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ABSTRACT A number of machine learning (ML) algorithm based small signal modeling of Gallium Nitride
(GaN) High Electron Mobility Transistors (HEMTs) have been reported in literature. However, these tech-
niques rarely provide any inkling about their suitability in modeling GaN HEMTs under varied operating
conditions. In this context, this paper thoroughly investigates various ML based techniques and identifies
their suitability for specific application scenarios. At first, an array of commonly employed modeling tech-
niques based around Artificial Neural Network, RANdom SAmple Consensus, Support Vector Regression,
Gaussian Process Regression, Decision Tree, and Genetic algorithm assisted Artificial Neural Network
are used for development of modeling framework to exploit the bias, frequency and geometry dependence
on S-parameter based outputs. Subsequently, the ensemble techniques namely Bootstrap aggregating,
Random Forests, Extremely Randomized Trees, AdaBoost, Gradient Tree Boosting, Histogram-based
Gradient Boosting, and Extreme Gradient Boosting are also explored to understand the capability of these
algorithms in the development of GaN HEMT small signal models. Thereafter, an exhaustive analysis of
bias and variance is carried out to figure out the most appropriate algorithms for specific applications.
The discrepancies during model development are removed by tuning the hyperparameters of the respective
models using Random search optimization with 5-fold cross validation technique. Post tuning, the models
are evaluated in terms of generalization capability, Advanced Design System compatibility, computational
efficiency, training and simulation time, models’ capacity and parameters’tuning time.

INDEX TERMS ANN, DT, ensemble methods, GA-ANN, GaN HEMT, GPR, RSO, small-signal modelling
and SVR.

I. INTRODUCTION
Last two decades have seen a rapid emergence of Gallium
Nitride (GaN) HEMTs as the main device employed in the
design of advanced radio frequency (RF) power amplifiers
(PAs) for varied applications such as 5G, military, and space
etc. [1], [2], [3], [4], [5], [6], [7], [8]. It is imperative to note
that this wide acceptance of GaN HEMTs has happened due

to the development of their innovative large-signal models
(LSMs) which are compatible with computer aided design
(CAD) tools. Interestingly, the small-signal models (SSMs)
are precursor for the eventual development of effective of
LSMs [9], [10], [11], [12], [13]. The Equivalent Circuit
Models (ECMs) are the most sought-after methods for SSMs
of GaN devices [14], [15], [16], [17], [18]. These are widely
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adopted and used in both academic research and industry
applications [8], [19]. ECMs often exploit direct extraction
techniques, which famously make use of “cold” approach and
hybrid approaches, which allude to amalgamation of direct
techniques with optimization algorithms to extract the model
parameters [17], [18], [19], [20], [21]. The effectiveness of
these methods rely on the quality of the measurements,
extraction procedures, optimization techniques and well-
thought assumptions [21], [22]. ECMs, which are extracted
from experimental measurements of the device, provide tan-
gible understanding of the physics of the device consequently
convey a better feedback to the circuit designers and simul-
taneously accurately simulate the S-parameters. However,
because of the dynamic and strong non-linear behaviors
possessed by GaN HEMTs, the parameter extraction in
such methods turns out to be quite challenging, impre-
cise and computationally inefficient at higher frequencies.
furthermore, selection of suitable topology of ECMs, phys-
ically inconsistent values for complex topologies are major
concerns for the designers [9], [10], [23].
Therefore, the alternative machine learning (ML) based

techniques to develop SSMs are getting traction [24], [25],
[26], [27], [28], [30], [31], [32], [34], [35]. These techniques
have shown promise as they can emulate complex behav-
iors, manifest better prediction capability and generally are
computationally efficient, nevertheless, requisite large sam-
ple size of the measurements [23], [24]. But there still exist
many unresolved mysteries about these approaches because
a number of aspects have not been explored as yet. In gen-
eral, there is no generalized ML based modeling technique
which can be called optimal for wide variety of applica-
tions. In fact, the efficacy of ML algorithms depends on
the specific problem, quality of the data, feature extrac-
tion, nature of the data, distributions of the outputs and
inputs, number of samples, division of the data, prepro-
cessing techniques, type of the ML algorithm, parameter
tuning, algorithms to tune the parameters, error functions
and selected performance metrics. The selection of ML
algorithms for model development is also contingent on
the final design application. For instance, some applica-
tion may require trade-off between computational efficiency
and accuracy and hence appropriate ML algorithms need
to be chosen accordingly. Furthermore, if the intended
application requires unique model then choice of ML algo-
rithms which produce unique solutions take precedence. A
quick literature survey reveals that, within the broad ML
based techniques, the Artificial Neural Network (ANN) [24],
[25], [26], Support Vector Regression (SVR) [27], [28],
Gaussian Process Regression (GPR) [30], [31], Decision Tree
(DT) [32], and global optimization aproach [34], [35], [36]
are frequently used for the small signal modelling of GaN
HEMTs. However, each of these modelling techniques are
often apt for some specific set of device operating condi-
tions and behave poorly for the other operating conditions.
So far there is almost no information about the generalization
capability of ML based modeling of GaN HEMTs and this

often leads to a scenario where designers and researchers are
often unaware about the capabilities of ML based modeling
techniques.
Therefore, it is envisaged that a thorough compara-

tive analysis of the commonly reported ML based GaN
HEMT small signal modeling techniques will bring a dual
pronged benefits. It will become a one-stop information
resource in the domain of ML based small signal modeling
and at the same time it will also pave the way for
further advancement in the modeling state-of-the-art. To
facilitate these assertions, this paper thoroughly investi-
gates and revisits ANN, Genetic algorithm (GA) initialized
ANN, Random Search Optimization (RSO)-tuned RANdom
SAmple Consensus (RANSAC), RSO-tuned SVR, RSO-
tuned GPR and RSO-tuned DT for the behavioral modelling
of GaN HEMTs devices. Furthermore, this paper also
explores an array of ensemble techniques namely the
Bootstrap Aggregating model (BAM), Random Forest (RFs),
Extremely Randomized Trees (ERTs), Boosting methods
such as AdaBoost with DT, AdaBoost with RFs, Gradient
Tree Boosting (GB), Histogram based Gradient Boosting
(HGB) and Extreme Gradient Boosting models (XGBoost) to
identify the most effective and appropriate ML algorithm to
model specified GaN HEMTs devices. The models obtained
from all these ML techniques are then examined for various
metrics such as computational efficiency, training and sim-
ulation time, models’ capacity and parameters’ tuning time,
and their generalization capability in terms of Mean Squared
Error (MSE), Mean Absolute Error (MAE) and coefficient
of determination (CoD) also known as R2 on the unseen
testing set.
Finally, this paper utilizes measurement data of two dis-

tinct GaN HEMTs devices to train and test the models. That
enables us to understand the scalability of the respective
ML based models. In summary, the main contributions of
this paper are: (i) a thorough and systematic approach for
the development of ANN, GA-ANN, SVR, GPR, RANSAC,
DT and an array of ensemble techniques based small-signal
modelling of GaN HEMTs, (ii) demonstration of hyper-
parameters tuning using RSO with 5-fold CV technique,
and (iii) a detailed inspection of the models in terms of
computational efficiency, generalization capability, scalabil-
ity, training and simulation time, model’s capacity, tuning
time and dataset compatibility. Sections I and II include the
description of the data and methodology used in this paper.
Section III presents the theoretical and practical paradigm
for the all the explored modeling techniques. Moving for-
ward, model validation, and a discussion on the experimental
results are given in Sections IV and V. Section VI concludes
the paper.

II. DESCRIPTION OF THE DATASET AND METHODOLOGY
A. THE DATASET
The measurement data used in this paper has been provided
by the defense research development organization (DRDO).
Not much information about the devices, grown on silicon
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FIGURE 1. Layout of (left) 2x200 µm (right) 4x100 µm GaN-on-SiC HEMT
devices.

carbide (SiC), can be shared due to sensitivities involved.
However, it is imperative to mention that the measurement
data are from GaN HEMT devices of geometries 2x200 μm
and 4x100 μm as depicted in Fig. 1. Each device is biased
following the standard biasing technique [1], and then their
respective responses for varied bias conditions are recorded
as S-parameters, using VNA, in terms of magnitude and
phase. For both the devices, the gate to source voltage
(VGS) is varied from −7 V to 0 V with a step size of
1 V. Furthermore, the drain to source voltage (VDS) is swept
from 0 V to 10 V with a step size of 2 V. The device is
characterized for the frequency (f ) range of 1 to 18 GHz
with a step size of 0.09 GHz. The complete dataset utilized
in this paper is constructed by combining the samples for
each device. The combined dataset consists of 17280 sam-
ples and embodies five predictor variables namely VGS, VDS,
f , number of fingers (N = 2, 4) and unity gain width
(wg = 200 μm,100 μm). In addition, there are 8 predicted
variables namely magnitude (mag.) S11, phase S11, mag. S21,
phase S21, mag. S12, phase S12, mag. S22, and phase S22 as
shown in Fig. 2.

B. DATA PROCESSING METHODOLOGY
It is pertinent to understand the distribution of the dataset.
Figs. 3 and 4 present the distribution of the phase and mag-
nitude of each S-parameters for the full dataset. It can be
observed that the ranges of most parameters are different.
Furthermore, the output values at some samples are discon-
tinuous and doesn’t follow the overall distribution of the
respective S-parameters. In addition, the effects of the out-
liers and uneven peak values are also evident and all these
can be attributed to some anomaly in measurements. The
obvious problem of having different ranges for the predictors
and predicted variables is the orientation of the contour of
the error function that may become skewed or distorted ellip-
tical shape. This leads to erroneous results as the algorithm
finds it hard to determine the global minima and instead con-
verge at local minima in worst cases. Moreover, the outliers

FIGURE 2. A generic diagram of proposed ML-based models.

FIGURE 3. Distribution of the phase of the S-parameters.

FIGURE 4. Distribution of the magnitude of the S-parameters.

directly affect the placement of the decision boundary and
this in turn give rise to a decision boundary that results in
higher error on the testing set. Different algorithms behave
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FIGURE 5. Preprocessing steps taken before training the models.

differently on dataset containing outliers. For instance, the
mean absolute error function is less affected due to out-
liers than the mean squared error function. That is why it
is essential to remove the outliers and smoothen out the
peak values as much as possible. However, some outliers
can not be removed because that may result in the loss of
information. Another aspect is the division of the dataset. It
is a standard practice to divide the data into training, val-
idation, and testing sets. The training set is used to train
the model, whereas the validation set helps in defining the
hyperparameters. Finally, the independent testing set is used
to compute the accuracy of the model.
The flow chart in Fig. 5 outlines the basic steps employed

in the preprocessing stage. The magnitude and phase of the
S-parameters at the preprocessing stage is cleaned through
outlier detection and smoothing techniques. MATLAB pro-
gramming language is used to identify the outliers and
uneven peaks. We followed two-step process to identify out-
liers: firstly, we exploited isoutlier command in MATLAB
with mean as a criteria; secondly, we plotted the measure-
ments at all biasing conditions. Thereafter, we pinpointed
the locations of the most outliers and replaced them with
the mean of nearest values to avoid any loss of information.
Similarly, the peaks are identified and smoothened. However,
some of the outliers could not be removed as it was closely
related with the overall behavior of the devices. Then all the
predictor and predicted variables are arranged into numerical
matrix form and scaled to almost similar range by dividing
each variable with its respective absolute maximum value.
Subsequently, the dataset is divided into training, validation
and testing sets. For each VGS value, 5 and 1 bias con-
ditions (VDS) are included in the training and the testing
sets respectively. Furthermore, the bias conditions for train-
ing and testing datasets are chosen randomly to avoid any

specific learning of the algorithm.

MSE = 1

nsamples

nsamples∑

j=1

(
ymeasj − ypredj

)2
(1)

MAE = 1

nsamples

nsamples∑

j=1

|ymeasj − ypredj | (2)

R2 = 1 −
∑nsamples

j=1

(
ymeasj − ypredj

)2

∑nsamples
j=1

(
ymeasj − ȳ

)2
(3)

where ȳ = 1
nsamples

∑nsamples
j=1 ymeasj

Finally, the validation set is prepared using 5-fold cross
validation (CV) scheme from the training set. For the sake of
clarity, it is to be noted that only one fold eventually works as
a validation fold out of the 5-folds of the training set. To tune
the hyperparameters, the 5-fold CV with RSO [37] is utilized.
The model development and investigations make use of these
optimal hyperparameters. Thereafter, these optimal models
are trained with complete training set and the predictions are
recorded on both the training and unseen testing sets. The
computation metrics MSE, MAE, and R2 given by 1, 2 and 3
respectively are used to assess the generalization capability
of the model, i.e., the accuracy of the trained ML models
on independent unseen testing set.

III. MODEL DEVELOPMENT FRAMEWORK
A. ANN AND GA INITIALIZED MODELS
The detailed theoretical framework of ANN algorithm is
well-known and extensively available in [11], [34], [35]. An
essential aspect in the use of ANN for the model devel-
opment is the selection of topology (i.e., the number of
predictor variables, the number of unit neurons, the number
of hidden layers of the model, activation functions, number of
output layers, etc.) for a given dataset. The solution adopted
in this paper makes use of trial-and-error approach. Initially
a simple topology (a topology of one hidden layer and ten
unit neurons in it) is selected. Then, 5-fold CV approach is
utilized to compute the MSE, MAE and R2 for the training,
validation and testing sets. Thereafter, the model’s capacity
is gradually enlarged until the model is overfitted as at this
point it renders the extreme topology. After getting to the
overfitted topology, the model’s capacity is slowly reduced
until it provides a better fitting. Once the optimal topology is
identified, this becomes the choice for getting the predictions
on the training and testing data sets. This process is repeated
for each S-parameter.
One hidden layer with sufficient neurons can approximate

any mathematical relationship [39]. However, the increase
in the number of hidden layers with less neurons in each
layer can yield better performance [39]. This is due to the
characteristic that the deeper the layer the more information
can be fetched by unit neurons in each layer. Interestingly,
going more deeper reduces the dependency of the model’s
performance on feature extraction. With this perspective,

1018 VOLUME 10, 2022



HUSAIN et al.: COMPREHENSIVE INVESTIGATION AND COMPARATIVE ANALYSIS OF ML

deeper layers are adopted in this paper. Here, the model
utilizes five inputs VGS, VDS, f , N, and wg while the outputs
are S-parameters (see Figure 2). Eight distinct models are
developed in total as follows:

• Model’s topology for mag. [S11]: 5-10-10-10-1 (Number
of input nodes- neurons in the first hidden layer-neurons
in the second hidden layer- neurons in the third hidden
layer- number of output nodes)

• Model’s topology for phase [S11]: 5-10-10-10-1
• Model’s topology for mag. [S21]: 5-12-12-12-1
• Model’s topology for phase [S21]: 5-12-12-12-1
• Model’s topology for mag. [S12]: 5-12-12-12-1
• Model’s topology for phase [S12]: 5-12-12-12-1
• Model’s topology for mag. [S22]: 5-10-10-10-1
• Model’s topology for phase [S22]: 5-10-10-10-1
The analytical learning equations for ANN models are

given in (4)-(7). The first layer serves as input layer, the
second, third, and fourth layers are hidden layers, and the
fifth layer acts as the output. The topology consists k, m and
n neurons in first, second and third hidden layers respec-
tively. Here, h(2)

i , h(3)
j , h(4)

l and S-parameters [mag./phase]
are the outputs at the second, third, fourth and fifth layers
respectively. The tanh is the tan-sigmoid activation func-
tions. w(1)

i1 , w(1)
i2 , w(1)

i3 , w(1)
i4 and w(1)

i5 are the weights for
connections joining the input nodes to second hidden layer.
Similiarly, w(2)

ji , w(3)
lj and w(4)

l are the weight connections
from the second to third, third to fourth and fourth to fifth
layers respectively. b(2)

i , b(3)
j , b(4)

l and b(5)
y are the biases

given to the respective neurons.

h(2)
i =

k∑

i=1

tanh
(
b(2)
i + w(1)

i1 × VGS + w(1)
i2 × VDS

+ w(1)
i3 × f + w(1)

i4 × N + w(1)
i5 × wg

)
(4)

h(3)
j =

m∑

j=1

tanh

(
b(3)
j +

k∑

i=1

w(2)
ji × h(2)

i

)
(5)

h(4)
l =

n∑

l=1

tanh

⎛

⎝b(4)
l +

m∑

j=1

w(3)
lj × h(3)

j

⎞

⎠ (6)

S-parameters [mag./phase] = b(5)
y +

n∑

l=1

w(4)
l × h(4)

l

(7)

Use of deeper neural layers may give rise to vanishing
gradient problem which is detrimental for the algorithm.
Moreover, the uniqueness of the solutions is one of the
requirements for categorizing the efficiency of the model
during the design of circuits such as power amplifiers [26].
It is observed that the backpropagation (BP) algorithms, ini-
tially, generate their weights and biases randomly. It is quite
possible that due to inherent ANN feature the generated solu-
tions could be driven to the local minimums as the updated
weights depend on the initial weights. Also, depending on
the locations of the initial weights, the algorithm will follow

the nearest steepest descent path to find the convergence.
The reproducibility of the solutions is also a major concern
with the BP-based algorithms. Therefore, we incorporate GA
in this paper to overcome this problem associated with local
minimums. The GA is chosen as it possesses strong explo-
ration capability. Depending on the number of populations
generated initially it can cover a large search area and the
solutions can guarantee the convergence of the model at
global minimums [11]. GA being the evolutionary algorithm,
influenced by the natural selection, commence by generat-
ing an initial population that goes through fitting, selection,
recombination, mutations and reinsertion steps in order to
produce the offspring for the next iteration. More details of
GA algorithms are given in [11], [21], [34], [35], [40]. The
flow chart in Fig. 6 outlines the steps taken to build the GA
initialized ANN model, while the steps to develop the model
are described below.

• The number of individuals directly influence the simu-
lation time and computational efficiency. Therefore, GA
commences by generating the targeted number of indi-
viduals which act like a hyperparameter. In the present
study, initial populations of 100, 500, 1000, 1500 and
3500 individuals are generated and a trial and error
analysis is conducted. The population of 100 individu-
als could not find the good initial weights, a packet of
500 individuals also gave inferior weights than the 1000
individuals based generation. The performance for 1000
and 1500 individuals are comparable whereas 3500 indi-
viduals produced slightly better performance but at the
cost of significantly increased simulation time. As a
trade-off between the performance and simulation time,
the population containing 1000 individuals are selected
for the mag/phase of S11, S22, and population of 1500
individuals for mag/phase of S21, S12. Each individual
contains the total number of weights and the biases are
initiated randomly between -1 and 1. The termination
condition is set by defining the number of iterations,
also a tunable parameter, the GA algorithm will run.
The results are tested with 250, 500, 750, 1000 and
1500 iterations. 1000 iteration is found to be sufficient
and provide a good trade-off between performance and
simulation time.

• The next step involves the computation of the fitness
score. The MSE loss function is exploited for this task.

• The best fitted individuals go through the process of
selection, recombination and mutation stages after the
calculation of the fitness score. In order for them to
produce the offspring using the highly efficient double-
edge crossover technique, a certain percentage of less
fitted variables are excluded. The percentage of indi-
viduals to be excluded is set by setting the generation
gap, a parameter, that requires tuning. The generation
gap are set at 0.95, 0.9, 0.8, 0.7 and 0.5. Here, the best
performance is observed when setting the generation
gap to 0.9, i.e., 10% of the populations are excluded at
each iteration.
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FIGURE 6. The flow chart explaining the GA-ANN model’s training
procedure.

• Finally the termination condition is checked. One of the
conditions of the termination is iteration number, while
the other condition is the relative change in the error.
Once the termination condition is met, the algorithm

generates a set of weights which are used as initial
weights for the ANN.

B. RANDOM SEARCH OPTIMIZATION-TUNED
RANSAC MODEL
This model is selected due to its well-known robust
performance on corrupt data or data with outliers and irreg-
ular distribution [41]. The idea is to separate the outliers
from the complete dataset and then train the model on the
remaining data. The RANSAC makes use of only the subset
of inliers, i.e., the cluster of samples distinct from the out-
liers to fit the model. The fitted regressor is then evaluated
on the training and testing sets. Due to the non-deterministic
nature, its performance is dependent on the number of iter-
ations. As mentioned earlier, the hyperparameters are tuned
with RSO using 5-fold CV technique. Here, the hyperparam-
eters are base estimator, maximum number of iterations and
loss functions. The base estimator employs linear regression
and polynomial regression as its two variants. The maximum
iteration is set to take values from the range of [10, 2000].
Lastly, the tuning is obtained for MSE and MAE loss func-
tions. Once the tuned parameters are acquired, the model is
again trained and tested.

C. RANDOM SEARCH OPTIMIZATION-TUNED SVR MODEL
SVR is a non-parametric kernel-based approach to approx-
imate the regression-based problems. It embodies absolute
error loss function that makes it a right choice for outliers
ingrained dataset. The ultimate objective of SVR algorithm
is to try to find a decision boundary or the regression
line that deviates from the true output for at most ε, for
each training inputs, and maintain the generalization capa-
bility as far as possible. In pursuit of these objectives,
it enacts linear epsilon-insensitive SVM (ε-SVM), other-
wise called L1 loss. The mathematical derivation of SVR
algorithm has been comprehensively discussed in the liter-
ature [11], [27], [29], [35]. If f (x) constitute the decision
boundary or function for a training set of multivariate set
of inputs (xn) of N observations and its corresponding out-
puts (yn), the function f (x) can be represented in terms
of the support vectors [42]. Here, αn and α�

n denote the
weight coefficients of the support vectors, x is the multi-
variate set of inputs, G(.) is the gram matrix, and b is the
bias term.

f (x) =
N∑

i=1

(
αn − α�

n

)
G(xn, x) + b (8)

In order to derive the prediction function, suppose
x is the multivariate set of testing inputs given as
x = [VGS,VDS, f ,N,wg], and ys is the corresponding
S-parameter. Similarly, xn and yn can be defined from
the training set. Using (8), the predictive function f (x)
is given by (9). Here, tn denotes the support vectors,
N the number for support vectors and σ the Gaussian
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parameter.

Mag./Phase
[
Sij
] =

N∑

i=1

(
αn − α�

n

)

exp

((
tn − {[

VGS,VDS, f ,N,wg
]})T(

tn − {[
VGS,VDS, f ,N,wg

]})

2σ 2

)
+ b

(9)

To acquire the best out of the SVR algorithm, the parame-
ters are tuned using RSO with 5-fold CV for 250 iterations.
Before the tuning, first the same preprocessing steps are
given to the dataset, followed by the tuning of Kernel func-
tion, Box constraint (C), ε, and kernel scale. The kernel
functions can be set to Linear, Gaussian, polynomial ker-
nels or a custom kernel. The ranges of C and ε are set to
[1e-3, 1e3] and [1e-5, 1e5] respectively.

D. RANDOM SEARCH OPTIMIZATION-TUNED
GPR MODEL
It is a non-parametric probabilistic approach for regression-
based problems and can be used for device modeling. Unlike
other models considered in this paper, it can directly predict
on the testing set given the training set. The mathemati-
cal and theoretical constructs of GPR algorithm have been
well-established and can be accessed through [11], [30], [43].
However, to explain briefly, how GPR predicts, suppose that
the training set is given as Tr = {xi, yi}, where xi is the
multivariate set of inputs xi = {[ViDS,ViGS, f i,Ni,wig]}; i =
1, 2, 3, . . . ,N, and yi is the corresponding magnitude or
phase S-parameters, i.e., yi = mag./phase[Sij]. Similarly,
assuming that the testing set is given as Ttest = {xtestj , ytestj },
where xtestj = {[VjDS,VjGS, f j,Nj,wjg]}; j = 1, 2, 3, . . . , n sam-
ples drawn from the testing set. The GPR commences by
assuming a Gaussian process apriori by exploiting the mean
m(x) and covariance k(x, x′) as given in 10. In order to
define the function, it computes the covariance matrix values
between each input elements and then samples the func-
tion fsample, given by (11), in terms of normal distribution.
Generally it is a common practice to assume the mean to
be zero. From the standard results, the instances of the
conditional distribution p(fsample|Tr, xtestj ) can be modeled
using (12) and (13). Finally, the predicted S-parameters can
be modeled using (14).

f (x) ∼ GP
(
m(x), k

(
x, x′

))
(10)

fsample ∼ N
(

0, k
(
xtestj , xtestj

))
(11)

m
(
xtestj

)
= k

(
xtestj , xi

)[
k(xi, xi) + σ 2

mI
]−1

yi (12)

kt

(
xtestj ,

(
xtestj

)′) = k

(
xtestj ,

(
xtestj

)′)− k
(
xtestj , xi

)

[
k(xi, xi) + σ 2

mI
]−1

k

(
xi,
(
xtestj

)′)
(13)

mag./phase
[
Stestij

]
∼ N

(
m
(
xtestj

)
, kt

(
xtestj ,

(
xtestj

)′))

(14)

The hyperparameters in GPR are the basis function, kernel
functions, kernel scale, sigma and standardization of the
data and here these are optimized using RSO with 5-fold
CV optimization technique. The termination condition is the
iteration number which is 30 for each S-parameter. The basis
function is determined by the number of samples. The
kernel or covariance functions can be selected from exponen-
tial, squared exponential, matern kernel with parameter 3/2,
matern kernel with parameter 5/2, rational quadratic kernels
and their variants with separate length scale per predictor. It
is pertinent to tune the parameter of the kernel as well. The
range of the tunable parameters has to be chosen wisely.
We started with a larger range—computed the values of the
hyperparameters after running the optimization—examined
the generalization of the tuned model—narrowed the range
and repeated the process until the optimal values for the
parameters is achieved.

E. RANDOM SEARCH OPTIMIZATION-TUNED
DECISION-TREE MODEL
DT is a non-parametric supervised learning-based algo-
rithms, designed to be operated for both regression and
classification. It makes use of simple if-then-else decision
rules to derive the decision boundary. Similar to other ML
algorithms discussed in this paper, its goal is to obtain
an optimal decision boundary for the presented training
set. In its basic configuration, it is analogous to a tree
like structure, incorporating root, branches, internal and leaf
nodes [44]. The algorithm embarks from the root node, and
goes through some intermediate nodes. The number and lay-
ers of intermediate nodes depend on the complexity of the
problem. Finally, it terminates at the leaf nodes that contain
the predicted values [32], [33]. They are easy to be use due
to the simplistic structure. However, development of overly-
complex DT models are difficult as it requires tuning of the
hyperparameters. Here, the search for optimal parameters is
carried out for 500 iterations using RSO with 5-fold CV.
The tuned parameters are the maximum depth of the tree
(max depth) [1 to 1000 with a step size of 1], minimum
samples per leaf (min samples leaf) [1 to 200 with a step
size of 1], minimum number of samples vital to split the
internal node (min samples split) [2 to 200 with a step size
of 1], maximum number of features (max features) [2 to 10
with a step size of 1] and criterion (the function to measure
the quality of the split): [squared error, absolute error].

F. RANDOM SEARCH OPTIMIZATION-TUNED
ENSEMBLE MODELS
It has been identified that the combinations of different ML
approximators may result in the determination of better gen-
eralization over the given problem. Ensemble is an approach
in this direction. The objective is to amalgamate prediction
abilities of some base estimators in pursuit of better gen-
eralization. The ensemble includes two families of methods
namely the averaging methods, where the idea is to build
independent estimators and then averaging their predictions,
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and the boosting methods, where the base algorithms work
sequentially. All the ensemble models developed in this paper
are tuned using RSO with 5-fold CV technique.

F.1. BOOTSTRAP AGGREGATING MODEL (BAM)
It is a meta-estimator that fits the base estimator to ran-
domly selected (sampling with replacement) subsets from
the original dataset and computes the performance on each
subset before clustering them together in order to provide
the final prediction [45]. It is used to remove the variance
of the base estimator and in general this model has proven
to produce better results in overfitting cases. Here the DT
is chosen as the base estimator. The tuning of the numbers
of the base estimators (between 1 to 1000 with a step size
of 10) produced satisfactory results.

F.2. RANDOM FORESTS (RFS) AND EXTREMELY
RANDOMIZED TREES (ERTS) MODELS
These are special cases designed to ameliorate the
performance of DTs. These are averaging algorithms based
on randomized DT. For RFs, two layers of randomness in
inserted to improve the generalization. Initially, each tree in
RFs model is created from the sample drawn with replace-
ment from the training set. Finally, while splitting each node
for a tree, the algorithm tries to find the best split either from
all input vectors or using the parameter maximum number of
features [46]. However, ERTs use an extra layer of random-
ization. The extra layers enable the algorithms to reduce
the variance at the cost of minute rise in bias [47]. The
tunable-parameters for RFs and ERTs are the number of
trees (between 1 to 1000 with a step size of 1), the max-
imum depth of the trees (between 1 to 200 with a step
size of 1), the samples needed to split the internal nodes
(between 1 to 200 with a step size of 1), samples needed to
be at a leaf node and maximum number of features for the
best split (between 1 to 10 with a step of 1).

F.3. ADABOOST, GRADIENT TREE BOOSTING AND
HISTOGRAM BASED GRADIENT BOOSTING (HGB)
MODELS
Boosting models are a possible substitute for the bagging
models. They primarily focus on altering the weak learn-
ers to strong learners by working with each model where
their performance is not good. An AdaBoost regressor works
on the principle of fitting the original regressor and extra
copies of regressor on the data. It amends the data and
sample weights at each iteration according to the error val-
ues [48]. The performance of AdaBoost is greatly influenced
by the base estimator, the number of estimators to embark the
algorithm and the learning rate. A trade-off for these param-
eters are necessary to get the optimal model for any given
problem. Two models are developed to demonstrate these
aspects. The first using DT as the base estimator and the
second using the RFs as the base estimator. The number of
estimators are tuned between 1 to 1000 with a step size of 1
with the learning rate that is transverse in the range of 0.1 to

5 with a step size of 0.1. Gradient boosting (GB) constructs
an added substance model in a forward stage-wise style;
it considers the improvement of arbitrary differentiable loss
functions. During each iteration, it fits an RT on the negative
gradient of the loss functions. Furthermore, the extension of
GB is HGB as they are faster and produce better results
for a dataset containing many number of samples [49]. The
parameters that are tuned for HGB models are the loss func-
tions (least square, least absolute, and Huber loss functions),
the maximum number of iterations (between 1 to 1000 with
a step size of 1), the maximum number leaves for each tree
(between 1 to 200 with a step size of 1), and the minimum
number of leafs (between 1 to 200 with a step size of 1).
The same parameters with the same range are also tuned for
GB model except that the number of iterations are replaced
with number of estimators. In this paper, the AdaBoost, GB,
and HGB are tuned for 250 iterations whereas AdaBoost
with RFs are tuned for 50 iterations.

F.4. EXTREME GRADIENT BOOSTING MODEL
(XGBOOST)
It is also a gradient boosting method with some strong
upgrades. It is fast due to the incorporation of methods like
parallel computing, and produce an accurate and less over-
fitting results. In its basic configuration it includes a unique
split algorithm alongside the regularization term to control
the overfitting [50]. The model has a unique set of hyper-
parameters which must be fine-tuned. The main parameters
tuned here are learning rate (between 0.1 to 10 with step
size of 1), maximum depth (between 1 to 1000 with step
size of 1) and the number of estimators (between 1 to 10000
with step size of 10).

IV. MODEL VALIDATION AND EVALUATION
This section presents a detailed validation and evaluation
results of the models considered in this paper. It is impor-
tant to mention that MATLAB and Python are used for the
development, validation, and evaluation of the models.

A. EVALUATION OF ANN AND GA INITIALIZED MODELS
The ANN models are developed in MATLAB and are then
trained using Levenberg-Marquardt backpropagation [51].
Other backpropagation-based training algorithms such as
gradient descent, gradient descent with momentum, variable
learning rate gradient descent, BFGS Quasi-Newton do not
produce satisfactory results. The scaled Conjugate Gradient
and Resilient Backpropagation algorithms did produce com-
parable results but on every metric the Levenberg-Marquardt
algorithm produces slightly superior result. Furthermore,
the Bayesian regularization backpropagation produces the
most accurate results, but at the cost of higher simulation
time, as it embodies automatic regularization that enables
the algorithm to work in overfitting cases. Therefore the
Levenberg-Marquardt backpropagation is chosen in this work
considering the trade-off between simulation time and accu-
racy. The parameters are tuned with 5-fold CV technique, and
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TABLE 1. Outcomes of the ANN models on the independent testing set (Generalization).

TABLE 2. Outcomes of the GA initialized ANN models on the independent testing set (Generalization).

FIGURE 7. Measured (symbols) and predicted (dashed-lines) S-parameters
at (a) VGS = −5 V and VDS = 6 V (b) VGS = −5 V and VDS = 8 V for two
fingers GaN-on-SiC of 200 µm gate length each (for ANN models).

FIGURE 8. Measured (symbols) and predicted (dashed-lines) S-parameters
at (a) VGS = −7 V and VDS = 8 V for four fingers GaN-on-SiC of 100 µm
gate length each (b) VGS= −7 V and VDS = 6 V for two fingers GaN-on-SiC
of 200 µm gate length each (for ANN models).

the MSE, MAE, %R2 metrics are computed for both training
(not shown here) and testing sets. To keep the study brief but
comprehensive, only the generalization (MSE, MAE and R2

on the independent and unseen data, i.e., the error produced
on the testing set) of the models are included in Table 1.
Interestingly, the error profiles are sufficient to convey the
performance and efficiency of the models. The extension of
the results in terms of the simulation curves at two randomly
selected biasing conditions are also given in Figs. 7–8.

As discussed earlier (see Section III-A), due to the nature
of the backpropagation algorithms, they lack having inbuilt

FIGURE 9. Measured (symbols) and predicted (dashed-lines) S-parameters
at (a) VGS = −7 V and VDS = 4 V for four fingers GaN-on-SiC of 100 µm
gate length each (b) VGS = −5 V and VDS = 8 V, for two fingers GaN-on-SiC
of 200 µm gate length each (for GA-ANN models).

facility of finding the most appropriate initial weights and
biases for the given problem. This problem may get fur-
ther aggravated as it may force the gradients to acquire a
very small value which in turn makes the training ineffi-
cient. This problem is more prominent when working with
deeper networks, and obtaining unique solutions are quite
challenging. The redressal of this issue led to the devel-
opment of global optimization assisted ANN models [34].
The stringent requirement of obtaining the optimal weights
and biases are satisfied by GA [11]. However, the param-
eters of the GA plays a pertinent role to get the optimal
weights of the backpropagation algorithm. Even the hypepa-
rameters of the GA are tunable and this further complicates
the process. The solution adapted in this paper again is of
trial-and-error (Section III-A). The ANN models are then
developed, by embedding the optimal weights from GA
by using the same ANN topologies, and then are trained
and tested. The generalization capability of the models are
given in Table 2. It can be inferred that the performance are
improved after using the weights generated from the GA
algorithm. The simulation and measurement s-parameters
depicted in Figs. 9–10 at randomly selected bias conditions
further proves the effectiveness of the models.

B. EVALUATION OF RSO-TUNED RANSAC MODEL
RANSAC models are developed in Python language mak-
ing use of scikit-learn open source library. The training and
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TABLE 3. Outcomes of the RANSAC models on the independent testing set (Generalization).

TABLE 4. Outcomes of the SVR models on the independent testing set (Generalization).

TABLE 5. Outcomes of the GPR models on the independent testing set (Generalization).

testing sets are prepared according to the same procedure
(see Section III). Models with preprocessing and post pro-
cessing show improved performance [30]. Since the accuracy
of the RANSAC models contingent on the design set without
outliers, the extra step of outlier detection in the preprocess-
ing stage is critical. The base estimator, maximum number
of trials for random sample selection and loss functions are
of primary importance. First, a working model is developed
and default parameters of the algorithms are recorded. Then
the range of the parameters are obtained using trial-and-error
procedure. The parameters are tuned using RSO with 5-fold
CV technique. It is important to note that RSO is simpler
to implement in comparison to GA and therefore this has
been used extensively in this paper. Subsequently, the num-
ber of iterations, a hyperparameter, to run the tuning process
is determined from the error vs. iteration plot (not shown
here). Based on the plot, it was found that running the algo-
rithm for 250 iterations is sufficient for achieving the desired
accuracy. Post tuning, the models are constructed using the
optimal parameters. Then the training error (not shown) and
testing error (Table 3) are calculated. The outcome of the
tuning are the base estimator—multiple regressor for each
S-parameter, the maximum number of iterations (between 30
to 150) for each S-parameter, and the optimal loss functions
(i.e., the squared error loss function) for each S-parameter.
Finally, the models are utilized to document the generaliza-
tion capability in terms of MSE, MAE, %R2 metrics, shown
in Table 3. From the table, it is obvious that the general-
ization capability of the RANSAC models are not good,
especially for the phases of the S-parameters.

C. EVALUATION OF RSO-TUNED SVR MODEL
These SVR models are developed in MATLAB and the
parameters are tuned using RSO with 5-fold CV technique.
Once again the model development procedure outlined in
Section III is used to develop the SVR models as well. First,
a simple architecture is used to compute the training and

testing errors that provide a foundation basis of the param-
eter’s values. SVR employs kernel trick which facilitates in
converting a non-linear low-dimensional problem to a linear
high- dimensional problem. This trick makes use of simple
dot product construct. In principle, SVR assists in solving
complex and dynamic problems just by employing the kernel
trick. There is a requirement to tune parameters namely Box
constraint (C), Kernel scale, kernel function (KF), polyno-
mial order, epsilon (ε) and presence and absence of the
standardization of the data. Each parameter serves different
purpose. For example, C acts as a trade-off between mak-
ing the weights small and ensuring that each sample has
functional margin of at least 1. In simple terms, it functions
as a regularization parameter that penalizes any observation
which goes beyond epsilon-insensitive loss region. It makes
sure that the model neither overfits nor underfits for the given
specification. For the decision boundary, the SVR concocts
ε-insensitive region. This region stores the support vectors
that in turn participates in the prediction process. So, tuning
the right value of ε is paramount. Not all the KFs conduct
in the same manner as they have their own hyperparameters
which need to be tuned. During the extensive investigation,
we have identified for the first time that the Gaussian kernel
is the most efficient for each S-parameter of GaN HEMTs.
Post tuning, the results obtained for each S-parameters are
given below:

• mag. [S11]— KF: Gaussian; C= 2.12; ε= 1.38e-4
• Phase [S11]— KF: Gaussian; C= 2.64; ε= 1.45e-4
• mag. [S21]— KF: Gaussian; C= 3.14; ε= 2.35e-5
• phase [S21]— KF: Gaussian; C= 3.55; ε= 2.55e-5
• mag. [S12]— KF: Gaussian; C= 1.89; ε= 1.81e-4
• phase [S12]— KF: Gaussian; C= 1.93; ε= 1.93e-4
• mag. [S22]— KF: Gaussian; C= 2.89; ε= 1.67e-4
• phase [S22]— KF: Gaussian; C= 2.94; ε= 1.78e-4

Once the optimal values for the parameters are collected, the
models are trained with complete training set. Both training
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TABLE 6. Outcomes of the decision tree models on the independent testing set (Generalization).

(not shown here) and testing errors are calculated. The gener-
alization capability of the models are recorded and provided
in Table 4. Even after multiple round of parameter tuning,
the SVR could not produce results that could be compara-
ble to ANN. The reasons behind this type of behavior is
discussed in a later sub-section.

D. EVALUATION OF RSO-TUNED GPR MODEL
This model developed in MATLAB environment makes use
of RSO as optimizer for tuning of the hyperparameters. It
also uses expected-improvement-per-second-plus as acquisi-
tion function, and 5 fold CV for 30 iterations each. The
number of iterations used for the tuning is smaller for GPR
compared to other algorithms due to its computational inef-
ficiency. It takes more time to tune and also requires a large
memory space to store the overall model (see Table 16).
The same procedure is applied to build the training and
testing sets, preprocessing and post processing steps (see
the methodology section). Kernel function (i.e., the covari-
ance function) plays major role in the prediction process
as GPR makes use of mean and covariance matrix for the
prediction on any future input set. The tuning process starts
once the central parameters are identified, and then the results
are recorded. The tuned parameters for each S-parameter
are given below, where abbreviations have the following
meanings: FM (fit method), SD (subset of data points), BS
(basis function), CS (constant function), EX (exponential),
SX (squared exponential), RDE (relevance determination
exponential), MK (matern kernel with parameter 5/2) and
T (true). At last, exploiting the best parameters the mod-
els are trained and tested. Table 5 renders the generalization
capability of the GPR model.

• mag. [S11]— FM:SD; BS:CF; KF:EX; Standardize:T
• Phase [S11]— FM:SD; BS:CF; KF:SX; Standardize:T
• mag. [S21]— FM:SD; BS:CF; KF:RDE; Standardize:T
• phase [S21]— FM:SD; BS:CF; KF:RDE; Standardize: T
• mag. [S12]— FM:SD; BS:CF; KF: MK; Standardize: T
• phase [S12]— FM:SD; BS:CF; KF:MK; Standardize: T
• mag. [S22]— FM:SD; BS:CF; KF:MK; Standardize: T
• phase [S22]— FM:SD; BS:CF; KF:MK; Standardize: T

E. EVALUATION OF RSO-TUNED DECISION-TREE MODEL
These models are developed in Python language by making
use of scikit-learn open source library. As stated earlier, the
parameters are tuned using RSO with 5-fold CV. The DTs
are straightforward to build and uncomplicated to understand.
However, the same supremacy can be a menace with regards
to the generalization if they are not meticulously supervised
as these algorithms are extremely prone to the overfitting.

That means the parameter tuning is a central phase in order
to build better SSMs using DTs. In general, DTs keep split-
ting the node until the nodes are pure. This can be overcome
by setting the maximum number of depth to a fixed value.
This enables the model to quit splitting no sooner the final
value of maximum depth of tree is reached. Depending on
the complexity of the tree, there is a requirement to split
a node based on the number of samples present at the
leaf. This is controlled and managed by “minimum sam-
ples per leaf ”. Splitting of the internal nodes are monitored
by the parameter called minimum samples to split (MSS).
The MSS generates a trade-off between the overfitting and
underfitting case. Maximum number of features (MNF)
can take on many values depending on the requirement
of computational efficiency or overfitting. In scikit learn,
the values it can take are auto, sqrt, and log2. In general,
the MLF facilitates in determining the best split whenever
a split takes place. Post tuning, the optimal values of the
parameters recorded are given below. Here MDT (maximum
depth of the tree), MNF (maximum number of features),
MSL (minimum samples per leaf), MSS (minimum samples
to split), CT (criterion), squared error (SE) and absolute
error (AE).

• mag. [S11]— MDT= 161; MNF = 5; MSL = 6;
MSS =7; CT =SE

• Phase [S11]— MDT= 186; MNF = 5; MSL = 11;
MSS =13; CT =SE

• mag. [S21]— MDT= 193; MNF = 5; MSL = 8;
MSS =11; CT = SE

• phase [S21]— MDT= 188; MNF = 5; MSL = 17;
MSS =23; CT = SE

• mag. [S12]— MDT= 194; MNF = 5; MSL = 13;
MSS =19; CT = AE

• phase [S12]— MDT= 198; MNF = 5; MSL = 15;
MSS =22; CT = AE

• mag. [S22]— MDT= 186; MNF = 5; MSL = 19;
MSS =25; CT = SE

• phase [S22]— MDT= 176; MNF = 5; MSL = 18;
MSS =21; CT = SE

The models are built, trained, and tested using the proce-
dure discussed in previous section. Finally, the generalization
capability of the models are depicted in Table 6.

F. EVALUATION OF RSO-TUNED ENSEMBLE METHODS
All the ensemble models are developed in Python
language making use of scikit-learn open source
library and the parameters are tuned using RSO with
5-fold CV.
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TABLE 7. Outcomes of the Bootstrap Aggregating models on the independent testing set (Generalization).

TABLE 8. The hyperparameters for random forests and extremely randomized trees.

TABLE 9. Outcomes of the random forests models on the independent testing set (Generalization).

TABLE 10. Outcomes of the extremely randomized trees models on the independent testing set (Generalization).

F.1. BOOTSTRAP AGGREGATING MODEL
Here the most critical parameters are the base estimators
and the number of the base estimators. It aggregates the
predictions of different base estimators either by voting
or averaging in order to produce the final prediction. The
base estimators could be chosen apart from the default
DT. Another common base estimator is random forests
(RF). Using these parameter the models are tuned for each
S-parameter. Post tuning, the optimal values of the num-
ber of base estimators in this example is found to be 401
for mag. [S11], 511 for Phase [S11], 711 for [S21], 741 for
phase [S21], 216 for mag. [S12], 281 for phase [S12], 551 for
mag. [S22] and 621 for phase [S22]. Finally, the models are
trained (not shown here) and tested, then its generalization
capability are given in Table 7.

F.2. RANDOM FORESTS AND EXTREMELY
RANDOMIZED TREES MODELS
In this paper, first the basic RF is implemented and then the
ERTs are built. Both these models utilize the same technique
to tune the parameters. Here, the hyperparameters that are
tuned are number of estimators, maximum depth of the trees,
minimum samples per leaf, and minimum samples to split.
Each cover different operation. To control the number of
decision tree estimators, we change the parameter number

of estimators. Intuitively, it will make sense that the use of
more number of trees will provide better results. However,
in reality, the performance decreases after reaching a certain
threshold. The maximum depth of the tree supervise the
depth of each tree. Otherwise, if left unsupervised, it can lead
to overfitting. Just like DT models, the minimum samples
to split breakdown, or split the internal nodes if a certain
number of samples, are present at a given moment. The
minimum samples per leaf supervise the overfitting as it
sets the minimum number of samples that has to be present
at the leaf node in order for it to be considered as a split
point. Each model is tuned for 250 iteration in this case
and the optimized parameters are given in Table 8. Finally,
performance are given in Tables 9 and 10 for RFs and ERTs
respectively.

F.3. ADABOOST, GRADIENT TREE BOOSTING AND
HISTOGRAM BASED GRADIENT BOOSTING MODELS
The idea and intuition behind the AdaBoost are very sim-
ple. It utilizes a regressor and trained on the original dataset
alongside copies of the same regressor fitted at same dataset.
However, to differentiate and make the prediction better, the
weights are adjusted according to the error of the current
prediction. Here, AdaBoost are trained with two base esti-
mators, DT and RFs, and their performances are recorded
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TABLE 11. Outcomes of the AdaBoost models on the independent testing set (Generalization).

TABLE 12. Outcomes of the gradient tree boosting models on the independent testing set (Generalization).

TABLE 13. Outcomes of the AdaBoost with RFs models on the independent testing set (Generalization).

TABLE 14. Outcomes of the histogram based GT models on the independent testing set (Generalization).

in Tables 11 and 13 respectively. This concept can be fur-
ther studied as there could be numerous base estimators.
The first hyperparameter, i.e., the number of estimators, are
the number of weak learners to be used and the algorithm
terminates after reaching the maximum value. Another vital
parameter is the learning rate which employs the weights
to the each regressor at each iteration. The contribution of
each regressor is contingent on the learning rate, greater the
learning rate, more the contribution and vice versa. From the
above points it is incumbent to tune the parameters to get
the optimal values for the hyperparameters. After tuning, the
optimal number of estimators are found to be in the range of
100 to 250 for each S-parameter for both models. Similarly,
the learning rate is in the range of 0.1 to 2 after tuning
for all the models. Furthermore, post tuning, the hyperpa-
rameters of the gradient tree boosting and histogram based
gradient tree boosting have somewhat similar values with a
narrower margin. It is observed that the absolute loss and
Huber loss give better performance. The tuned parameters
for HGB is given below, where the abbreviations have the
following meanings: MNI (maximum number of iterations),
MNT (maximum number leaves for each tree), MNL (min-
imum number of leaves) and MDT (maximum depth of the
tree). The generalization capability of GB and HGB are on
the tuned parameters given in Tables 12 and 14.

• mag. [S11]— MDT = 18; MNL = 70; MNT = 3;
MDI = 85

• Phase [S11]—MDT = 33; MNL = 186; MNT = 9;
MDI = 194

• mag. [S21]—MDT = 96; MNL = 1; MNT = 95;
MDI = 198

• phase [S21]—MDT = 190; MNL = 33; MNT = 44;
MDI = 198

• mag. [S12]—MDT = 37; MNL = 44; MNT = 87;
MDI = 11

• phase [S12]—MDT = 122; MNL = 14; MNT = 32;
MDI = 71

• mag. [S22]—MDT = 4; MNL = 14; MNT = 108;
MDI = 95

• phase [S22]—MDT = 171; MNL = 7; MNT = 69;
MDI = 85

F.4. EXTREME GRADIENT BOOSTING MODEL

The XGBoost is one of the most popular algorithm for
achieving accuracy and speed [50]. It has inbuilt flexibil-
ity for regularization that inherently assists the algorithm
to avoid overfitting. To expedite the speed of the algo-
rithm, it has inbuilt parallel processing unit. Maximum
depth of the tree behaves similar to the GB. It oversees
the overfitting of the models and decides on-the-fly. In
the current example, post tuning, the values for the num-
ber of estimators and maximum depth are found to be
122, 198, 325, 348, 56, 74, 39, 41 and 18, 15, 10, 19,
14, 17, 11, 8 respectively for each S-parameter. The learn-
ing rate between 0.01 to 2 produced the most effective
results. Finally, the generalization of the models on the
tuned parameter is tabulated in Table 15. It is imperative
to note that in this paper only a few hyperparameters are
tuned and analyzed just to demonstrate the capability of this
algorithm.

VOLUME 10, 2022 1027



HUSAIN et al.: COMPREHENSIVE INVESTIGATION AND COMPARATIVE ANALYSIS OF ML

TABLE 15. Outcomes of the XGBoost models on the independent testing set (Generalization).

TABLE 16. Evaluation of all the proposed models for the modelling of GaN HEMTs devices.

V. RESULTS AND DISCUSSION
An assorted outcomes for the more commonly considered
metrics namely ADS compatibility, computational efficiency,
generalization capability, training and simulation time, mod-
els’ capacity, parameters’ tuning time and dataset compati-
bility are given in Table 16. Following discussions highlight
the salient features of the models considered in this paper.
The first aspect in Table 16 compares the compatibility of

all the developed models with a commercial Computer Aided
Design (CAD) tool such as Advanced Design System (ADS).
The ADS compatibility refers to the co-simulation of ML
models. As elaborated in Section IV, the models in this paper
are developed either using MATLAB or Python. The mod-
els in MATLAB renders an interface between MATLAB and
ADS Ptolemy. It makes use of MATLAB blocks to prepare
the input-output operations. Whereas, the ADS Datalink
enables interconnection of the ADS with Python. Once the
ML models are developed, the testing inputs can be given
to trained models directly in Python. Thereafter, using the
Datalink protocols, the output of the models can be success-
fully transferred into ADS environment. In this context, all
the developed models are compatible with ADS and respec-
tive block diagrams in Figs. 11–12 clarify this. However,
there are some challenges in forming the mathematical rela-
tionships of inputs, known parameters, and the outputs in
several models such as GPR and SVR and therefore these
suffer from some accuracy issues.
Computational efficiency in the Table 16 refers to the

required memory, time taken, and the number of iterations to

FIGURE 10. Measured (symbols) and predicted (dashed-lines)
S-parameters at (a) VGS = −7 V and VDS = 2 V for four fingers GaN-on-SiC
of 100 µm gate length each (b) VGS = −7 V and VDS = 6 V, for four fingers
GaN-on-SiC of 100 µm gate length each (for GA-ANN models).

train the models. The investigations in this paper clearly con-
veys that the RANSAC is the most computationally efficient
algorithm for model development. It requires least amount of
memory in order for it to be trained and make prediction. It
is the fastest among all other tested algorithms. It can also be
seen that the ANN, DT, ERTs and XGBoost closely follow
the RANSAC when the computational efficiency is consid-
ered. The SVR and AdaBoost with RFs are less efficient
since they require more space to be stored and also their
training and tuning time are high. The least efficient model
is found to be the GPR models as it requires a large memory
space to store the covariance matrix. In addition, the GPR
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FIGURE 11. The block diagram explaining integration of Python based ML
models with ADS simulator.

FIGURE 12. The block diagram explaining integration of MATLAB based
ML models with ADS simulator.

is sparse and therefore they need entire training samples for
prediction and this makes it computationally expensive.
Generalization capability denotes the model’s performance

over the unseen testing set. It is observed from the Tables 1
to 15 that the generalization capability of the GA assisted
ANN based model produces the most accurate predictions on
the testing set among all the models considered in this paper.
This is owing to the fact that it captures the weights that

orients towards the global minimum and also provides non-
zero and non-vanishing gradient values. The performance
of the ANN and XGBoost based models are comparable,
with the former having a little edge due to the deep layer
structure of the ANN model. Furthermore, the ANN models
are also tuned more appropriately and hence provides better
results. The XGBoost, however, shows excellent performance
as it possess inbuilt hardware optimization efficient boosting
mechanism of the weak learners, cross-validation capability,
better handing of the overfitting, and regularization scenarios.
Then the performance of the models decreases as we look
from ERTs, RFs, Histogram based GB, GPR, BAM, DT, GB,
AdaBoost, SVR, to RANSAC respectively. It can be safely
stated that the tree-based models shows clear advantage in
terms of generalization capability while demonstrating com-
parable performance to the ANN based models owing to the
tabular nature of the data in these tree based algorithms.
The GaN HEMTs devices have non-linear relationships and
therefore the RANSAC based models do not produce good
results as it makes use of linear decision boundary. The SVR
and GPR take more time and are also computationally inef-
ficient. It is therefore recommended to make use of linear
kernels when applying SVR for larger dataset. However, lin-
ear kernel can not explain the intrinsic non-linear behavior
possessed by GaN HEMTs devices. In the examples in this
paper, we have included the dataset of two devices together
and that may have resulted in a more sophisticated distri-
bution within the data. Therefore, AdaBoost with DTs as
their base estimator suffers heavily as it is highly prone to
overfitting on unbalanced and noisy dataset. It is well-known
that the SVR can not perform well in case of larger dataset
and dataset with noise and sophisticated patterns [28], [35].
Since SVR’s decision boundary becomes skewed on unbal-
anced dataset. Moreover, SVR exploits a subset of the data
to predict since it does not take into account the observa-
tions which are within the ε-insensitive region. Similarly,
larger dataset gives rise to the problems of data storage and
processing in GPR. These lead to computational restriction
and less accurate values of the predictions. In addition to
this, computationally inefficiency directly affects the tuning
of the hyperparameters and convergence of the SVR and
GPR algorithms. In the Table 16, the Average MSE refers
to the computation of average of MSE values of each model.
It clearly summarises the overall generalization capability of
models considered in this paper.
The training and simulation time for each model (averaged

over all the S-parameters) in seconds) are given in Table 16.
It is the time taken by an algorithm for it to be fully trained
and then produce the prediction on the training and testing
sets. The training and simulation time are computed indi-
vidually for each S-parameter. Thereafter, we calculated the
average time by adding the time taken for each S-parameter
and then divide the total sum by the number of S-parameters
and reported in the Table 16. It is also pertinent to mention
that the training and simulation time are recorded, while
training an algorithm with the optimal parameters and for
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the run which has provided the best results. This process
is repeated for each model. The device and windows spec-
ifications of the utilized computer to develop, train, tune
and test all the models are as follows— Processor: Intel
Core i7-8750H CPU @2.20 GHz 2.21 GHz, RAM: 16.0 GB,
Edition: Windows 10 Enterprise and Version: 21H2. It is evi-
dent that the DT takes the least time as they employ greedy
and parallel decisions in the fitting process. The RANSAC
is the second fastest. It can also be seen that the XGBoost
is one of the fastest and powerful model among all the
considered models owing to the appropriate systematic split
finding algorithm, parallelization, and the use of CPU cache
memory for the calculation of gain on each split. The RFs
and AdaBoost with RFs employ random forests which makes
the predictions by calling multiple decision tree that increase
the training and simulation time. Moreover, the time taken
by tree like structures also depend on the maximum depth
of trees. Better tuning of the hyperparameter improves the
training and simulation time for all the tree based models
tested in this paper. The SVR and GPR take more time since
they require more memory to store the kernel matrix.
The time and complexity of the production of complete

ML models are the key indicators for some specific appli-
cations of GaN HEMTs devices. That is why parameters’
tuning time (averaged over all the S-parameters) in sec-
onds and models’ capacity are also given in the Table 16.
Once again, the most expensive models in terms of the
tuning time is GPR because it requires a large memory
space to store the covariance matrix. The AdaBoost with
RFs is the second costlier model followed by SVR, GA
and RFs. The BAM and GB take the similar tuning time
owing to the use of more or less same number of estima-
tors or base estimators to employ the optimal models. The
least expensive algorithms with regards to tuning time in
the ascending order are AdaBoost, ERTs, DT, RANSAC,
HGB, and XGBoost respectively. The ERTs are faster than
RFs although they are from the same class of the algorithm
and use the same procedure for the prediction. The RFs
while choosing the split points looks for the optimal case
whereas ERTs chooses randomly and thus achieve faster
convergence.
Model’s capacity refers to the parameters of the respec-

tive algorithms. Complexity of the model directly affects
the performance of the model since a trade-off of all
the parameters are required for the best prediction case.
Parameter tuning becomes quite a daunting task when the
model complexity becomes higher. The ANN, GA assisted
ANN. XGBoost, and HGBs are the most complex mod-
els among the investigated models since they require tuning
of more parameters for the effective prediction. The SVR,
GPR, AdaBoost, and RANSAC have the least number of the
parameters to tune. Table 16 gives the detailed information
about the model’s capacity. The last column in the Table 16
is dataset compatibility. This part of the table provides a
recommendation to use different algorithms in specific appli-
cation scenarios. It is clear that the RANSAC is not suitable

for GaN HEMTs modelling as it relies on mostly linear deci-
sion boundaries. The SVR and GPR perform well in case
of smaller dataset [30]. However, they are computationally
highly expensive for larger sized data samples. The AdaBoost
models can be trained with two base estimators namely the
DT and RFs. It is observed (see Table 11) that AdaBoost
with DT could not simulate well on the given problem. The
ANN, GA-ANN, DT, BAM, RFS, ERTs, GB, AdaBoost
with RFs, HGB, and XGBoost are recommended for the
modelling of GaN HEMTs devices. However, the eventual
use will depend on the application in hand as explained in
the earlier paragraphs.
Lastly, following points outlines the summary and recom-

mendation based on the results of this paper for the small
signal modeling of GaN HEMTs:

• It is observed that GA initialized ANN produces the
most accurate, robust, and efficient small signal model
for GaN HEMTs devices. This is further validated by
the simulation curves at distinct randomly selected bias-
ing conditions. The applications where the required end
results are the uniqueness of the solutions and accuracy
then GA assisted ANN models should be preferred.
However, it should be kept in mind that the tuning
time of GA is higher and that eventually slows down
the GA assisted ANN model development.

• The performance of ANN and XGBoost based ML mod-
els are quite similar. These models can be used for both
smaller and larger datasets. They can be used for the
applications where time is the most important parameter.
However, both possess, a very diverse hyperparameters
that are to be tuned in order to get good performance.

• RANSAC and AdaBoost are not appropriate for GaN
HEMTs modelling

• SVR and GPR can be used for the smaller dataset where
the need is to explain the behavior of GaN devices at
lower frequencies.

• Tree based models have come out to be an excellent
counter part of ANN based models due to nature of the
dataset. These models can be utilized for GaN HEMTs
modelling as they produce very good results for two
distinct GaN devices considered in this paper. They
can be used in the applications of GaN HEMTs devices
where trade-off between time, complexity, and accuracy
is desired. However, careful anlaysis of the parameters
and trade-off between the parameters are necessary.

VI. CONCLUSION
In pursuit of determination of the most effective ML based
small signal modeling, an exhaustive analysis and compar-
isons have been carried out. At first, various ML algorithms
such as ANN, RANSAC, SVR, GPR, DT, GA based ANN,
BAM, RFs, ERTs, AdaBoost, GB, HGB, and XGBoost
are used to develop GaN HEMT modeling frameworks.
Subsequently, the parameters of the models are tuned to
get the best possibly performance from the models. The
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models are then compared on grounds of generalization capa-
bility, ADS compatibility, computational efficiency, training
and simulation time, models’ capacity and parameters’tuning
time. The generalization of the models are computed in
terms of MSE, MAE, and R2. It is identified that the GA
initialized ANN based models produce the most accurate
description of the small-signal behavior of GaN HEMTs
devices. Furthermore, ANN and XGBoost based models’
performance is found to be similar. The tree based mod-
els show excellent results. Finally, it is identified that the
RANSAC, AdaBoost, SVR, and GPR are not suitable for the
modeling of GaN devices. From the future perceptive, a more
extensive research is required for GaN HEMTs modelling
using the ensembling methods.
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