threat hunting and intelligence,” IEEE Trans. Emerg. Topics
Comput., vol. 8, no. 2, pp. 341–351, Apr.–Jun. 2020.

[4] T. Saha, N. Aaraj, N. Ajjarapu, and N. K. Jha, “Sharks: Smart hacking
approaches for risk scanning in Internet-of-Things and cyber-physical sys-
tems based on machine learning,” IEEE Trans. Emerg. Topics Comput.,
to be published, doi: 10.1109/TETC.2021.3050733.

[5] W. Zhang, Y. Wen, and X. Zhang, “Towards virus scanning as a service in
mobile cloud computing: Energy-efficient dispatching policy under N-Ver-
sion protection,” IEEE Trans. Emerg. Topics Comput., vol. 6, no. 1,
pp. 122–134, Jan.–Mar. 2018.

[6] S. D. SL and C. Jaidhar, “Windows malware detector using convolutional
neural network based on visualization images,” IEEE Trans. Emerg. Topics
Comput., vol. 9, no. 2, pp. 1057–1069, Apr.–Jun. 2021.

[7] Kaspersky Security Bulletin 2018, Statistics, 2018. [Online]. Avail-
able: https://securelist.com/kaspersky-security-bulletin-2018-statistics/
89145

[8] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: Scalable
and accurate zero-day android malware detection,” in Proc. 10th Int. Conf.
Mobile Syst., Appl., Serv., 2012, pp. 281–294.

[9] R. Ronen, M. Radu, C. Feuerstein, E. Yom-Tov, and M. Ahmadi, “Micro-
soft malware classification challenge,” 2018, arXiv:1802.10135.

[10] L. Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath, “Malware images:
Visualization and automatic classification,” in Proc. 8th Int. Symp. Visual.
Cyber Secur., 2011, Art. no. 4.

[11] J. Yan, Y. Qi, and Q. Rao, “Detecting malware with an ensemble method
based on deep neural network,” Security and Communication Networks,
vol. 2018, 2018, Art. no. 7247095.

[12] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-G. Wang, and J. Chen, “Detection of
malicious code variants based on deep learning,” IEEE Trans. Ind. Infor-
mat., vol. 14, no. 7, pp. 3187–3196, Jul. 2018.

[13] J.-Y. Kim, S.-J. Bu, and S.-B. Cho, “Zero-day malware detection using
transferred generative adversarial networks based on deep autoencoders,”
Inf. Sci., vol. 460, pp. 83–102, 2018.

[14] S. Venkatraman and M. Alazab, “Use of Data Visualisation for Zero-Day
Malware Detection,” Secur. Commun. Netw., vol. 2018, 2018, Art. no.
1728303.

[15] F. Xiao, Z. Lin, Y. Sun, and Y. Ma, “Malware detection based on deep
learning of behavior graphs,” Math. Problems Eng., vol. 2019, 2019,
Art. no. 8195395.

[16] J. Zhu, J. Jang-Jaccard, and P. A. Watters, “Multi-loss siamese neural net-
work with batch normalization layer for malware detection,” IEEE Access,
vol. 8, pp. 171542–171550, 2020.

[17] S. Sharmeen, S. Huda, J. Abawajy, and M. M. Hassan, “An adaptive
framework against android privilege escalation threats using deep learning
and semi-supervised approaches,” Appl. Soft Comput., vol. 89, 2020,
Art. no. 106089.

[18] K. Berlin, D. Slater, and J. Saxe, “Malicious behavior detection using win-
dows audit logs,” in Proc. 8th ACM Workshop Artif. Intell. Secur., 2015,
pp. 35–44.

[19] B. Ndibanje, K. H. Kim, Y. J. Kang, H. H. Kim, T. Y. Kim, and H. J. Lee,
“Cross-method-Based analysis and classification of malicious behavior by
API calls extraction,” Appl. Sci., vol. 9, no. 2, 2019, Art. no. 239.

[20] C. Annachhatre, T. H. Austin, and M. Stamp, “Hidden markov models for
malware classification,” J. Comput. Virol. Hacking Techn., vol. 11, no. 2,
pp. 59–73, 2015.

[21] S.-W. Lee and A. Verri, Proc. Pattern Recognit. Support Vector Mach.:
Proc. 1st Int. Workshop, 2003.

[22] P. Wang and Y.-S. Wang, “Malware behavioural detection and vaccine
development by using a support vector model classifier,” J. Comput. Syst.
Sci., vol. 81, no. 6, pp. 1012–1026, 2015.

[23] F. C. C. Garcia, I. Muga, and P. Felix, “Random forest for malware classi-
fication,” 2016, arXiv:1609.07770.

[24] K. Singh, S. C. Guntuku, A. Thakur, and C. Hota, “Big Data analytics
framework for peer-to-peer botnet detection using random forests,” Inf.
Sci., vol. 278, pp. 488–497, 2014.

[25] Z. Chen et al., “Machine learning based mobile malware detection using
highly imbalanced network traffic,” Inf. Sci., vol. 433, pp. 346–364,
2018.

[26] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware classification with recurrent networks,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process., 2015, pp. 1916–1920.

[27] Y. Ye, L. Chen, S. Hou, W. Hardy, and X. Li, “DeepAM: A heterogeneous
deep learning framework for intelligent malware detection,” Knowl. Inf.
Syst., vol. 54, no. 2, pp. 265–285, 2018.

[28] E. K. Kabanga and C. H. Kim, “Malware images classification using
convolutional neural network,” J. Comput. Commun., vol. 6, no. 1, 2017,
Art. no. 153.

[29] V. S. Bhaskara and D. Bhattacharyya, “Emulating malware authors for
proactive protection using GANs over a distributed image visualization of
dynamic file behavior,” 2018, arXiv:1807.07525.

[30] W. Hu and Y. Tan, “Generating adversarial malware examples for black-
box attacks based on GAN,” 2017, arXiv:1702.05983.

[31] M. Kawai, K. Ota, and M. Dong, “Improved MalGAN: Avoiding malware
detector by leaning cleanware features,” in Proc. Int. Conf. Artif. Intell.
Inf. Commun., 2019, pp. 040–045.

[32] S.-W. Lee and H.-H. Song, “A new recurrent neural-network architecture
for visual pattern recognition,” IEEE Trans. Neural Netw., vol. 8, no. 2,
pp. 331–340, Mar. 1997.

[33] Q. Wang et al., “Adversary resistant deep neural networks with an applica-
tion to malware detection,” in Proc. 23rd ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2017, pp. 1145–1153.

[34] Z.-U. Rehman et al., “Machine learning-assisted signature and heuristic-
based detection of malwares in android devices,” Comput. Elect. Eng.,
vol. 69, pp. 828–841, 2018.

[35] D. Gupta and R. Rani, “Big Data framework for zero-day malware detec-
tion,” Cybern. Syst., vol. 49, no. 2, pp. 103–121, 2018.

[36] S. Huda et al., “Defending unknown attacks on cyber-physical systems
by semi-supervised approach and available unlabeled data,” Inf. Sci.,
vol. 379, pp. 211–228, 2017.

[37] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmenta-
tion for deep learning,” J. Big Data, vol. 6, no. 1, 2019, Art. no. 60.

[38] H.-G. Jung and S.-W. Lee, “Few-shot learningwith geometric constraints,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 11, pp. 4660–4672, Nov. 2020.

[39] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[40] C.Wang, C. Xu, X. Yao, and D. Tao, “Evolutionary generative adversarial net-
works,” IEEE Trans. Evol. Comput., vol. 23, no. 6, pp. 921–934, Dec. 2019.

[41] R. Burks, K. A. Islam, Y. Lu, and J. Li, “Data augmentation with genera-
tive models for improved malware detection: A comparative study,” in
Proc. IEEE 10th Annu. Ubiquitous Comput., Electron. Mobile Commun.
Conf., 2019, pp. 0660–0665.

[42] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” 2015,
arXiv:1511.06434.

[43] X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, “Least
squares generative adversarial networks,” in Proc. IEEE Int. Conf. Com-
put. Vis., 2017, pp. 2813–2821.

[44] M. Arjovsky, S. Chintala, and L. Bottou, “GAN Wasserstein,” 2017,
arXiv:1701.07875.

[45] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary
classifier GANs,” inProc. Int. Conf. Mach. Learn., 2017, pp. 2642–2651.

[46] J. L. McClelland et al., “Parallel distributed processing,” Explorations
Microstructure Cogn., vol. 2, pp. 216–271, 1986.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[48] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“GANs trained by a two time-scale update rule converge to a local nash
equilibrium,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6626–6637.

[49] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[50] A.Madry, A.Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep
learningmodels resistant to adversarial attacks,” 2017, arXiv:1706.06083.

[51] N. Carlini and D. Wagner, “Adversarial examples are not easily detected:
Bypassing ten detection methods,” in Proc. 10th ACM Workshop Artif.
Intell. Secur., 2017, pp. 3–14.

[52] S. Lapuschkin, S. W€aldchen, A. Binder, G. Montavon, W. Samek, and
K.-R. M€uller, “Unmasking clever hans predictors and assessing what
machines really learn,” Nature Commun., vol. 10, no. 1, 2019, Art. no.
1096.

VOLUME 11, NO. 1, JAN.-MAR. 2023 93

Lee et al.: PlausMal-GAN: Plausible Malware Training Based on Generative Adversarial Networks for Analogous Zero-Day Malware Detection

http://dx.doi.org/10.1109/TETC.2021.3050733
https://securelist.com/kaspersky-security-bulletin-2018-statistics/89145
https://securelist.com/kaspersky-security-bulletin-2018-statistics/89145


Dong-Ok Won (Member, IEEE) received the BS
degree in computer engineering from the Tech Uni-
versity of Korea, Republic of Korea, in 2012, and
the PhD degree from the Department of Brain and
Cognitive Engineering, Korea University, Republic
of Korea, in 2019. He is currently working as an
assistant professor with the Department of Artificial
Intelligence, Hallym University, Republic of Korea.
His research interests include pattern recognition,
machine learning, artificial intelligence, and com-
puter security.

Yong-Nam Jang received MS degree from the
Department of Brain and Cognitive Engineering,
Korea University, Republic of Korea, in 2020.
His research interests include pattern recognition,
machine learning, and computer security.

Seong-Whan Lee (Fellow, IEEE) received the BS
degree in computer science and statistics from Seoul
National University, Seoul, Republic of Korea, in
1984, and the MS and PhD degrees in computer sci-
ence from the Korea Advanced Institute of Science
and Technology, Republic of Korea, in 1986 and
1989, respectively. He is currently the head of the
Department of Artificial Intelligence, Korea Univer-
sity, Republic of Korea. His current research interests
include artificial intelligence, pattern recognition, and
brain engineering. He is a fellow of the International

Association of Pattern Recognition (IAPR) and the Korea Academy of Science
and Technology.

94 VOLUME 11, NO. 1, JAN.-MAR. 2023

Lee et al.: PlausMal-GAN: Plausible Malware Training Based on Generative Adversarial Networks for Analogous Zero-Day Malware Detection



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


