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ABSTRACT A multilayer crossbar array has been developed using amorphous metal-oxide semiconduc-
tor (AOS) thin films and implemented into a neuromorphic system. The multilayer structure can be
realized, because the AOS thin films can be deposited by a simple sputtering method without heat treat-
ment, which does not damage the underlying structures. First, Au thin films are deposited by vapor
evaporation as electrodes, an amorphous In-Ga-Zn-O (α-IGZO) thin film is deposited by a sputtering
method as a conductance change layer, these processes are repeated, and a multilayer crossbar array is
completed, where each of the three conductance change layers is sandwiched between the electrodes.
Next, the multilayer crossbar array is implemented into a neuromorphic system with modified Hebbian
learning, which enables autonomous learning without control circuitry, and an associative memory func-
tion is confirmed, which guarantees the possibility of further advanced functions. These results lead to
astronomical large-scale integration (LSI) of synaptic elements in neuromorphic systems in the future.

INDEX TERMS Multilayer, crossbar array, amorphous metal-oxide semiconductor (AOS), thin film,
neuromorphic system.

I. INTRODUCTION
Artificial intelligences are becoming indispensable technolo-
gies as fundamental infrastructures in various societies, such
as character and image recognition, information search and
supply, language translation and captioning, expert system,
automatic driving, autonomous brains, etc [1]–[3]. Neural
networks serve as representative manners of artificial intel-
ligences, which mimic operation principle of biological
brains [4]–[8]. However, the traditional ones are redun-
dant and intricate software to conveniently run high-spec
Neumann-architecture computer hardware, which is not cus-
tomized for neural networks, and the machine size is
incredibly bulky and power dissipation is also unbelievably
huge. Neuromorphic systems provide bioinspired systems
from the device level and practical solutions that compose

neural networks solely of customized hardware, whose
advantages are self-organization, self-learning, parallel dis-
tributed computing, and fault tolerance, and the machine size
can be compact and power consumption can be low [9]–[12].
However, the conventional ones are based on silicon device
and circuit technologies, whose disadvantages are that they
are digital circuits and have two-dimensional structure, which
are completely dissimilar from biological brains. The digital
circuit require more circuits than analog devices, and the
two-dimensional structure of course has a limitation to high
integration than the three-dimensional structure. Crossbar
arrays of memristors are promising suggestion beyond the
silicon technologies [13], [14]. On the other hand, amor-
phous metal-oxide semiconductor (AOS) thin films are being
investigated for diverse applications [15]–[27] and proposed
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TABLE 1. Comparison of neuromorphic systems.

also for neuromorphic systems [28]–[38], whose advantages
are that they have analog characteristic [39] and can have
three-dimensional structure [40].
In this study, a multilayer crossbar array has been

developed using AOS thin films and implemented into a neu-
romorphic system. The multilayer structure can be realized
as three-dimensional structure, because the AOS thin films
can be deposited by a simple sputtering method without
pre-, in-situ-, and post-heat treatment, which does not dam-
age the underlying structures. In this paper, first, the device
structure and fabrication processes of the multilayer crossbar
array will be explained. Next, the multilayer crossbar array
will be implemented into a neuromorphic system with mod-
ified Hebbian learning [41], and a neuromorphic function
will be confirmed. These results will lead to the feasibil-
ity of astronomical large-scale integration (LSI) of synaptic
elements in neuromorphic systems in the future.

II. MULTILAYER CROSSBAR ARRAY OF AMORPHOUS
METAL-OXIDE SEMICONDUCTOR THIN FILMS
The multilayer crossbar array of AOS thin films is shown in
Fig. 1. The cross-sectional illustration is shown in Fig. 1(a),
and the overview photograph is shown in Fig. 1(b). The
device structure is extremely simple, where each of the
three conductance change layers is sandwiched between
the electrodes. The fabrication processes are as follows.
First, a quartz glass substrate is prepared, whose thick-
ness is 0.7 mm and size is 3 × 3 cm. Next, a Au thin
film is deposited by vapor evaporation, whose thickness is
80 nm, and patterned through a metal mask, whose line
and space widths are 1.2 and 1.2 mm and number of lines
is 10, as the first electrodes. Sequentially, an amorphous
In-Ga-Zn-O (α-IGZO) thin film is deposited by radio-
frequency (RF) magnetron sputtering method with a ceramic
target of In:Ga:Zn=1:1:1, sputtering gas of Ar:O2=5:15,
deposition pressure of 2 Pa, and plasma power of 60 W,
at room temperature, whose thickness is 90 nm, as the
lower conductance change layer. Then, a Au thin film is
again deposited through the metal mask, which is placed
orthogonal to the first electrodes, as the second electrodes.
Repeatedly, the α-IGZO and Au thin films are deposited two

FIGURE 1. Multilayer crossbar array of amorphous metal-oxide
semiconductor thin films.

FIGURE 2. Resistance change over time by voltage application.

more times, as the middle conductance change layer, third
electrodes, upper conductance change layer, and fourth elec-
trodes. Finally, a multilayer crossbar array of AOS thin films
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FIGURE 3. Implementation into a neuromorphic system.

is completed, where each of the three conductance change
layers is sandwiched between the electrodes, the first and
third electrodes constitute the vertical electrodes of 20 lines,
and the second and fourth electrodes constitute the horizon-
tal electrodes of 20 lines, and it can be said 10 × 10 × 3 =
300 crosspoint-type devices using AOS conductance change
layers are integrated in three-dimensional structure. The
cross- section-polisher scanning-electron-microscope (CP-
SEM) photograph is shown in Fig. 1(c). It should be noted
that the first and third electrodes are staggeredly located,
and the second and fourth electrodes are also the same, as
shown in Fig. 1(b). In addition, they are patterned through
a metal mask, and the electrode edges are gently sloping,
as shown in Fig. 1(c). As consequence, there is no coverage
problem. If they should be patterned by photolithography,
some revision would be needed.
The resistance change over time by voltage application is

shown in Fig. 2. A voltage of 3 V is applied, currents are
measured, the resistance is obtained, and its ratios to the ini-
tial values are plotted. It is found that the resistance increases
with time. The mechanism of the resistance increases is spec-
ulated as follows [29]. The first candidate is the decrease
in oxygen vacancies due to the uptake of oxygen atoms.

The oxygen atoms in the IGZO lattice or from outside the
IGZO thin film move to the oxygen vacancies and annihi-
late them, the oxygen vacancies that act as donors decrease,
and free electrons decrease. The second candidate is the
increase in trap states due to impact of the free carriers
in the AOS conductance change layer. The free electrons
are accelerated and collide to the IGZO lattice, trap states
are generated and capture free electrons, and free electrons
decrease and are simultaneously scattered by them. In any
case, the resistance changes can be regarded as an ana-
log memristive characteristic and utilized for the modified
Hebbian learning [39], [41].

III. IMPLEMENTATION INTO A NEUROMORPHIC SYSTEM
The implementation into a neuromorphic system is shown
in Fig. 3. The overview photograph is shown in Fig. 3(a).
Neuron elements are formed externally in an FPGA board
and connected to the multilayer crossbar array of AOS thin
films as synapse elements, which are controlled by a personal
computer.
The training phase is shown in Fig. 3(b). Here, the blue

arrows indicate the directions of signals, blue bright and
dark squares indicate on and off input signals, and blue
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bright and dark rhombuses indicate positive and negative
input voltages. During the training phase, either high train-
ing voltages of ±3 V or no voltage is applied between the
horizontal and vertical electrodes, so that the conductance
change is induced in the conductance change layers, which is
the modified Hebbian learning. Namely, the blue bright and
dark rhombuses indicate +1.5 V and −1.5 V, respectively. If
the voltage of either ±3 V is applied to the crosspoint-type
device, the conductance change is induced, and otherwise,
it is not induced. It should be noted that the training volt-
ages themselves and their inverted voltages are applied to
the neighboring electrode pairs, by which bias in the sign
of the voltage can be avoided.
The inference phase is shown in Fig. 3(c). Here, the green

arrows indicate the directions of signals, green bright and
dark squares indicate on and off input signals, green bright
and dark rhombuses indicate positive and negative input volt-
ages, red bright and dark rhombuses indicate positive and
negative output voltages, and red bright and dark squares
indicate on and off output signals. During the inference
phase, low input voltages of ±0.1 V are applied to only
the horizontal electrodes, so that the resistance change is
not induced. Namely, the green bright and dark rhombuses
indicate +0.1 V and −0.1 V, respectively. After currents
flow through the circuit built by the crosspoint-type devices,
the voltages are determined at all nodes. Some output volt-
ages are measured from the vertical electrodes, and they
are distinguished as either on or off signals depending on
whether they are positive or negative in the corresponding
neighboring electrodes pairs. Namely, the red bright and
dark rhombuses indicate some positive and negative volt-
ages, respectively. If one output voltage is positive and the
other neighboring voltage is negative, they are distinguished
as on signals, and vice-versa, they are distinguished as off
signals. Because the input voltage is low, the output voltage
is also low, but it is easily possible to check only the sign.
It should be noted that the output voltages are feedbacked
to the input voltages until the steady state after dynamic
behavior of the neuromorphic system. This is because the
initial output voltage may be altered after they are feed-
backed, and the final output voltage is supposed to fall into
the minimum energy state of this system, that is, the trained
voltage pattern during the training phase.

IV. ASSOCIATIVE MEMORY FUNCTION
The associative memory function is shown in Fig. 4. The
algorithm is shown in Fig. 4(a). During the training phase,
alphabet characters of “T” and “L” are learned. First,
a two-dimensional pixel pattern of 3×3 pixels of “T” is
transformed to a one-dimensional signal pattern of 9 compo-
nents, and the signal pattern is inputted to the neuromorphic
system, namely, the corresponding voltages and inverted volt-
ages of 18 pieces are applied to the horizontal and vertical
electrodes for 1 second. Next, a signal pattern of “L” is
similarly inputted in sequence. During the inference phase,
alphabet characters of “T” and “L” are reproduced. First,

a slightly distorted pixel pattern, namely, a one-pixel flipped
pattern of 3×3 pixels of “T”, is transformed to a signal
pattern of 9 components, the signal pattern is inputted to
the neuromorphic system, namely, the corresponding volt-
ages and inverted voltages of 18 pieces are applied to the
horizontal electrodes for 1 second, some signal pattern is
outputted, namely, the corresponding voltages and inverted
voltages of 18 pieces are measured from the vertical elec-
trodes, the one-dimensional signal pattern of 9 components is
transformed to the two-dimensional pixel pattern of 3×3 pix-
els, and the outputted pixel pattern is compared with the
alphabet characters of “T”. Subsequently, these procedures
are repeated also for different distorted pixel patterns. Next,
slightly distorted signal patterns of “L” are inputted, and the
outputted pixel pattern is compared with the alphabet char-
acters of “L”. Then, these procedures are reiterated many
times.
The experimental results are shown in Fig. 4(b). It is

confirmed that the alphabet characters of “T” and “L” are
successfully learned, namely, the alphabet characters of “T”
and “L” are successfully reproduced, except for one failure
example, which may be due to the unwanted deviation of
the analog memristive characteristic of the multilayer cross-
bar array of AOS thin films. In any case, it can be said
that an associative memory function is confirmed. It should
be noted that the associative memory function is confirmed
in practical time, although the resistance change is slow, as
shown in Fig. 2. This is because output voltages are deter-
mined by majority vote of the crosspoint-type device, where
even the small differences in the resistance values are mean-
ingful. Moreover, it is expedient, because multiple overrides
of various trainings become possible.
The comparison of resistance change between theory and

experiment is shown in Fig. 5. The voltage application com-
bination is shown in Fig. 5(a). During the training phase,
voltage is applied or not for each crosspoint-type device
for each “T” and “L”, and therefore there are three voltage
application combinations: Combination 1, where no volt-
age is applied and the conductance change is not induced;
Combination 2, where voltage is applied in only one case;
and Combination 3, where voltage is applied in both cases.
Therefore, the resistance difference between Combination 1
and Combinations 2 and 3 corresponds to the conductance
change during the training phase.
The experimental results are shown in Fig. 5(b). The resis-

tance is measured for all the crosspoint-type devices using
AOS conductance change layers after the training and infer-
ence are successfully done, and its values are plotted for each
voltage application combination. The resistance values for
the crosspoint-type devices where the alphabet characters
are successfully reproduced are plotted with the standard
deviations in the figure above. It is found that the resis-
tance value increases as the number of voltage application
case increases, which is as expected. It should be noted that
the alphabet characters are successfully reproduced, although
the resistance change is small and the standard deviations
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FIGURE 4. Associative memory function.

a quite large, which is covered because the inference is
done by a majority vote of many crosspoint-type devices.
Moreover, the resistance values for the one failure exam-
ple shown in Fig. 4(b) is also plotted in the figure below.
The relationship of the resistance values between the volt-
age application combination is not as expected, namely, the
resistance value for Combination 2 must be less than but is
actually more than that for Combination 3, which clarifies
that the failure example is due to the unwanted deviation of
the analog memristive characteristic. Therefore, this problem
will be solved by improving the characteristic uniformity of
the crosspoint-type devices.
The power consumption can be considered as follows.

Because the resistance value is several k� as shown in
Fig. 5(b), the power consumption per crosspoint-type device

is several mW when a voltage of ±3 V is applied dur-
ing the training phase and several µW when a voltage of
±0.1 V is applied during the inference phase, respectively.
Because the size is 1.2 × 1.2 mm, the power consumption
per area in the crosspoint-type device is several mW/mm2

during the training phase and several µW/mm2 during the
inference phase, respectively. Although the size is currently
large, if the crosspoint-type device is miniaturized down to,
for example, 100 × 100 nm, the power consumption per
crosspoint-type device is several tens pW during the train-
ing phase and several tens fW during the inference phase,
respectively. Even if 100 trillion synapses, which is the same
number as in a human brain, are integrated, the power con-
sumption will be several W at most, which is less value than
in a human brain.
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FIGURE 5. Comparison of resistance change between theory and
experiment.

V. CONCLUSION
A multilayer crossbar array has been developed using AOS
thin films and implemented into a neuromorphic system.
The multilayer structure can be realized as three-dimensional
structure, because the AOS thin films can be deposited by
a simple sputtering method without heat treatment, which
does not damage the underlying already deposited structures.
First, Au thin films were deposited by vapor evaporation as
electrodes, an α-IGZO thin film was deposited by a RF mag-
netron sputtering method as a conductance change layer,
and these processes were repeated. A multilayer crossbar
array was completed, where each of the three conductance
change layers was sandwiched between the electrodes, and
a lot of crosspoint-type devices using AOS conductance
change layers were integrated in three-dimensional struc-
ture. Next, the multilayer crossbar array was implemented
into a neuromorphic system with modified Hebbian learning,
which enables autonomous learning without control circuitry.
Alphabet characters were learned during the training phase,
and they were reproduced during the inference phase. It can
be said that an associative memory function was confirmed,
and the comparison between theory and experiment was also
verified, which guarantees the possibility of further advanced
functions. These results lead to astronomical LSI of synaptic
elements in neuromorphic systems in the future.
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