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ABSTRACT An analytical model has been developed for stochastic leaky-integrate-and-fire (LIF) neurons
with floating gate (FG) technology. The stochastic behaviors have been modeled extensively for both
individual neurons and populations of neurons. In the FG LIF neurons, the electron injection is governed
by the tunneling process through the gate oxide, leading to the exponential distributions of the injection
time and inter spike interval (ISI) stochasticity. The concept of the population coding is demonstrated
by simulating the stochastic behaviors of the populations of the FG LIF neurons. The ISI stochasticity
enables encoding of the input signals to the population outputs. Spike-to-spike stochasticity improves the
signal-to-noise ratio of the population outputs. Moreover, the shape of the ISI distribution can be controlled
by adjusting the number of electrons to spike (NES). Exponential-like ISI distributions are realized by
reducing the NES. With the exponential-like ISI distributions, the population of fast spiking neurons
increases significantly (more than 10% of neurons spiking twice faster than the mean ISI), potentially
contributing to the fast computation. Finally, step-by-step procedures have been proposed to design the
FG LIF neurons exhibiting the desired neuron characteristics including operation voltage (0.5 V to 3 V),
leaky time constant (<1 us to >10 ms), ISI mean (in the range of 6 orders of magnitude) and stochasticity
(~0 % to ~60 %) as well as the type of the distribution (exponential-like to Gaussian-like).

INDEX TERMS Stochastic neuron, floating gate, population code, inter spike interval, neuron time
constant, leaky integrate and fire, spiking neural networks.

I. INTRODUCTION

PIKING neural networks (SNNs) have been gaining
S attention for the brain-inspired, energy efficient and
error-tolerant computing [1], [2], [3]. Fig. 1(a) shows the
concept of the SNN. Information is encoded in the form
of spikes. The event-based nature of the SNN realizes the
energy efficient computing as there is no energy consump-
tion between the spikes. In the hardware implementation
of SNN chips, synaptic devices and neuron devices are the
key elements to realize the high density and low power
computation.

Nonvolatile memory (NVM) technologies have been
actively investigated for both synaptic devices and neuron
devices [4], [5], [6], [7]. For the synaptic devices storing the
weights, the high density integration is the key to processing

the large amount of the data. NVMs are suitable as the synap-
tic devices owing to their nonvolatility and excellent device
scalability [8], [9].

For the neuron devices, leaky-integrate-and-fire (LIF) is
one of the widely accepted models in SNNs. In the SNN
hardware, the LIF functions could be realized by CMOS
circuits [10], [11]. As an alternative hardware solution for
the neuron circuits, NVM applications to the neuron devices
have been widely investigated to reduce the circuit area and
energy consumption [12], [13], [14], [15]. Fig. 1(b) shows
the simplified concept of the LIF neuron circuit with an
NVM cell. In this circuit, leaky and integrate functions
are built into the single NVM cell as opposed to a large
CMOS circuit including resistors and capacitors. There
are research and development of volatile memory-based
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FIGURE 1. (a) Spiking neural network (SNN). (b) Leaky-integrate-and-fire
(LIF) neuron circuit with NVM neuron device.

neurons [16], [17]. With the volatile-based neurons, the non-
linear activation function (such as sigmoid function) can be
replicated. With the NVM-based neurons, the neuron can
remember the history of the inputs, realizing the LIF function
where the information of the previous inputs is stored.

In addition to the area savings and energy reduc-
tion, another key interest for NVM-based neurons is
the inherent stochasticity originating from NVM device
physics [18], [19]. The spiking stochasticity of the neu-
rons could improve computation efficiency and robustness
[20], [21], [22], [23]. It was reported that the population
of neurons can respond faster than the individual neu-
rons when the spiking stochasticity exists [18], [24]. Also,
it was pointed out that the spiking stochasticity con-
tributes to the SNN computation robustness of asynchronous
operations [25].

ISI distributions of NVM neurons have been studied from
the device physics perspective and the population-based com-
puting perspective. Kornijcuk et al. [13] modeled the ISI
distribution of FG neurons. In that work, LIF and ISI prop-
erties were evaluated by LTspice circuit simulator. The leaky
function was achieved by using the thin tunnel oxide. The
ISI stochasticity was simulated by injecting the thermal noise
and random telegraph noise into the CMOS neuron circuit
and devices. The resultant ISI distributions were shown to
follow the gamma distributions. Tuma et al. [18] experimen-
tally measured ISI distributions of phase-change neurons.
The ISI distributions were fitted to Gaussian distributions
and were attributed to the stochasticity of the crystal growth
in a single neuron as well as inter-neuron variations due to
variations in device fabrication. In addition, the benefit of the
ISI stochasticity on the population code was demonstrated
by simulation.

In our previous work [26], FG LIF neuron characteris-
tics were modeled with the focus on the electron injection
physics and statistics. An analytical model was developed for
leaky and integrate operations. ISI stochasticity was shown
to universally follow the number of electrons to spike.

In this work, the FG LIF neuron model is further extended
to develop the full perspective of the individual neuron
behaviors. In addition, the stochastic behaviors of the popu-
lations of the neurons are simulated. The key advancements
in this work include (1) a complete picture of the ISI target-
ing for FG LIF neurons by engineering device and operation
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TABLE 1. Device parameters for FG LIF neuron.

Device parameter Value ~ Control gate
Block dielectrics thickness 8nm (EOT) + Block dielectrics
Floating gate thickness Snm / Floating gate
- X . _—Tunnel oxide
Tunnel oxide thickness 1.5-7.0nm
Neutral threshold voltage ov Si substrate

parameters, (2) modeling of the time-variable neuron time
constant in FG LIF neurons, (3) demonstration of the pop-
ulation coding function enabled by the ISI stochasticity,
(4) demonstration of noise reduction effects in the popula-
tion coding realized by the spike stochasticity, (5) statistical
analysis for fast responding neurons enabled by the expo-
nential IST distribution and (6) a proposal of step-by-step
procedures to design FG LIF neurons to comprehensively
target al. neuron characteristics for both mean and stochas-
tic behaviors. By using the relation between the LIF neuron
characteristics and device parameters modeled in this work, it
becomes possible to precisely optimize the device and oper-
ation parameters of FG LIF neurons to realize the desired
neuron characteristics including the stochasticity.

Il. FLOATING GATE-BASED LIF NEURON MODEL
LIF functions include ‘leaky’, ‘integrate’, ‘fire’ and ‘reset’
operations. In the ‘integrate’ phase, the neuron receives the
input signals from the previous layer. The membrane poten-
tial of the neuron gradually develops. When the input signals
are absent, the membrane potential decays which is called
‘leaky’ phase. When the membrane potential reaches the
threshold potential, the neuron fires a spike. After the ‘fire’,
the membrane potential is ‘reset’ to the initial value. The
operations of FG LIF neurons can be controlled by the
threshold voltage (Vty) of the FG cell and the threshold
voltage to trigger the spike (V1H_spike). In the FG LIF neu-
rons, ‘leaky’, ‘integrate’, ‘fire’ and ‘reset’ functions can be
reproduced by programming the FG cells (for integrate),
data retention decaying Vty (for leaky), reading Vg (to
detect VTH_gpike for fire) and erasing the FG cells (to reset
the Vg to the initial state). The LIF functions and the
corresponding FG neuron operations are shown in Fig. 2.
The device parameters of the FG LIF neurons are summa-
rized in Table 1. A planar-type FG cell acts as the FG LIF
neuron. The gate coupling ratio is calculated by considering
the thicknesses of the block dielectrics and the tunnel oxide
as well as the fringe capacitance of the floating gate.

A. ISI MODELING

During the integration phase, the input bias is applied to
the control gate. Electrons are injected to FG through the
tunnel oxide by tunneling mechanisms. Both of Fowler-
Nordheim (FN) tunneling and direct tunneling (DT) are
considered in the simulation. The dominant injection mech-
anism is chosen based on the voltage across the tunnel
oxide [27].
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FIGURE 2. Leaky-integrate-fire (LIF) operations in FG cell.

Tox=2nm 3nm

5nm

(solid) FN & DT

(b)
FN tunneling
(Vox>® )

ob-
(3.v)_

Direct tunneling
(Vox<® )
cv;]'"f_'ft_'vox
(3.1v) -

(dotted) FN only

0 2 4 6 8 10
Voltage across oxide [V]

FIGURE 3. Electron injection through tunnel oxide. (a) Calculated J-V
curves. (b) Band diagrams.

FN tunneling current density is calculated by;

2 __B
Jp = AE2 ¢ Fox (1)

DT current density is calculated by a simplified model

in [27];
3
—B[l—(l—%)z}
Eox @
where J;, is the current density, Eqx is the electric field across
the tunnel oxide, and V,x is the voltage across the tunnel
oxide. @y, is the barrier height of the tunnel oxide.

The FN tunneling current (1) is used for Vox>®y while
the DT current (2) is assumed for Vox<®y. Fig. 3(a) shows
the simulated tunneling current density. The band diagrams
of the FN and DT injections are shown in Fig. 3(b). For
the thin oxide at 3 nm or below, the DT injection becomes
dominant especially at the low voltages. This result suggests
the possibility of the low voltage operation by enabling DT
injection with the thin oxide.

The time evolution of Vty for the FG LIF neuron under
the constant gate bias is simulated in Fig. 4(a) by calculating
the amount of the charges due to the tunneling injections. To
produce the LIF neuron function, the Vg needs to be reset
when it reaches the predetermined spike threshold voltage
(VTH_spike)- Fig. 4 (b) shows the simulation results with the
reset operations at Vry_spike = 1.0 V. The reset operation
is completed in 1 psec. And Vrg is brought back to the
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VOLUME 10, 2022

(a) (b) Inter spike interval (ISI)

2.0

15 1.0 Vi spike
E 1.0 V_linput Z.

£ Zo.5
= os =1
00 50 100 150 200 0 100 200
Time [usec.] Time [usec.]

FIGURE 4. Modeled time evolution of Vqy for FG LIF neuron.
(a) Integration without reset. (b) With reset operations at Vyy gpjke-
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FIGURE 5. 1Sl as a function of input voltage with tunnel oxide thickness as
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FIGURE 6. (a) ISl as a function of Vry ¢,ike with tunnel oxide thickness as
a parameter. (b) ISl as a function of input voltage with Vyy ik as
a parameter.

initial Vg of 0 V. By adding the reset operations, Vty
oscillates over time. The interval between the spikes (the
interval between the peaks of Vry) is defined as the inter
spike interval (ISI).

In the FG LIF neuron, ISI is dictated by the program-
ming time of the FG cell under the constant gate voltage.
Because of this, ISI is controllable by adjusting the device
and operational parameters. Fig. 5 shows the ISI dependence
on the input voltage and tunnel oxide thickness. The ISI is
tunable over a very wide range of 6 orders of magnitude.
By using a thin tunnel oxide (< 3 nm), DT becomes the
dominant injection mechanism, and the low voltage opera-
tion (~2 V) is realized. Fig. 6 (a) and (b) show how ISI
fine tuning can be performed under the DT conditions. By
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FIGURE 7. (a) Leaky characteristics comparisons between FG LIF
neuron (red) and LIF model (black). (b) Equivalent circuits for FG LIF
neuron and LIF model. (c) FG LIF neuron time constant dependence on
tunnel oxide thickness.

adjusting VTH_spike OF input voltage, even under the restricted
condition of DT, ISI can be controlled within a range of a few
orders of magnitude.

B. LEAKY CHARACTERISTICS MODELING
Running the FG LIF neuron under the DT condition is critical
to realizing the leaky function, too. In Fig. 7, the leaky
characteristics of the FG LIF neuron are compared with the
widely used LIF neuron model. The key feature of the FG
neuron is found to be the variable time constant.

In the common LIF neuron model, the leaky characteristics
are defined as;

Vit = Vmawyexp (L) 3)
where, V_p () is the membrane potential at time t and Ty LIF
is the time constant of the neuron which is defined as RC. In
Fig. 7, the voltage decay curves for three different tp, 11r
are plotted (black curves).

In the FIG neuron, the leakage originates from the DT
tunneling current in (2). As seen in the curves in red in
Fig. 7(a), the voltage decay of the FG LIF neuron saturates
sooner than that of the LIF model. This means that the time
constant for FG LIF neurons 7, pG increases over the time.
The time constant 7, g is defined as RC where R is the
resistance of the tunnel oxide and C is the capacitance of the
FG cell. Due to the exponential dependence of the tunneling
current on the electric field in (2), which is the nonohmic
conduction, R is variable over the time. The equivalent cir-
cuits dictating the time constant for the FG LIF neurons and
the LIF model are compared in Fig. 7(b). This variable time
constant is a unique characteristic of the FG LIF neuron. The
effect of the variable time constant on the SNN computing
is not clear at this point and requires further investigation.

The leaky characteristics can be controlled by adjusting
the tunnel oxide thickness. Fig. 7(c) shows the leaky time
constant as a function of the tunnel oxide thickness. Due
to the variable time constant of the FG LIF neuron, Ty, FG
is defined for the corresponding T, p¢ to match the time
to reach Vg of 0.8 V (the horizontal line in Fig. 7(a)). As
seen in Fig. 7(c), the leaky time constant of the FG LIF
neuron can be targeted over a very wide range (> 3 orders
of magnitude) by adjusting the tunnel oxide thickness.
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stochastic (red) injections. (b) ISI dynamics for deterministic injection and
stochastic injection.

lil. INDIVIDUAL STOCHASTIC FG-LIF NEURON
In this chapter, the spiking stochasticity is analyzed for the
individual neuron characteristics.

A. ORIGIN OF ISI STOCHASTICITY

Due to the nature of the quantum process of the electron
tunneling, the Vtyg evolution of the FG LIF neuron has
discrete and stochastic characteristics [28], [29].

Fig. 8(a) shows the device scaling effects on dVty
per electron. The dVrty per electron can be as large
as ~200 mV with the device dimension of ~10 nm
because of the very small FG-to-CG capacitance, lead-
ing the quantization of the Vty evolution. In addition, the
time-to-electron injection is stochastic and follows the expo-
nential distribution [28], [30]. This introduces the stochastic
behaviors of the Vg evolution.

Fig. 8(b) shows the simulation results of the time-to-
injection distribution with a mean value of 1 ps. A total
of 10,000 injection events are simulated. In the exponen-
tial distribution, it should be noted that the peak of the
time-to-injection is much shorter than the mean value. The
consequence of this feature will be further discussed in the
Section IV.

After including the quantization and stochasticity effects,
the Vry evolution is simulated in Fig. 9(a). The smooth
curve in blue is from the analytical (deterministic) model.
With the quantization effect, the discrete Vg shift is
observed (black). By adding the stochasticity to the injec-
tion process (red), the time-to-injection shows fluctuations
to shorter or longer than the mean injection time.

The ISI characteristics of the stochastic electron injection
are simulated (the red curve in Fig. 9(b)). The injection time

VOLUME 10, 2022



GODA et al.: STOCHASTIC LIF NEURON MODEL WITH FG-BASED TECHNOLOGY

ELECTRON DEVICES SOCIETY

1st 2nd 3rd 4th n-1th n th

elec. elec. elec. elec. elec. elec. for spike

-\0—\,\0—0—\0— —————— o—lo—» Time
|nJ 1 |n3 2 Tlnj 3 T|n.| 4 tinj_n

Time-to-injection gets longer
due to the Coulomb blockade (E-field reduction)

Inter spike interval (ISI)

FIGURE 10. Process to spike of FG LIF neurons dictated by the
accumulative Poisson injections.

VTH_spike =1.0v vTH_spike =0.2v

x100 x1000

o
N
a

g 8 Stochasticity 5.2% 20 Stochasticity 11.0%
8 g Mean/Sigma = 52.3us/2.72us *2 Mean/Sigma = 3.82us/0.42us
=1 § 6 515
xX o4 10
£z N
g w2 (a) »n 5 (b)
a0 0
50 100 150 200 0 5 10 15 20
Inter spike interval [usec.] Inter spike interval [usec.]
10 x100 25 x1000
£ .
c v 8 Stochasticity 25.5% | »20 Stochasticity 41.1%
o g Mean/Sigma = 58.4us/14.9us g Mean/sigma = 4.70us/1.93us
: g6 315
Ex4 210
c o Q.
55, © [ (d)
0 0
0 50 100 150 200 0 5 10 15 20

Inter spike interval [psec.] Inter spike interval [usec.]

FIGURE 11. ISI histograms for various Vry gpike and device sizes [26].

fluctuates for each single electron injection, resulting in the
stochasticity of ISI. Fig. 10 illustrates the relation between
the electron injection stochasticity and ISI stochasticity.

When there are n number of electrons injected to reach
VTH_spike, the distribution function of a given x (total
injection time, ISI) is given by;

= Z (1/7inj_i) - exp (—x/Tinj_i ) 4)

i=1

f)

where Tipj j is the mean time of the ith electron injection.
It should be noted that the 7, ; increases after each elec-
tron injection due to the Coulomb blockade because the
injected electron reduces the electric field across the tunnel
oxide [30].

B. TARGETING ISI STOCHASTICITY

Fig. 11 shows the simulation results of the ISI distribution
of ~200 spikes with varying the device size and VTH_spike-
The ISI stochasticity is defined as ISI_sigma/ISI_mean
in percentage obtained by the Gaussian fitting of the
IST distributions. Larger ISI stochasticity correlates with
a wider ISI distribution. As seen in Fig. 11, the ISI
stochasticity increases for a smaller device size and smaller
VTH_spikes Which means a fewer number of electrons to
spike (NES) [26].
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As discussed in Fig. 10 and (4), the ISI is the total time of
multiple stochastic electron injections. When more electrons
are injected, the injection time fluctuations are averaged
out, reducing the stochasticity of the total injection time.
Therefore, fewer NESs lead to larger stochasticity due to
the lack of the averaging effect. From this consideration, it
can be stated that the controlling NES is a key to controlling
the ISI stochasticity.

Fig. 12(a) shows the calculated NES for various Vy_gpike
and device sizes. NES can be controlled in a very wide range
from only a few electrons to more than a thousand electrons.
Fig. 12 (b) shows the simulated ISI stochasticity normalized
by NES. The universal relationship between ISI and NES is
confirmed.

These simulations reveal that the FG LIF neuron has
the tunability of ISI stochasticity to a desired value by
controlling the NES by targeting VTH_spike and device size.

IV. POPILATIONS OF STOCHASTIC FG-LIF NEURONS

In the previous chapter, the ISI stochasticity was discussed
by focusing on the single neuron behaviors. In this chap-
ter, the neuron stochasticity is discussed as the behavior of
populations of the neurons.

A. FAST RESPONDING NEURONS

As discussed earlier, the ISI stochasticity is closely tied with
the number of electrons to spike (NES). For a single electron
injection, the ISI distribution exactly follows the exponen-
tial distribution. As the NES increases, the ISI distribution
approaches a Gaussian-like distribution because of the convo-
lution of the multiple exponential distributions with various
mean time-to-injection (shown in (4)).

In Fig. 13, ISI histograms are simulated for two extreme
cases. One is for a very few electrons to spike (NES = 3).
This is the case when the device is small and the VTH_gpike
is set low. The ISI histogram follows an exponential-like
distribution (Fig. 13(a)). The other case is for many electrons
to spike (NES = 350). This is the case for a large device
and high Vy_gpike. The Gaussian-like ISI distribution is seen
(Fig. 13(b)).

As seen in Fig. 13(a), the key feature of the exponential-
like distribution is the asymmetry where the peak of the
ISI distribution is shifted toward a shorter time than the
ISI_mean. Consequently, when there are multiple neurons

865



ELECTRON DEVICES SOCIETY

GODA et al.: STOCHASTIC LIF NEURON MODEL WITH FG-BASED TECHNOLOGY

(a) Exponential-like distribution (b) Gaussian-like distribution

ISI_mean ISI_mean

w 300 20nm x 20nm @ 300 100nm x 100nm
5 Vi spike = 0.2V S Vi _spike = 1.0V
g 200 NES =3 electrons g 200 NES = 350 electrons
g £
= 100 = 100
wv [72)

0 0

0 50 100 150 200 50 60 70

Inter spike interval [usec.] Inter spike interval [usec.]

FIGURE 13. ISI histograms for (a) exponential-like distribution with few
electrons to spike and (b) Gaussian-like distribution with many electrons
to spike.

50%

)

100% [@-o—o—@

o r/‘
40% Deterministic

20% Stochastic

IS
1)
X

Deterministic
30% Stochastic

neurons
®
N
N

20%
10%

relative to ISI_mean

for 10% of

0%

181 (i

0 50 100
Number of electrons to spike (NES)

0 50 100
Number of electrons to spike (NES)

Percentage of neurons spiking
faster than ISI_mean x 0.8

FIGURE 14. Few electron effects on the fast-spiking neurons.
(a) Percentage of neurons spiking faster than ISI_mean x 0.8. (b) ISI of the
fast 10% of neurons.

in a system, the majority of the neurons spike faster than
ISI_mean. This subset of the fast-spiking neurons can rep-
resent the characteristics of the entire population of the
neurons [22]. Hence the population of the neurons can
respond faster than the individual neurons that respond with
ISI_mean.

The characteristics of the fast-spiking neurons are further
investigated from both the quantity and speed perspectives.
Fig. 14 (a) shows the percentage of the neurons spiking faster
than 0.8x of ISI_mean. All of the deterministic neurons spike
exactly at the ISI_mean, so 0% of neurons spike at faster
than ISI_mean x0.8 (blue in Fig. 14(a)).

With respect to the stochastic neurons (red in Fig. 14(a)),
a subset of the neurons spike at a faster rate due to the elec-
tron injection stochasticity. When the NES is large, the ISI
distribution of the stochastic neurons is Gaussian-like with
the tight sigma, therefore, a very small percentage of the
neurons spike faster than the ISI_mean x0.8. On the other
hand, with a small NES such as fewer than ten, approxi-
mately 30% of the neurons spike faster than the ISI_mean
x0.8. due to the exponential-like asymmetric distribution.

Fig. 14 (b) shows the speed of the fast-spiking neuron
sub-set at 10% of the entire population (fast 10% neurons).
For the deterministic neurons (blue in Fig. 14(b)), all neu-
rons respond at ISI_mean (=100% of ISI_mean). For the
stochastic neurons (red in Fig. 14(b)), the 10% fast neurons
spike faster than ISI_mean. When NES is large, the response
time of the fast 10% neurons is about 80% of the ISI_mean.
This means that the populations of neurons response about
20% faster than the single neuron can response. When NES
is scaled to less than 10 electrons, the response time of
the fast 10% neurons can be significantly faster than the
single neuron response time, such as shorter than the 50%
of ISI_mean.
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FIGURE 16. 1y evolution of single neuron and population of spikes.
(a-1) deterministic, single neuron, (a-2) deterministic, populations of
neurons, (b-1) stochastic, single neuron, (b-2) stochastic, populations of
neurons, 30nm x 30nm, VTH_spike = 0.2V.

These results demonstrate the proof of the concept that
the fast response of the populations can be realized by the
exponential-like asymmetric distribution with aggressively
scaled NES.

B. POPULATION-BASED CODING
The population code is one of the coding techniques for
SNNs [31], [32], [33]. Signals are encoded as numbers of
spiking neurons at each time slice. Fig. 15 is a diagram
describing the simulation setup in this work. The input wave-
form consists of the 2 V base bias with the 3 V pulse of
100 s duration. This input waveform is applied to a group
of 300 neurons and the number of spiking neurons is counted
at each time slice. Two types of the neuron characteristics
are simulated. One is a deterministic neuron (blue) and the
other is a stochastic neuron (red).

The simulation results are shown in Fig. 16 for both
individual neuron behaviors (a-1 and b-1) and the neuron
population behaviors (a-2 and b-2). For the individual neuron
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FIGURE 17. Variation and stochasticity effects on spike population.
NES=3. (Size=30nmx30nm, Vry gpike = 200mV). (a) Neuron-to-neuron
variation only (Vry_gigma = 50mV). (b) Variation (neuron-to-neuron) +
stochasticity (spike-to-spike). (c) ISI histograms for 2V input.

behaviors, one neuron was randomly sampled, while all
300 neurons are included in the neuron population behaviors.

The deterministic neuron shows the constant ISI
(Fig. 16 a-1) with a given input bias. Since all neurons have
the exact same ISI, all of the 300 neurons spike simultane-
ously (Fig. 16 a-2). Therefore, the change in the input bias
cannot be detected in the number of spiking neurons. It can
be detected as the modulation of ISI instead.

On the other hand, with the stochastic neurons
(Fig. 16 b-1), the timing of the spikes is distributed among
the spikes. As a result, the change in the input bias can be
detected as the number of spiking neurons (Fig, 16 b-2),
thus enabling the population coding.

Next, the effects from different types of stochasticity are
analyzed. There are two types of spiking neuron stochastic-
ity. One is the neuron-to-neuron variation originating from
the manufacturing process variability. The other is the spike-
to-spike stochasticity in the same neuron originating from
the electron injection stochasticity. NES is set to 3 with
a 30 nm device size and 0.2 V Vry_gpike. Fig. 17 (a) shows
the evolution of the number of spiking neurons when only
the neuron-to-neuron variation is considered. For the FG
LIF neuron device variation, the Gaussian distribution of
50 mV Vg sigma is considered. By introducing the neuron-
to-neuron variability, the change in the input can be detected
by the populations of the spiking neurons. However, the
baseline noise is significant and potentially degrades the
detection capability. Fig. 17 (b) shows the case with the
electron injection stochasticity (spike-to-spike stochasticity)
in addition to the neuron-to-neuron variability of the 50 mV
Vrtu sigma. As seen in the simulation results, the baseline
noise is dramatically reduced by introducing the spike-to-
spike stochasticity. Fig. 17(c) shows ISI histograms with
neuron-to-neuron variation only and with neuron-to-neuron
variation and spike-to-spike stochasticity. ISI stochasticity
increases by adding the spike stochasticity.

To further segment the effect between the type of the
stochasticity and the degree of the stochasticity further, the
large NES of 70 is evaluated in Fig. 18. Fig. 18 (a) corre-
sponds with the case with neuron variation, and Fig. 18 (b)
includes neuron variation and spike stochasticity. The noise
reduction effect is observed with the spike stochasticity even
with the large NES case. Due to the large NES, the degree
of the total ISI stochasticity is almost unchanged by intro-
ducing the spike stochasticity (Fig. 18 (c)). This means that
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FIGURE 18. Variation and stochasticity effects on spike population.
NES=70. (Size=100nmx 100nm, V1Y spike = 200mV). (a) Neuron-to-neuron
variation only (Vry_gigma = 50mV). (bYVariation (neuron-to-neuron) +
stochasticity (spike-to-spike). (c) ISI histogram for 2V input.

the noise reduction effect originates from the type of the
stochasticity as opposed to the degree of the stochasticity.

These results can be understood as follows. When only the
neuron-to-neuron variability is introduced, each neuron still
spikes at a constant interval. Therefore, the number of spik-
ing populations increases when the timing is in accordance
with the common multiples of ISIs from many neurons. This
introduces the periodic peaks of the baseline noise under the
constant input bias. In the contrast, with the spike-to-spike
stochasticity, the ISI of each neuron is not defined, so there
is no peak of the spikes due to the common multiples of ISIs.
As a result, the baseline noise is dramatically suppressed.
Based on this mechanism, the spike-to-spike stochasticity
due to the stochastic electron injection is expected to improve
the computing accuracy in the population coding by reducing
the baseline noise.

In conclusion, in the population coding, the speed of
the response is dictated by the degree of the stochastic-
ity which is further accelerated by the exponential-like ISI
distributions. The noise reduction depends on the type of the
stochasticity, where the spike-to-spike stochasticity plays the
dominant role.

V. STEP-BY-STEP DEVICE DESIGN FOR FG LIF NEURON
Based on the dependencies of the neuron characteristics on
the device and operation parameters revealed in this work,
the step-by-step design procedures of the stochastic FG LIF
neuron device are proposed (Fig. 19). In the proposed proce-
dures, the device parameters are set first as these are tied with
the hardware manufacturing while the operation parameters
can be set later because these parameters can be flexibly set
by the software.

In the first step, the device size is set based on the process
capability. The planar FG cell can be scaled down all the
way below 20 nm [34]. By using the relation given in the
Fig. 8(a), the number of electrons for the desired amount
of the shift of Vg can be obtained. When a smaller device
size is chosen, the stochasticity becomes large due to fewer
number of electrons. If the stochasticity is not needed, a large
device or multiple small devices jointed together can be used.

In the second step, the tunnel oxide thickness should
be determined based on the desired neuron time constant.
Fig. 7 (c) provides the relation between the tunnel oxide
thickness and the neuron time constant. The thinner tunnel
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Corresponding device
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FIGURE 19. Step-by-step procedures for designing FG neuron device and
operation conditions.

TABLE 2. Tunability of neuron characteristics for FG LIF neuron.

Neuron characteristics Tunable range Data
Operation voltage 0.5V~3V Fig. 5&6
Number of electrons to .
spike (NES) <1 ~>1000 electrons Fig. 12
‘Leaky’ time constant <lpsec. ~ >10msec. Fig. 7
ISI_mean psec. ~ sec. Fig. 5&6
- ~0% to ~60% .
ISI_stochasticity D Fig. 12
ISI distribution Exponeutin®kedo Fig.13

Gaussian-like

oxide realizes a short time constant for both ‘integrate’ and
‘leaky’ functions.

Next, in the third step, VTH_spike is set for a desired degree
of the ISI stochasticity. As shown in Fig. 12(b), the stochas-
ticity is a universal function of NES which is dictated by the
combination of the device size and Vy_gpike. Given that the
device size cannot change after the manufacturing, Vy_spike
is the key parameter to adjust the ISI stochasticity post man-
ufacturing. By integrating Vg change per electron given at
the first step and VrH_gpike set at this step, NES can be
fine-tuned to realize the desired ISI stochasticity.

Finally, in step four, the input voltage (Vippu) is deter-
mined for the ‘integrate’ operation. Given that the tunnel
oxide thickness is already set at the previous steps, the
ISI_mean can be set by the input voltage with the relation
shown in Fig. 5 and Fig. 6. By adjusting the input voltage,
the time constant can be independently set between the ‘inte-
grate’ operation and ‘leaky’ operation. This is because the
‘leaky’ time constant is a solo function of the tunnel oxide
thickness while the ‘integrate‘ time constant is determined
by a combination of the tunnel oxide thickness and the input
voltage.

The tunable ranges of the neuron characteristics are sum-
marized in Table 2. In the proposed FG LIF neurons, all of
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the key characteristics (operation voltage, NES, time constant,
ISI mean and stochasticity) are tunable over very wide ranges.

VI. FUTURE CHALLENGES

While the FG LIF neurons have the great advantages in the
tunability of the neuron characteristics as well as the device
scalability, there are several challenges to overcome.

The tunnel oxide reliability is one of the device concerns.
Since the neuron is a switching device, electron injections
and emissions occur at every computing operation, leading
to many program/erase cycles to the FG neuron devices. The
ultra-thin tunnel oxide combined with the very low voltage
operation is expected to relieve the oxide degradation.

The peripheral circuits controlling the FG LIF neurons
should be another challenge. While the FG LIF neurons
replace the large CMOS circuits performing the LIF opera-
tion, the new additional circuits are required to control the FG
LIF neuron operations such as program, erase and read. It’s
critical that the entire neuron circuits are kept small enough
to realize the scaling advantage of the FG LIF neurons.

From the manufacturing perspective, the isolated pattern-
ing of the FG LIF neuron devices would rise the challenge.
Compared to the synaptic array, the neuron circuit tends to
have less dense layout. As a result, the FG LIF neurons can
be placed in a relatively isolated manner. This would cause
the challenge in the patterning especially for the aggressively
scaled device.

For the further model enhancement, while the electron
injection stochasticity is focused in this work, there is an
interest to understand the interactions with other cell noises
such as random telegraph signal (RTN). Integrating various
other noises is required for the more complete model.

These challenges need to be overcome in the future.

VIl. CONCLUSION

An analytical model for the stochastic FG LIF neuron has
been developed. The wide range of tunability of the neu-
ron characteristics is shown and the step-by-step procedures
to design the device and operation conditions are proposed.
The ISI stochasticity originates from the tunneling electron
injection statistics governed by the number of electrons to
spike. The spike response of the neuron population becomes
faster owing to the exponential time distribution of the scaled
FG LIF neurons. In the population coding, the proof of
the concept is demonstrated for the signal-to-noise ratio
enhancement by introducing the spike stochasticity. This
work supports device and operation optimization of the FG
LIF neurons. In addition, this work contributes to develop-
ing insights of inherent stochasticity of NVM devices which
could enable the energy efficient neuromorphic computing.

REFERENCES

[1] W. Maass, “Networks of spiking neurons: The third generation of
neural network models,” Neural Netw., vol. 10, no. 9, pp. 1659-1671,
1997, doi: 10.1016/S0893-6080(97)00011-7.

[2] M. V Debole et al., “TrueNorth: Accelerating from zero to 64 million
neurons in 10 years,” Computer, vol. 52, no. 5, pp. 20-29, May 2019,
doi: 10.1109/MC.2019.2903009.

VOLUME 10, 2022


http://dx.doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.1109/MC.2019.2903009

GODA et al.: STOCHASTIC LIF NEURON MODEL WITH FG-BASED TECHNOLOGY

ELECTRON DEVICES SOCIETY

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82-99, Jan./Feb. 2018,
doi: 10.1109/MM.2018.112130359.
S. Yu, “Neuro-inspired computing with emerging nonvolatile mem-
orys,” Proc. IEEE, vol. 106, no. 2, pp. 260-285, Feb. 2018,
doi: 10.1109/JPROC.2018.2790840.

J. Zhu, T. Zhang, Y. Yang, and R. Huang, “A compre-
hensive review on emerging artificial neuromorphic devices,”
Appl. Phys. Rev.,, vol. 7, no. 1, 2020, Art. no. 11312,

doi: 10.1063/1.5118217.

I. Chakraborty, A. Jaiswal, A. K. Saha, S. K. Gupta, and K. Roy,
“Pathways to efficient neuromorphic computing with non-volatile
memory technologies,” Appl. Phys. Rev., vol. 7, no. 2, pp. 1-30, 2020,
doi: 10.1063/1.5113536.

J. Gupta and D. Koppad, “A survey on memristor and
CMOS based spiking neural networks,” in Proc. 2nd Int.
Conf. Inven. Res. Comput. Appl. (ICIRCA), 2020, pp. 1052-1058,
doi: 10.1109/ICIRCA48905.2020.9183111.

M. Kim et al., “A 3D NAND flash ready 8-bit convolutional neu-
ral network core demonstrated in a standard logic process,” in Int.
Electron Devices Meeting Tech. Dig. (IEDM), 2019, pp. 923-926,
doi: 10.1109/IEDM19573.2019.8993574.

H. T. Lue et al., “Optimal design methods to transform 3D NAND
flash into a high-density, high-bandwidth and low-power nonvolatile
computing in memory (nvCIM) accelerator for deep-learning neural
networks (DNN),” in Int. Electron Devices Meeting Tech. Dig. (IEDM),
2019, pp. 915-918, doi: 10.1109/IEDM19573.2019.8993652.

X. Wu, V. Saxena, K. Zhu, and S. Balagopal, “A CMOS spiking
neuron for brain-inspired neural networks with resistive synapses and
in situ learning,” IEEE Trans. Circuits Syst. I, Exp. Briefs, vol. 62,
no. 11, pp. 1088-1092, Nov. 2015, doi: 10.1109/TCSIL.2015.2456372.
J. M. Cruz-albrecht, M. W. Yung, and N. Srinivasa, “Energy-
efficient neuron, synapse and stdp integrated circuits,” IEEE Trans.
Biomed. Circuits Syst., vol. 6, no. 3, pp.246-256, Jun. 2012,
doi: 10.1109/TBCAS.2011.2174152.

W. H. Brigner et al., “Shape-based magnetic domain wall drift
for an artificial spintronic leaky integrate-and-fire neuron,” [EEE
Trans. Electron Devices, vol. 66, no. 11, pp. 49704975, Nov. 2019,
doi: 10.1109/TED.2019.2938952.

V. Kornijeuk et al., “Leaky integrate-and-fire neuron circuit based
on floating-gate integrator,” Front. Neurosci., vol. 10, pp. 1-16,
May 2016, doi: 10.3389/fnins.2016.00212.

X. Wang et al, “A novel RRAM-based adaptive-threshold LIF
neuron circuit for high recognition accuracy,” in Proc. Int.
Symp. VLSI Technol. Syst. Appl. (VLSI-TSA), 2018, pp. 1-2,
doi: 10.1109/VLSI-TSA.2018.8403854.

M.-H. Wu et al.,, “Extremely compact integrate-and-fire STT-
MRAM neuron: A pathway toward all-spin artificial deep neu-
ral network,” in Proc. Symp. VLSI Technol., 2019, pp. T34-T35,
doi: 10.23919/VLSIT.2019.8776569.

C. Chen et al, “A photoelectric spiking neuron for visual
depth perception,” Adv. Mater, vol. 34, no. 20, pp. 1-9, 2022,
doi: 10.1002/adma.202201895.

H. Mao et al., “A spiking stochastic neuron based on stacked InGaZnO
memristors,” Adv. Electron. Mater., vol. 8, no. 2, pp. 1-7, 2022,
doi: 10.1002/aelm.202100918.

T. Tuma, A. Pantazi, M. Le Gallo, A. Sebastian, and E. Eleftheriou,
“Stochastic phase-change neurons,” Nat. Nanotechnol., vol. 11, no. 8,
pp. 693-699, 2016, doi: 10.1038/nnano.2016.70.

VOLUME 10, 2022

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

(271

[28]

[29]

[30]

[31]

(32]

(33]

[34]

A. Agrawal et al., “Revisiting stochastic computing in the era of
nanoscale nonvolatile technologies,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 28, no. 12, pp. 2481-2494, Dec. 2020,
doi: 10.1109/TVLSI1.2020.2991679.

W. Maass, “Noise as a resource for computation and learning
in networks of spiking neurons,” Proc. IEEE, vol. 102, no. 5,
pp. 860-880, May 2014, doi: 10.1109/JPROC.2014.2310593.

M. D. McDonnell and L. M. Ward, “The benefits of noise in neural
systems: Bridging theory and experiment,” Nat. Rev. Neurosci., vol. 12,
no. 7, pp. 415-425, 2011, doi: 10.1038/nrn3061.

T. Tchumatchenko, A. Malyshev, F. Wolf, and M. Volgushev,
“Ultrafast  population encoding by cortical neurons,” J.
Neurosci., vol. 31, mno. 34, pp.12171-12179, 2011,
doi: 10.1523/JNEUROSCI.2182-11.2011.

B. B. Averbeck, P. E. Latham, and A. Pouget, “Neural correlations,
population coding and computation,” Nature Rev. Neurosci., vol. 7,
pp. 358-366, May 2006, doi: 10.1038/nrn1888.

M. C. W. Van Rossum, G. G. Turrigiano, and S. B. Nelson,
“Fast propagation of firing rates through layered networks of
noisy neurons,” J. Neurosci., vol. 22, no. 5, pp. 1956-1966, 2002,
doi: 10.1523/jneurosci.22-05-01956.2002.

D. S. Jeong, “Tutorial: Neuromorphic spiking neural networks for tem-
poral learning,” J. Appl. Phys., vol. 124, no. 15, 2018, Art. no. 152002,
doi: 10.1063/1.5042243.

A. Goda, C. Matsui, and K. Takeuchi, “Inter spike interval and
stochasticity engineering of floating gate technology-based neu-
rons for spiking neural network hardware,” in Proc. 6th IEEE
Electron Devices Technol. Manuf. Conf. (EDTM), 2022, pp. 129-131,
doi: 10.1109/EDTM53872.2022.9798349.

K. F Schuegraf and C. Hu, “Hole injection SiO; break-
down model for very low voltage lifetime extrapolation,” [EEE
Trans. Electron Devices, vol. 41, no. 5, pp. 761-767, May 1994,
doi: 10.1109/16.285029.

C. M. Compagnoni, R. Gusmeroli, A. S. Spinelli, and A. Visconti,
“Analytical model for the electron-injection statistics during pro-
gramming of nanoscale NAND Flash memories,” [IEEE Trans.
Electron Devices, vol. 55, no. 11, pp. 3192-3199, Nov. 2008,
doi: 10.1109/TED.2008.2003332.

G. Molas et al., “Impact of few electron phenomena on floating-gate
memory reliability,” in Int. Electron Devices Meet. (IEDM) Tech. Dig.,
2004, pp. 877-880, doi: 10.1109/iedm.2004.1419320.

K. Yano et al, “Single-electron memory for giga-to-tera bit
storage,” Proc. IEEE, vol. 87, no. 4, pp. 633-651, Apr. 1999,
doi: 10.1109/5.752519.

D. Auge, J. Hille, E. Mueller, and A. Knoll, “A survey of encod-
ing techniques for signal processing in spiking neural networks,”
Neural Process. Lett., vol. 53, no. 6, pp.4693-4710, 2021,
doi: 10.1007/s11063-021-10562-2.

P. Alexandre, D. Peter, and Z. Richard, “Information processing
with population codes,” Nat. Rev. Neurosci., vol. 1, pp. 125-132,
Nov. 2000, [Online]. Available: www.nature.com/reviews/neuro

H. Fang, Y. Zeng, and F. Zhao, “Brain inspired sequences
production by spiking neural networks with reward-modulated
STDP,” Front. Comput. Neurosci., vol. 15, pp. 1-13, Feb. 2021,
doi: 10.3389/fncom.2021.612041.

S. Lee et al., “A 128Gb 2b/cell NAND flash memory in 14nm
technology with tPROG = 640us and 800MB/s I/O rate,” in Proc.
IEEE Int. Solid-State Circuits Conf. (ISSCC), 2016, pp. 138-139,
doi: 10.1109/ISSCC.2016.7417945.

869


http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/JPROC.2018.2790840
http://dx.doi.org/10.1063/1.5118217
http://dx.doi.org/10.1063/1.5113536
http://dx.doi.org/10.1109/ICIRCA48905.2020.9183111
http://dx.doi.org/10.1109/IEDM19573.2019.8993574
http://dx.doi.org/10.1109/IEDM19573.2019.8993652
http://dx.doi.org/10.1109/TCSII.2015.2456372
http://dx.doi.org/10.1109/TBCAS.2011.2174152
http://dx.doi.org/10.1109/TED.2019.2938952
http://dx.doi.org/10.3389/fnins.2016.00212
http://dx.doi.org/10.1109/VLSI-TSA.2018.8403854
http://dx.doi.org/10.23919/VLSIT.2019.8776569
http://dx.doi.org/10.1002/adma.202201895
http://dx.doi.org/10.1002/aelm.202100918
http://dx.doi.org/10.1038/nnano.2016.70
http://dx.doi.org/10.1109/TVLSI.2020.2991679
http://dx.doi.org/10.1109/JPROC.2014.2310593
http://dx.doi.org/10.1038/nrn3061
http://dx.doi.org/10.1523/JNEUROSCI.2182--11.2011
http://dx.doi.org/10.1038/nrn1888
http://dx.doi.org/10.1523/jneurosci.22--05-01956.2002
http://dx.doi.org/10.1063/1.5042243
http://dx.doi.org/10.1109/EDTM53872.2022.9798349
http://dx.doi.org/10.1109/16.285029
http://dx.doi.org/10.1109/TED.2008.2003332
http://dx.doi.org/10.1109/iedm.2004.1419320
http://dx.doi.org/10.1109/5.752519
http://dx.doi.org/10.1007/s11063--021-10562--2
http://dx.doi.org/10.3389/fncom.2021.612041
http://dx.doi.org/10.1109/ISSCC.2016.7417945


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


