Received 18 July 2022; revised 5 October 2022; accepted 10 October 2022. Date of publication 12 October 2022; date of current version 21 October 2022. The review of this article was arranged by Editor M. K. Radhakrishnan.

Digital Object Identifier 10.1109/JEDS.2022.3214000

Low Interface Trapped Charge Density for Al₂O₃/β-Ga₂O₃ (001) Metal-Insulator-Semiconductor Capacitor

QIHAO ZHANG¹, YISONG SHEN¹, JIANGWEI LIU¹, CHUNMING TU¹ (Senior Member, IEEE), DONGYUAN ZHAI¹, MIN HE¹, AND JIWU LU¹ (Member, IEEE)

1 College of Electrical and Information Engineering, Hunan University, Changsha 410082, Hunan, China 2 Research Center for Functional Materials, National Institute for Materials Science, Ibaraki 305-0044, Japan

CORRESPONDING AUTHOR: J. LU (e-mail: jiwu_lu@hnu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1201802; in part by the National Natural Science Foundation of China under Grant 51977065 and Grant 52177179; and in part by the Science and Technology Innovation Program of Hunan Province, People's Republic of China, under Grant 2019RS1024 and Grant 2020RC5004.

ABSTRACT In this letter, high-performance Al_2O_3/β -Ga₂O₃ (001) metal-insulator-semiconductor (MIS) capacitor has been demonstrated. The capacitance-voltage (C–V) curves of the Al_2O_3/β -Ga₂O₃ (001) MIS capacitor remain stable under different measurement frequencies. The leakage current density is lower than 2.0×10^{-8} A/cm² when the gate voltage is in the range of $-5\sim13$ V. The fixed charge and trapped charge densities in Al_2O_3 film are 4.4×10^{12} and 6.0×10^{11} cm⁻², respectively. Average and minimum interface trapped charge density (D_{it}) for Al_2O_3/β -Ga₂O₃ (001) interface has been extracted to be as low as 3.3×10^{11} and 2.3×10^{11} cm⁻² eV⁻¹ via the Terman method, respectively. The low D_{it} is probably attributed to the modification of vacancy defects and the introduction of hydroxyl groups at the Al_2O_3/β -Ga₂O₃ (001) interface after piranha solution pretreatment for β -Ga₂O₃.

INDEX TERMS β -Ga₂O₃, Al₂O₃, MIS capacitor, interface trapped charge density.

I. INTRODUCTION

Over the last couple of years, wide bandgap semiconductor materials such as SiC, GaN, and Ga₂O₃ have attracted lots of attention for power device applications due to their outstanding material properties [1], [2], [3]. Among them, Ga₂O₃ with an ultra-wide bandgap of 4.6-4.9 eV, high critical breakdown field of 8 MV/cm, and high Baliga's Figure-of-Merit of 3214 has been considered as a more desirable semiconductor material for the next-generation power devices [3]. Furthermore, wide-range controllable *n*-type doping $(10^{16}-10^{19} \text{ cm}^{-3})$ and mass production large size β -Ga₂O₃ single crystal wafers have been commercially available [3]. Due to these superiorities, β -Ga₂O₃ has been applied to power Schottky diodes, metal-semiconductor fieldeffect transistors (FETs) and metal-insulator-semiconductor FETs (MISFETs) [3], [4], [5], [6], [7], [8], [9].

Recently, the planar and vertical β -Ga₂O₃-based MISFETs with high breakdown voltages and low on-resistance have

been demonstrated [5], [6], [7], [8], [9]. The high-quality dielectric/ β -Ga₂O₃ heterostructure is significantly important for fabricating high-performance MISFETs. Among all the dielectric materials, Al₂O₃ is used most widely in CMOS devices owing to its high dielectric constant, high thermal stability, and high breakdown electric field [10], [11], [12]. Additionally, it has a large conduction band offset (ΔE_C) with β -Ga₂O₃ [13], [14]. Continuous efforts focusing on investigating the interface trapped charge density (D_{it}) for Al₂O₃/ β -Ga₂O₃ MIS capacitors have been reported. Due to the significant asymmetry of monoclinic β -Ga₂O₃ [3], [4], the D_{it} values are apparently different for the Al₂O₃ on the various planes of β -Ga₂O₃.

Hirose et al. improved the D_{it} for the Al₂O₃/ β -Ga₂O₃ (001) to be ~1.6 × 10¹² cm⁻² eV⁻¹ by the low-temperature post-deposition annealing (PDA) process [15]. In consideration of the effect for bulk traps, Jian et al. clarified the D_{it} of 1.3 × 10¹² cm⁻² eV⁻¹ for Al₂O₃/ β -Ga₂O₃

FIGURE 1. (a) Surface morphology and (b) cross-sectional schematic diagram of the Al_2O_3/β -Ga₂O₃ (001) MIS capacitor, respectively.

(001) using the deep ultraviolet (DUV)-assisted method [16]. Feng et al. adopted a novel Ga flux etching surface treatment to decrease the D_{it} of Al₂O₃/ β -Ga₂O₃ (001) to be 7.3 $\times 10^{11}$ cm⁻² eV⁻¹ [17]. By an in-situ deposition technique for the Al₂O₃, Roy et al. obtained a low D_{it} of 6.4 $\times 10^{11}$ cm⁻² eV⁻¹ for the Al₂O₃/ β -Ga₂O₃ (001) MIS capacitor [18]. Jayawardena et al. clarified the effects of different gate dielectrics (SiO₂ and Al₂O₃) on the D_{it} of the β -Ga₂O₃ (-201) MIS capacitors and concluded that the Al₂O₃/ β -Ga₂O₃ (-201) interface had a lower D_{it} of 8.4 \times 10¹¹ cm⁻² eV⁻¹ [19]. By combining piranha solution pretreatment and the PDA process, Zhou et al. obtained the D_{it} for Al₂O₃/ β -Ga₂O₃ (-201) as low as 2.3 \times 10¹¹ cm⁻² eV⁻¹ [20].

The Al₂O₃ on the β -Ga₂O₃ (001) exhibited higher D_{it} near conduction band (E_C) than those on β -Ga₂O₃ (-201) and (010). This is undesirable to enable highperformance β -Ga₂O₃ (001)-based MISFETs. This work focuses on decreasing the D_{it} for the Al₂O₃/ β -Ga₂O₃ (001) with the piranha solution pretreatment for the β -Ga₂O₃. The frequency-dependent current-voltage (C-V) property, gate leakage current density (J), and band configuration for Al₂O₃/ β -Ga₂O₃ (001) will also be investigated and discussed.

II. EXPERIMENTAL DETAILS

The MIS capacitors were fabricated on an *n*-type β -Ga₂O₃ (001) substrate with a 10 μ m lightly Si-doped epitaxial layer. The bulk substrate and epitaxial layer were grown by edge-defined film-fed growth and hydride vapor phase epitaxy technologies, respectively. Their doping concentrations were around 5 \times 10¹⁸ cm⁻³ and 7 \times 10¹⁶ cm⁻³, respectively. After cleaning the β -Ga₂O₃ epitaxial wafer in acetone for 3 min and alcohol for 3 min, the sample was treated in piranha solution for 5 min. The piranha solution volume ratio for the H₂O₂, H₂SO₄, and deionized water was 1: 4: 1. A 30 nm-thick Al₂O₃ film was deposited as the gate dielectric on the β -Ga₂O₃ (001) epitaxial layer via an atomic layer deposition (ALD) system. The precursors were tri-methyl-aluminum (TMA) and water vapor. The ALD deposition temperature and chamber pressure were 300 °C and 60 Pa, respectively. The aluminum (Al) metal

FIGURE 2. (a) Frequency dependent C–V characteristics, (b) hysteresis C–V curves at 1 kHz, and (c) $1/C^2$ as a function of gate voltage for the Al₂O₃/ β -Ga₂O₃ (001) MIS capacitor, respectively.

was thermally evaporated on the backside of the substrate to form Ohmic contact. Gate contact of nickel (Ni) was evaporated on the top of the Al₂O₃ film to finish the fabrication process. The frequency-dependent C-V and J-V characterizations of the MIS capacitor were carried out via an Agilent B1500A semiconductor device analyzer.

III. RESULTS AND DISCUSSION

Fig. 1(a) and 1(b) show the surface morphology and crosssectional schematic diagram of the β -Ga₂O₃ MIS capacitor, respectively. The circular radius and area of the gate electrode are 50 μ m and 7.85 \times 10⁻⁵ cm⁻², respectively.

Fig. 2(a) shows the frequency-dependent *C-V* curves of the Al₂O₃/ β -Ga₂O₃ (001) MIS capacitor. The gate voltage sweeps from -5 V to 10 V and the frequency varies from 1 kHz to 1 MHz. The measurement capacitance values remain stable with the variation of measurement frequency. An insignificant frequency dispersion phenomenon is observed. The oxide capacitance (C_{OX}) of the Al₂O₃/ β -Ga₂O₃ (001) MIS capacitor is determined to be 0.24 μ F/cm². By considering the thickness of Al₂O₃ (30 nm), the dielectric constant of the Al₂O₃ is calculated to be 8.1, which is in agreement with the previous reports [21], [22].

Fig. 2(b) shows the hysteresis characteristic of C-V curves for the Al₂O₃/ β -Ga₂O₃ (001) MIS capacitor at 1 kHz. The measurement voltages change from -5 V to 10 V (black line) and then sweep in the opposite direction (red line). The flat band voltage (V_{FB}) is determined to be 4.4 V according to the position of flat-band capacitance (C_{FB}) [23]. The large positive shift of V_{FB} is ascribed to the presence of negative fixed charges in the Al₂O₃ film, which is confirmed in the previous report [19]. The change of the ALD-Al₂O₃ precursor with ozone or PDA process may alleviate the shift of V_{FB} [20].

FIGURE 3. (a) The *J*–*V* characteristic, (b) $\ln(J/E^2)$ vs 1/E for Al_2O_3/β -Ga₂O₃ MIS capacitor, and (c) the energy band diagram for Al_2O_3/β -Ga₂O₃ heterojunction, respectively.

The negative fixed charges density (Q_f) is computed to be 4.4×10^{12} cm⁻² by the following equation (1):

$$Q_f = C_{OX} \times \left(V_{FB} - \frac{\Phi_{MS}}{q} \right), \tag{1}$$

where Φ_{MS} denotes the difference in work functions between Ni (5.15 eV) and β -Ga₂O₃ (3.71 eV) [24], [25]. A typical C-V hysteresis phenomenon exists in the C-V curves of the Al₂O₃/ β -Ga₂O₃ (001) MIS capacitor. The hysteresis voltage is extracted to be 0.4 V, indicating the presence of trapped charge or border traps in the Al₂O₃ film. The trapped charge density is computed to be 6.0 × 10¹¹ cm⁻², which is competitive with the previous reports [17], [18], [19]. The 1/ C^2 as a function of gate voltage is shown in Fig. 2(c). The donor concentration (N_d) of the Al₂O₃/ β -Ga₂O₃ (001) is extracted to be 6.9 × 10¹⁶ cm⁻³.

The J-V characteristic of the Al₂O₃/ β -Ga₂O₃ (001) MIS capacitor is shown in Fig. 3(a). The J values are lower than 2×10^{-8} A/cm⁻² when the gate voltage sweeps from -5 V to 13 V. This indicates that the high-quality Al₂O₃ film and good Al₂O₃/ β -Ga₂O₃ (001) interface are formed. When the gate voltage reaches 20 V, there is an obvious hard breakdown phenomenon for the Ni/Al₂O₃/ β -Ga₂O₃ MIS capacitor. To further investigate the leakage current mechanism of the Al₂O₃/ β -Ga₂O₃ (001) MIS capacitor, the Fowler-Nordheim (FN) tunneling model was taken into account after excluding other models such as Poole-Frenkel model, trapassisted tunneling, Schottky emission [26], [27], [28], [29]. Fig. 3(b) shows the $\ln(J/E^2)$ versus 1/E curve of the β -Ga₂O₃ MIS capacitor. The linear relationship is observed under high electrical fields (1/E < 0.33 cm/MV), which is in agreement with the FN tunneling model based on the following equation (2):

$$J = \frac{q^3 m_{sc} E^2}{8\pi h m^* \Phi_B} E^2 exp\left(-\frac{8\pi \sqrt{2m^* \Phi_B^3}}{3hq} \frac{1}{E}\right),$$
 (2)

FIGURE 4. (a) The extracted D_{it} vs E_c - E_t determined by Terman method for the Al₂O₃/ β -Ga₂O₃ (001) interface. (b) Benchmarking plot of D_{it} values for Al₂O₃ on β -Ga₂O₃ with different planes.

where m^* is the effective electron mass in Al₂O₃ film $(0.23 m_0, m_0 \text{ is the electron effective mass})$ [30], m_{sc} is the effective electron mass in β -Ga₂O₃, Φ_B is the tunneling barrier height for electrons or the ΔE_C for the Al₂O₃/ β -Ga₂O₃ (001) heterojunction, h is the Planck's constant, E denotes the electrical field across the gate oxide, and q is the electron charge, respectively. By fitting linear regions of $\ln(J/E^2) - 1/E$ characteristic, the slope is extracted to be 1.14×10^{-6} Ω^{-1} cm⁻¹. Therefore, the Φ_B is determined to be 2.3 eV for the Al₂O₃/ β -Ga₂O₃ (001) heterojunction based on equation (2). It agrees with the previously reported value deduced via an X-ray photoelectron spectroscopy technique [31]. The large ΔE_C for the Al₂O₃/ β -Ga₂O₃ (001) could explain the low J for the MIS capacitor. The energy band diagram of the Al₂O₃/ β -Ga₂O₃ (001) heterostructure is shown in Fig. 3(c). The VBM, CBM, and E_g are valence band maximum, conduction band minimum, and bandgap energy, respectively. The valence band offset (ΔE_V) is determined to be 0.3 eV in consideration of the E_g for Al₂O₃ (7.2 eV) and β -Ga₂O₃ (4.6 eV) [32], [33]. Band configuration for the Al₂O₃/ β -Ga₂O₃ (001) heterojunction exhibits a type I (straddling gap) structure.

The D_{it} can be extracted via the Terman method, which is recognized to evaluate accurately D_{it} information of over 10^{10} cm⁻² eV⁻¹ [34]. The gate voltage of the ideal highfrequency *C*–*V* curve obtained by the numerical method is compared with that of the actual curve to achieve the D_{it} values via the following equation (3):

$$D_{it} = \frac{C_{OX}}{q^2} \left(\frac{dV}{d\varphi_s} - 1\right) - \frac{C_s}{q} = \frac{C_{OX}}{q^2} \frac{d\Delta V}{d\varphi_s},$$
 (3)

where the φ_s is the surface potential of the β -Ga₂O₃ (001), ΔV is the difference between real gate voltage and ideal ones, and C_s is semiconductor capacitance. Because of the limitations of direct current sweep rate and alternating current frequency, the D_{it} is detected in the trap energy level (E_t) range of E_C -0.2 < E_t < E_C -0.6 eV. Fig. 4 (a) shows the extracted D_{it} distribution versus E_C - E_t . With the increase of E_C - E_t , the D_{it} decreases. The average and minimum D_{it} values are 3.3 × 10¹¹ and 2.3 × 10¹¹ cm⁻² eV⁻¹, respectively.

Fig. 4 (b) summarizes previously reported D_{it} values for Al₂O₃ on the different planes of β -Ga₂O₃. The

average D_{it} in this work is much lower than those of the Al_2O_3 on β -Ga₂O₃ (001), (010), and (100) of the previous reports [15], [16], [17], [18], [35]. It is also comparable with the minimum value of the Al₂O₃/β-Ga₂O₃ (-201) [19], [20], [36]. This indicates that the high-quality Al_2O_3/β -Ga₂O₃ (001) interface has been formed by the piranha solution for the β -Ga₂O₃ (001). The low D_{it} for the Al₂O₃/ β -Ga₂O₃ (001) is possibly attributed to the following two factors. The vacancy (e.g., oxygen vacancies) defects, expected to act as the trapped charge at the Al₂O₃/ β -Ga₂O₃ interface, may be modified after the piranha pretreatment [37], [38]. On the other hand, the piranha pretreatment probably introduces hydroxyl groups on the surface of β -Ga₂O₃, which could promote the chemical reaction of TMA with water vapor during the first growth stage of the ALD-Al₂O₃ film [39], [40]. This could increase the quality of the Al₂O₃/ β -Ga₂O₃ (001) interface and make the D_{it} decrease.

IV. CONCLUSION

In this study, we have fabricated the Al₂O₃/ β -Ga₂O₃ (001) MIS capacitor with the low D_{it} . The absence of frequency dispersion for the β -Ga₂O₃ MIS capacitor was observed from frequency-dependent C-V curves. The positive C-V curves shift indicates the existence of the negative fixed charges in the Al₂O₃ film. The Al₂O₃/ β -Ga₂O₃ heterojunction shows a high ΔE_C of 2.3 eV based on the FN tunneling model. The average D_{it} near E_C was extracted to be as low as 3.3×10^{11} cm⁻² eV⁻¹ by the Terman method. The low D_{it} may be ascribed to the modification of vacancy defects and the promotion of chemical reaction of TMA with water vapor due to the introduction of hydroxyl groups after the piranha pretreatment.

REFERENCES

- [1] X. She, A. Q. Huang, O. Lucia, and B. Ozpineci, "Review of silicon carbide power devices and their applications," *IEEE Trans. Ind. Electron.*, vol. 64, no. 10, pp. 8193–8205, Oct. 2017, doi: 10.1109/TIE.2017.2652401.
- [2] E. A. Jones, F. F. Wang, and D. Costinett, "Review of commercial GaN power devices and GaN-based converter design challenges," *IEEE J. Emerg. Sel. Topics Power Electron.*, vol. 4, no. 3, pp. 707–719, Sep. 2016, doi: 10.1109/JESTPE.2016.2582685.
- [3] S. J. Pearton et al., "A review of Ga₂O₃ materials, processing, and devices," *Appl. Phys. Rev.*, vol. 5, no. 1, Mar. 2018, Art. no. 11301, doi: 10.1063/1.5006941.
- [4] S. J. Pearton, F. Ren, M. Tadjer, and J. Kim, "Perspective: Ga₂O₃ for ultra-high power rectifiers and MOSFETs," *J. Appl. Phys.*, vol. 124, no. 22, 2018, Art. no. 220901, doi: 10.1063/1.5062841.
- [5] W. Li, K. Nomoto, Z. Hu, T. Nakamura, D. Jena, and H. G. Xing, "Single and multi-fin normally-off Ga₂O₃ vertical transistors with a breakdown voltage over 2.6 kV," in *Proc. IEEE Int. Electron Devices Meeting (IEDM)*, San Francisco, CA, USA, Dec. 2019, p. 12, doi: 10.1109/IEDM19573.2019.8993526.
- [6] Z. A. Jian, S. Mohanty, and E. Ahmadi, "Switching performance analysis of 3.5 kV Ga₂O₃ power FinFETs," *IEEE Trans. Electron Devices*, vol. 68, no. 2, pp. 672–678, Feb. 2021, doi: 10.1109/TED.2020.3043988.
- [7] Y. Wang et al., "Demonstration of β-Ga2O3 superjunctionequivalent MOSFETs," *IEEE Trans. Electron Devices*, vol. 69, no. 4, pp. 2203–2209, Apr. 2022, doi: 10.1109/TED.2022.3152464.

- [8] K. Tetzner et al., "Lateral 1.8 kV β -Ga₂O₃ MOSFET with 155 MW/cm² power figure of merit," *IEEE Electron Device Lett.*, vol. 40, no. 9, pp. 1503–1506, Sep. 2019, doi: 10.1109/LED.2019.2930189.
- [9] Y. Lv et al., "Source-field-plated β-Ga₂O₃ MOSFET with record power figure of merit of 50.4 MW/cm²," *IEEE Electron Device Lett.*, vol. 40, no. 1, pp. 83–86, Jan. 2019, doi: 10.1109/LED.2018.2881274.
- [10] G. He, X. Chen, and Z. Sun, "Interface engineering and chemistry of Hf-based high-k dielectrics on III–V substrates," *Surface Sci. Rep.*, vol. 68, no. 1, pp. 68–107, Mar. 2013, doi: 10.1016/j.surfrep.2013.01.002.
- [11] G. He, J. Gao, H. Chen, J. Cui, Z. Sun, and X. Chen, "Modulating the interface quality and electrical properties of HfTiO/InGaAs gate stack by atomic-layer-deposition-derived Al₂O₃ passivation layer," ACS Appl. Mater. Interfaces, vol. 6, no. 24, pp. 22013–22025, Dec. 2014, doi: 10.1021/am506351u.
- [12] G. Juan et al., "Passivation of Ge surface treated with trimethylaluminum and investigation of electrical properties of HfTiO/Ge gate stacks," *J. Mater. Sci. Technol.*, vol. 33, no. 8, pp. 901–906, Aug. 2017, doi: 10.1016/j.jmst.2017.04.021.
- [13] T. Kamimura et al., "Band alignment and electrical properties of Al₂O₃/β-Ga₂O₃ heterojunctions," *Appl. Phys. Lett.*, vol. 104, no. 19, May 2014, Art. no. 192104, doi: 10.1063/1.4876920.
- [14] T.-H. Hung et al., "Energy band line-up of atomic layer deposited Al₂O₃ on β -Ga₂O₃," *Appl. Phys. Lett.*, vol. 104, no. 16, Apr. 2014, Art. no. 162106, doi: 10.1063/1.4873546.
- [15] M. Hirose et al., "Influence of post-deposition annealing on characteristics of Pt/Al₂O₃/β-Ga₂O₃ MOS capacitors," *Microelectron. Eng.*, vol. 216, Aug. 2019, Art. no. 111040, doi: 10.1016/j.mee.2019.111040.
- [16] Z. Jian, S. Mohanty, and E. Ahmadi, "Deep UV-assisted capacitance– voltage characterization of post-deposition annealed Al₂O₃/β-Ga₂O₃ (001) MOSCAPs," *Appl. Phys. Lett.*, vol. 116, no. 24, Jun. 2020, Art. no. 242105, doi: 10.1063/5.0011144.
- [17] B. Feng et al., "Reduction of MOS interfacial states between β-Ga₂O₃ and Al₂O₃ insulator by self-reaction etching with Ga flux," *Appl. Phys. Lett.*, vol. 118, no. 18, May 2021, Art. no. 181602, doi: 10.1063/5.0048311.
- [18] S. Roy et al., "In situ dielectric Al₂O₃/β-Ga₂O₃ interfaces grown using metal–Organic chemical vapor deposition," Adv. Electron. Mater., vol. 7, no. 11, Nov. 2021, Art. no. 2100333, doi: 10.1002/aelm.202100333.
- [19] A. Jayawardena, R. P. Ramamurthy, A. C. Ahyi, D. Morisette, and S. Dhar, "Interface trapping in (-201) β-Ga₂O₃ MOS capacitors with deposited dielectrics," *Appl. Phys. Lett.*, vol. 112, no. 19, May 2018, Art. no. 192108, doi: 10.1063/1.5019270.
- [20] H. Zhou, S. Alghamdi, M. Si, G. Qiu, and P. D. Ye, "Al₂O₃/β-Ga₂O₃ (-201) interface improvement through piranha pretreatment and postdeposition annealing," *IEEE Electron Device Lett.*, vol. 37, no. 11, pp. 1411–1414, Nov. 2016, doi: 10.1109/led.2016.2609202.
- [21] M. D. Groner, J. W. Elam, F. H. Fabreguette, and S. M. George, "Electrical characterization of thin Al₂O₃ films grown by atomic layer deposition on silicon and various metal substrates," *Thin Solid Films*, vol. 413, nos. 1–2, pp. 186–197, Jun. 2002, doi: 10.1016/S0040-6090(02)00438-8.
- [22] F. Argall and A. K. Jonscher, "Dielectric properties of thin films of aluminium oxide and silicon oxide," *Thin Solid Films*, vol. 2, no. 3, pp. 185–210, Sep. 1968, doi: 10.1016/0040-6090(68)90002-3.
- [23] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. New York, NY, USA: Wiley, 1982.
- [24] S. Gowtham, M. Deshpande, A. Costales, and R. Pandey, "Structural, energetic, electronic, bonding, and vibrational properties of Ga₃O, Ga₃O₂, Ga₃O₃, Ga₂O₃, and GaO₃ clusters," *J. Phys. Chem. B*, vol. 109, no. 31, pp. 14836–14844, Aug. 2005, doi: 10.1021/jp050801u.
- [25] J. D. Guo, F. M. Pan, M. S. Feng, R. J. Guo, P. F. Chou, and C. Y. Chang, "Schottky contact and the thermal stability of Ni on n-type GaN," *J. Appl. Phys.*, vol. 80, no. 3, pp. 1623–1627, Aug. 1996, doi: 10.1063/1.363822.
- [26] J. R. Yeargan and H. L. Taylor, "The Poole-frenkel effect with compensation present," J. Appl. Phys., vol. 39, no. 12, pp. 5600–5604, Nov. 1968, doi: 10.1063/1.1656022.

- [27] S. Fleischer, P. T. Lai, and Y. C. Cheng, "A new method for extracting the trap energy in insulators," *J. Appl. Phys.*, vol. 73, no. 7, pp. 3348–3351, Apr. 1993, doi: 10.1063/1.352934.
- [28] P. W. Peacock and J. Robertson, "Band offsets and Schottky barrier heights of high dielectric constant oxides," J. Appl. Phys., vol. 92, no. 8, pp. 4712–4721, Oct. 2002, doi: 10.1063/1.1506388.
- [29] M. Lenzlinger and E. H. Snow, "Fowler-nordheim tunneling into thermally grown SiO₂," J. Appl. Phys., vol. 40, no. 1, pp. 278–283, Jan. 1969, doi: 10.1063/1.1657043.
- [30] J. Lin, S. Monaghan, K. Cherkaoui, I. M. Povey, B. Sheehan, and P. K. Hurley, "Examining the relationship between capacitance-voltage hysteresis and accumulation frequency dispersion in InGaAs metaloxide-semiconductor structures based on the response to post-metal annealing," *Microelectron. Eng.*, vol. 178, pp. 204–208, Jun. 2017, doi: 10.1016/j.mee.2017.05.020.
- [31] P. H. Carey et al., "Band alignment of Al₂O₃ with (-201) β-Ga₂O₃," Vacuum, vol. 142, pp. 52–57, Aug. 2017, doi: 10.1016/j.vacuum.2017.05.006.
- [32] J. W. Liu, M. Y. Liao, M. Imura, and Y. Koide, "Band offsets of Al₂O₃ and HfO₂ oxides deposited by atomic layer deposition technique on hydrogenated diamond," *Appl. Phys. Lett.*, vol. 101, no. 25, Dec. 2012, Art. no. 252108, doi: 10.1063/1.4772985.
- [33] P. H. Carey et al., "Band offsets in ITO/Ga₂O₃ heterostructures," *Appl. Surface Sci.*, vol. 422, pp. 179–183, Nov. 2017, doi: 10.1016/j.apsusc.2017.05.262.

- [34] D. K. Schroder, Semiconductor Material and Device Characterization. Hoboken, NJ, USA: Wiley, 2006, pp. 342–364.
- [35] H. Dong et al., "C-V and J-V investigation of HfO₂/Al₂O₃ bilayer dielectrics MOSCAPs on (100) β-Ga₂O₃," *AIP Adv.*, vol. 8, no. 6, Jun. 2018, Art. no. 65215, doi: 10.1063/1.5031183.
- [36] D. Biswas, C. Joishi, J. Biswas, K. Thakar, S. Rajan, and S. Lodha, "Enhanced n-type β-Ga₂O₃ (-201) gate stack performance using Al₂O₃/SiO₂ bi-layer dielectric," *Appl. Phys. Lett.*, vol. 114, no. 21, May 2019, Art. no. 212106, doi: 10.1063/1.5089627.
- [37] X. Ma, Y. Zhang, L. Dong, and R. Jia, "First-principles calculations of electronic and optical properties of aluminum-doped β-Ga₂O₃ with intrinsic defects," *Results Phys.*, vol. 7, pp. 1582–1589, Jan. 2017, doi: 10.1016/j.rinp.2017.04.023.
- [38] J. Park and S.-M. Hong, "First principles calculation of band offsets and defect energy levels in Al2O3/β-Ga2O3 interface structures with point defects," *J. Semicond. Technol. Sci.*, vol. 19, no. 4, pp. 413–425, Aug. 2019, doi: 10.5573/JSTS.2019.19.4.413.
- [39] B. Huang, M. Zheng, Y. Zhao, J. Wu, and J. T. L. Thong, "Atomic layer deposition of high-quality Al₂O₃ thin films on MoS₂ with water plasma treatment," ACS Appl. Mater. Interfaces, vol. 11, no. 38, pp. 35438–35443, Sep. 2019, doi: 10.1021/acsami.9b10940.
- [40] H. Wang, H. Zhang, J. Liu, D. Xue, H. Liang, and X. Xia, "Hydroxyl group adsorption on GaN (0001) surface: First principles and XPS studies," J. Electron. Mater., vol. 48, no. 4, pp. 2430–2437, Apr. 2019, doi: 10.1007/s11664–019–07011–1.