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ABSTRACT This study examined the temperature-related piezoresistance issues of p-type doped 3C-silicon
carbide (3C-SiC) materials. Previously, we proposed piezoresistance temperature models that describe
phenomena based on the ionization energies of materials oriented for high-temperature operations. This
study aimed to determine the ionization energy as a function of the aluminum doping concentration of
3C-SiC. However, at the low-temperature region a drastic decrease in the piezoresistive coefficient was
observed, and it was predicted to occur when materials possessing large impurity ionization energy are
used under negative thermal strained conditions. This phenomenon is in contrast to the conventional
piezoresistance factor P(N, T) that is based on narrow band-gap materials such as silicon or germanium;
thus, it provides new insights into low-temperature piezoresistance phenomena.

INDEX TERMS 3C-SiC, aluminum acceptor, device simulation, piezoresistance, temperature, wide band-

gap semiconductors.

I. INTRODUCTION

Wide band-gap (WBG) semiconductors such as silicon car-
bide (SiC) are crucial to the power electronics field owing to
their excellent material properties of high breakdown robust-
ness and temperature tolerance, which improve the reliability
of semiconductor devices [1], [2]. Among the material prop-
erties, there exist both advantages and disadvantages for
electron devices. The incomplete ionization is an important
physics concept in WBG semiconductors because the impu-
rity levels are formed at deeper levels from the conductive
or the valence band as compared with silicon [3]. Moreover,
the free carrier concentration must be reconsidered using
the ionization energy of the dopant [4]. Incomplete ioniza-
tion affects device reliability, which can further cause a high
electric field and device breakdowns [5], [6].

In particular, acceptor doping presents serious problems
owing to its larger ionization energy [3], [5]. At room
temperature, the activation ratio of the acceptor dopant is
extremely small and the free carrier concentration is much
smaller than the intended doping concentration. Therefore,

the design of WBG material-based electron devices with
optimized performance and sufficient reliability must con-
sider this effect. Among WBG materials, SiC is one the most
attractive materials for robustness against severe conditions
such as high temperatures, mechanical stresses, and chemical
corrosions. SiC has several polytypes, with 4H-, 6H-, 2H-,
3C- and 15R- being the major ones. Among these polytypes
the 4H-, 6H- and 3C-SiC are commonly used. Currently, 4H-
and 6H- are the primary targets of research; however, the
3C-SiC polytype offers unique potential in the power elec-
tronics field or in micro electromechanical systems (MEMS),
with its narrower band-gap energy of approximately 2.2
eV [7]-[9]. The most important acceptor for 3C-SiC is alu-
minum because it is known to have the smallest ionization
energy [9]. However, the ionization energy strongly depends
on the doping concentration [3], [4], and this aspect has not
been well researched for 3C-SiC.

We previously proposed a method to determine the
ionization energy from the temperature response of
the piezoresistive effect [10], which is useful for determining
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TABLE 1. Simulation modeling of 3C-SiC.

Physics Value

Crystal direction [13], [14] <110>

Young’s modulus £ [GPa] [15] 330

Poisson’s ratio v [16] 0.267

Thermal expansion coefficient o [1/K] [17] | 5 x 10797 +2 x 10~6
Bandgap energy E ;o [eV] [9] 2.39

Bandgap energy parameter o [eV/K] [9] 6.00x1073
Bandgap energy parameter 5 [K] [9] 1,200

Doping concentration Ny [em™3] [13], [14] 5%1018, 2% 1019 (p-type)
Temperature dependence of mobility [18] (T/300)—2->

the ionization energy under several conditions, including dif-
ferent doping concentrations. This study aimed to determine
the doping concentration dependence of the ionization energy
of 3C-SiC with an aluminum acceptor. The ionization energy
determinations were made based on the gauge factor (GF)
measurements for different temperatures. Moreover, after
combining the reported values it was determined as a func-
tion of doping level. However, simulations with insertions of
ionization energy revealed drastic decreases in piezoresistive
coefficients at low-temperature environments. This is in con-
trast to the generally known piezoresistance factor P(N, T),
which expresses increases in piezoresistive coefficients with
decreases in temperature [11], [12]. It is predicted that the
acceptor doping in WBG semiconductors can result in this
phenomenon, owing to its larger ionization energy beyond
3kT (k is the Boltzmann’s constant and T is the temperature)
at low-temperature environments. Although further research
is required, these results can provide new insights concerning
low-temperature oriented physics in this field.

Il. UNDERLYING PHYSICS

A. INCOMPLETE IONIZATION

Incomplete ionization is important for WBG materials other
than silicon devices [3]-[5]. The doping for these materials
forms deep dopant levels that are higher than the ther-
mal energy kT. Therefore, at room temperature, the thermal
energy is not sufficient to activate all dopants, and the free
carrier concentration becomes smaller than the intended dop-
ing concentration. The energy between the dopant level and
the conductive or the valence band is referred to as ‘ion-
ization energy’ or ‘activation energy’ (‘ionization energy’ is
used herein).

This effect is relatively prominent for an acceptor that
forms much deeper-lying impurity levels as compared with
donor doping. For SiC, the acceptor has an ionization energy
larger than 100 meV, which implies that most dopants do
not provide free carriers; this affects fundamental device
operations. The most common acceptor dopant in SiC is
aluminum; however, its ionization energy is higher than 200
meV [9] at the shallow-doped region. The ionization energy
is affected by the doping concentration, and heavy-doping
tends to lower it [3]. From a certain perspective, this effect
can affect even the reliability of the device [5]; this is partic-
ularly serious for power electronics that require robustness
against high voltages or high temperatures.
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B. PIEZORESISTIVE EFFECT

The piezoresistive effect presents the resistivity change of
a material under stressed conditions [19], and its primary
application is mechanical stress sensing that features high
sensitivity and good linearity against the applied force. The
expression of the resistivity change is expressed as

AR
- =7T[U[+7T10[. (1)
Re

where R is the resistance of the material, ¢ is the applied
strain, and 7 and o are the piezoresistive coefficient and the
stress, respectively (each suffix of ‘I’ and ‘t’ corresponds to
the longitudinal and the transverse direction).

The increase in the temperature results in a decrease in
the piezoresistive coefficient, and our previous work found
that the temperature dependence of the value is determined
by the ionization energy [10]. The ionization energy of the
material E,, is expressed by using the ionization energy
of boron in silicon Eg; and the temperature dependence of
the piezoresistive coefficient against 7y/7T (Tp is the room
temperature) at the linear region; a,, as

1

Emat = ESi- (2)

Amat
where the value Eg; is 43.3 meV [20]. This expression
enables the determination of the ionization energy from the
temperature dependence of the piezoresistive effect.

1Il. SIMULATION MODELING

The simulation was based on 2D modeling, including the
mechanical stress simulation for obtaining the stress pro-
files and the electrical simulation for calculating the I-V
characteristics under applied stress.

The mechanical stress simulation was performed using
COMSOL Multiphysics Ver5.5 [21]. The electrical simu-
lation was conducted using the original device simulator
wherein the piezoresistive mobility model was imple-
mented [22], [23]. The simulation considered thermal expan-
sion that is related to the temperature variation. Strain
reference temperature of 20 °C is used for expressing thermal
expansion [21]. Therefore, when the temperature is higher
than this the material expands and shrinks at the lower
temperature [24]. The validity of the proposed simulation
modeling has already been verified in a previous work [10],
and the same modeling was applied in this study. The effec-
tive mass of 1.32 for the holes was used in this study to
account for the crystal orientation in <110> [25].

IV. RESULTS AND DISCUSSION

A. ALUMINUM-DOPANT IONIZATION ENERGY IN 3C-SIC
The determination of the ionization energies is detailed first.
Our previous work showed that the GF and piezoresistive
coefficient exhibit the same trends against the temperature
ratio To/T. Therefore, the ionization energies were estimated
on the basis of the experimental results. Experiments that
investigated the piezoresistive temperature response for two
doping concentrations—5 x 10'® cm™3 and 2 x 10! cm™3
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FIGURE 1. Temperature responses of the gauge factor ratios [13], [14] and
corresponding ionization energies.

were examined [13], [14]. Experimental data from refer-
ences [13], [14] were used to fit the simulation results in
terms of gauge factor, doping density, and ionization energy.
It resulted in the following conclusion. Figure 1 shows the
temperature responses of the GF ratios against T(/T for the
doping concentrations of 5x10'® ¢cm™3 and 2x10'° ecm~3.
Using the GF values and the GF at room temperature GFj,
the linear approximations of the two conditions are

GF/GFy = 0.217(Ty/T) + 0.779 3)
for 5 x 108 ¢cm™3 and

GF/GFy = 0.542(Ty/T) + 0.481 4
for 2 x 101 em—3, respectively. Here, for 2 x 109 ¢m—3
the linear approximation was estimated until a temper-
ature of 200 K was reached, and the decrease in GF
values with temperature was noted. Thus, on the basis
of these approximations, the ionization energy can be
determined as follows: 200 meV for 5 x 10'® cm™3
(Esy 1018 = 43.3 meV/0.217 = 200 meV) and 79.9 meV
for 2 x 101 em™3 (E5, ;18 = 43.3 meV/0.542 = 80 meV).

The determination of the ionization energy as a function
of the doping concentration is the primary goal of this study.
We used the reported ionization energies of 260 meV as the
unintentionally-doped condition (treated as 1 x 10'® cm™3
in this study), 268 meV at the low-middle value corre-
sponding to 10'® cm™3 (treated as 3 x 10 cm™3 in
this study), 216 meV at 1.5 x 10'8 ¢cm=3, and 160 meV
at 5.5 x 10" cm™3, mainly at the middle-doped region
[9], [26]-[29]. The obtained result of the middle- and heavy-
doped conditions enabled the derivation of the model, and
the ionization energy expression was determined as the logis-
tical style [3]. The expression of ionization energy Ejg;
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FIGURE 2. lonization energy of the aluminum dopant in 3C-SiC as a
function of doping concentration.

(unit = meV) is
B 265
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as a function of acceptor doping concentration N4. The ion-
ization energy data were concentrated at the middle-heavy
doped region; however, the change of the ionization energy
began at approximately 10'8 cm™3; therefore, the proposed
ionization energy model was considered to be sufficiently
reliable [3]. The R? value obtained was 0.929, which ensures
the usefulness of the proposed expression.

Eqp )

B. PIEZORESISTIVE COEFFICIENT IN 3C-SIC
This study simulated the piezoresistive sensor phenom-
ena using the derived ionization energies. The piezoresis-
tive coefficients that reproduce the GF values of experi-
ments [13], [14] were determined via numerical simulations.
As shown in Fig. 3, a drastic drop in the piezoresis-
tive coefficient at the low-temperature region was observed.
Further, large errors were observed between the realistic GF
values and GF values calculated using the estimated piezore-
sistive coefficients from GF experiments. This result is in
contrast to the high-temperature region, where the piezore-
sistive coefficient transition follows the GF value against the
temperature, as shown in previous results [10] and the result
of 5 x 1018 ¢m~3. On the basis of these trends, a large GF
was expected at low temperatures of 200-150 K; however,
the realistic experimental results show relatively small GF
values of approximately 30-40 [14]. The simulation con-
sidered the strain reference temperature (the temperature of
thermal strain is zero) as 20 °C and it is considered that
thermal shrinkage causes this phenomenon. At the shrunk
condition, larger stress occurred inside the device causing
strain, which in turn induced a larger piezoresistive effect, as
shown in Fig. 4. This study used a Young’s modulus of 330
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FIGURE 3. Piezoresistive coefficients against the temperature and
corresponding gauge factors.
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FIGURE 4. Longitudinal-direction stresses of w/strain (cantilever's 100 n¢)
and w/o strain (only thermal strain) under the room temperature.

GPa, and the temperature dependence of Young’s modulus in
3C-SiC is almost negligible [15]. However, the experimental
results [14] indicate that the GF value is much smaller than
the large longitudinal stress. Therefore, a small piezoresistive
coefficient is necessary as the temperature lowers.

The results obtained at the low temperature were
in contrast to the previous reports that considered the
larger piezoresistive coefficient as the temperature decreases
[11], [12]. In addition, the experimental results regarding p-
type silicon also showed increased piezoresistive coefficients
at the low temperature [30], [31], with these results appear-
ing to follow the piezoresistance factor P(N, T). Here, the
treated material of 3C-SiC featured a wide band-gap, and the
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FIGURE 5. Piezoresistive coefficients n44 for two doping concentrations
against the temperature.

ionization energy of the dopant, particularly for the accep-
tor, provides large ionization energy. Further, the predicted
value based on GF is 80 meV. The energy of 80 meV
is approximately identical to the thermal energy of 3kT at
room temperature, wherein the value is 77.6 meV. Moreover,
at room temperature, the piezoresistive coefficient becomes
8.8 x 107! Pa~!; the value is almost equal to the reported
value at 5 x 10'® cm™3 of 9.1 x 10~!! Pa~!. Consequently,
considering the smaller value with increases in the dop-
ing level, this value is considered to be reasonable [32].
The p-type silicon exhibited a maximum value of under 45
meV [33], and the corresponding thermal energy of 3kT was
obtained at a temperature of 175 K (=~ —-100 °C). The value of
3kT relates to degeneration; therefore, it was considered that
the WBG semiconductors that provide the larger ionization
energy, particularly for acceptors, are critical to this phe-
nomenon. The results in [30], [31] are those of temperatures
beyond it; therefore, it can be concluded that piezoresistive
coefficient drops are avoided.

Low-temperature situations render activating carriers from
the impurity level to the conductive (or valence) level
challenging. The piezoresistive effect originates from the
carrier activation enhancements. Therefore, in the low-
temperature situations, the piezoresistive coefficient should
be small because the carrier activation becomes difficult. The
results of our previous work regarding high-temperature [10]
showed that the piezoresistive coefficient transitions to GF
values were followed even in cases of large ionization
energy conditions such as p-type doped 4H-SiC (200 meV).
Considering the difference, the mechanical stress factor
can be another condition; under thermal shrinkage, the
temperature is under the strain reference temperature of
20 °C.
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In conclusion, there appears to be two conditions that
result in a drop in the piezoresistive coefficient at low-
temperature environments: 1) a smaller 3k7 than the
ionization energy, and 2) thermal shrinkage that occurs
at a lower temperature than the strain reference tem-
perature (in general it is 20 °C). Subsequently, we can
estimate the ‘negative effect’ of both the electrical (thermal
energy 3kT is smaller than impurity ionization energy) and
mechanical (temperature is under the strain reference tem-
perature and causes thermal shrinkage) effects corresponding
to it.

Finally, from the results shown in Fig. 3, the piezoresis-
tive coefficient element 744 in aluminum-doped 3C-SiC was
determined. The <110> longitudinal piezoresistive coeffi-
cient can be approximated as m44/2 by their small values
of w1 and myp, and the values in Fig. 5 were obtained
by multiplying them. Regarding the results of 5 x 10'8
cm ™3, the value at the room temperature was slightly smaller
than the reported value [32]. This is because of the small
GF experimental value at room temperature. However, it is
reckoned that the obtained value is within the errors of GF
experiments. Moreover, the piezoresistive coefficient at low
temperatures varies exponentially as a function of thermal
energy, as follows:

m; , 3kT
= 2" exp( = ). 6
= eXp(kTo) ©

i)

until the temperature at which 3k7 = 80 meV, the value of
Eipyp. It is considered that the 744 corresponds to the shear
orientation. Therefore, at the thermally shrunk condition,
this shear-oriented piezoresistance is weakened and appears
as the small piezoresistive coefficient. Further, considering
the large m44 that appears at the p-type doping [34], this
phenomenon becomes important for p-type doped semicon-
ductors. Impurity ionization is determined by the ionization
energy and effective mass of the material [4], and this
function expresses the decrease in thermal energy and the
inability to activate the conduction (or valence) band.

In addition, an analytical report of silicon-based pressure
sensors showed decreased output at low temperatures [35].
The report concerned p-type silicon, and although the change
was relatively small compared to our results in the case of
SiC, a similar phenomenon is observed; the results sup-
port the theory that the phenomenon becomes important
for acceptor dopant that has a large ionization energy.
However, regarding WBG materials that feature larger ion-
ization energy, there is a paucity of studies [36], and
further research is required to understand this phenomenon.
However, the findings herein can provide new insights in
this field related to the thermal effects of both electrical and
mechanical issues.

V. CONCLUSION
This study evaluated the temperature-related issues of p-type
3C-SiC. First, the aluminum ionization energy in 3C-SiC was
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determined based on the GF temperature trends from exper-
imental results, as Eq; = 265/(1 + (Na/1 x 10'%)). Second,
the piezoresistive coefficients were determined and the val-
ues were observed to significantly drop at low-temperature
environments. It was concluded that the mechanical factor of
thermal shrinkage and the electrical factor of smaller ther-
mal energy were responsible for this change. Furthermore,
at the low temperature the piezoresistive coefficient follows
the exponential shape of thermal energy and effective mass
that relates to the magnitude of the carrier ionization rate.
This phenomenon is expected to provide new insights in this
field, and further studies are favorable.
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