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ABSTRACT Widegap-channel Al0.65Ga0.35N/Al0.3Ga0.7N/AlN/SiC metal-oxide-semiconductor het-
erostructure field-effect transistors (MOS-HFETs) with ultrasonic spray pyrolysis deposition (USPD)
grown Al2O3 gate-oxide demonstrating enhancement-mode (E-mode) operation are investigated for the
first time. The E-mode operation was achieved by using fluorine ions (F-) implantation. In comparison,
conventional Schottky-gate device (sample A) and MOS-HFET (sample B) showing depletion-mode
(D-mode) operation were fabricated on the same epitaxial structure. The device characteristics with
respect to different gate-to-drain spacings (LGD) of 6 µm and 14 µm have also been studied. The
present E-mode Al0.65Ga0.35N/Al0.3Ga0.7N/AlN MOS-HFET (sample C) with LGD = 6 (14) µm has
demonstrated improved maximum drain-source current density (IDS,max) of 206.3 (163.5) mA/mm at
VDS = 20 V, maximum extrinsic transconductance (gm,max) of 32.9 (22.0) mS/mm, on/off-current ratio
(Ion/Ioff ) of 3.7 × 109 (1.8 × 109), two-terminal off-state gate-drain breakdown voltage (BVGD) of −370
(−475) V, and three-terminal on-state drain-source breakdown voltage (BVDS) of 330 395 V.

INDEX TERMS Widegap AlGaN channel, MOS-HFET, enhancement-mode, Al2O3, non-vacuum ultrasonic
spray pyrolysis deposition.

I. INTRODUCTION
Widegap-channel heterostructure field-effect transis-
tors (HFETs) have been pioneered [1]–[3] due to the
increasing needs of high-voltage power-switching devices
for vehicle electronics and 5G communication applica-
tions [4]–[5]. The AlGaN compound semiconductors with
wide bandgap, high Johnson’s figure-of-merit (JFOM) [6],
and high Baliga’s figure-of-merit (BFOM) [7] are suitable
channel materials. Besides, HFETs with enhancement-mode
(E-mode) operation are essential to simplification of circuit
implementation for power-switching applications. Various
gate engineering techniques have been studied to obtain
E-mode operation for nitride-based devices, including
gate recess [8]–[9], p+-AlGaN/GaN barrier [10]–[11],
and fluorine plasma treatment [12]–[13]. Our previous
works have studied widegap Si-doped AlGaN-channel
metal-oxide-semiconductor HFETs (MOS- HFETs) showing
depletion-mode (D-mode) operation [14]–[15]. This work

reports, for the first time, Al0.65Ga0.35N/Al0.3Ga0.7N/
AlN/SiC MOS-HFETs with USPD-grown Al2O3 gate-oxide
showing E-mode characteristics. The fluorine ions (F-)
implantation was employed to increase the threshold voltage
(Vth) and to achieve E-mode operation. Furthermore,
the MOS-gate structure, oxide passivation, and increased
gate-to-drain spacing designs were used to suppress the
gate leakages, reduce the gate-drain electric filed, and
increase the breakdown voltages. Al2O3 was formed within
the drain-to-source region to serve as high-k gate-dielectric
and surface passivation layer at the same time by using
a cost-effective non-vacuum ultrasonic spray pyrolysis
deposition (USPD) [16]–[17] technique. In comparison,
conventional Schottky-gate HFET (sample A) and D-mode
MOS-HFET without implanted F- were fabricated and
characterized at the same time. Device characteristics with
varied gate-to-drain spacings (LGD) of 6 µm and 14 µm
have also been investigated.
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FIGURE 1. Schematic device structures of (a) conventional Schottky-gate
HFET, (b) D-mode MOS-HFET, and (c) the present E-mode MOS-HFET. LGD
was varied to be 6 µm and 12 µm.

II. MATERIAL GROWTH AND DEVICE FABRICATION
Figs. 1(a)–(c) show the schematic device structures
of (a) conventional Schottky-gate HFET (sample A),
(b) D-mode MOS-HFET (sample B), and (c) the present
E-mode MOS-HFET with F- implantation (sample C). All
the three devices were fabricated at the sample time on the
identical epitaxial structure. The layer structures was grown
on a SiC substrate by using a low-pressure metal-organic
chemical vapor deposition (LP-MOCVD) system, includ-
ing an intrinsic 200-nm AlN buffer, an intrinsic 200-nm
Al0.3Ga0.7N channel, and an intrinsic 20-nm Al0.65Ga0.35N
barrier. Standard photo- lithography and lift-off techniques
were used for device fabrication [18]. For sample C, mesa
etching was performed to provide electrical isolation for
neighboring devices by using an inductively coupled-plasma
reactive ion etcher (ICP-RIE). The etching barrier is 100-nm
thick Ni layer. The ICP power is 110 W. The etching gas is
BCl3 with a flow rate of 40 sccm. The dry etching rate is
about 36 nm/min. The source/drain electrodes were deposited
directly on the Al0.65Ga0.35N barrier. The thickness of
Ti/Al/Ni/Au metal stack is 12.5 nm/175 nm/30 nm/40 nm.
The source/drain ohmic contacts were formed by annealing
the sample for 60 seconds at 900◦C by using an ULVAC
MILA-5000 rapid thermal annealing (RTA) system. After
the gate photography, The F- ions were implanted into the
exposed Al0.65Ga0.35N barrier. The reacting gas is CHF3
with a flow rate of 50 sccm. The process time was tuned to
be 115 seconds. Then, a 25-nm Al2O3 oxide was deposited,
by using USPD technique, on the barrier within the drain-to-
source region to serve as high-k gate dielectric and surface
passivation layer simultaneously. Finally, Ni (150 nm)/Au
(40 nm) gate electrode was evaporated to complete the device
fabrication, as shown in Fig. 1(c). Schottky-gate and MOS-
gate were fabricated on the barrier and Al2O3, respectively,
for samples A and B without conducting F- implantation.
The gate dimensions are 2 × 100 µm2. The gate-to-source
spacing is 2 μm. Devices were fabricated at the same time
for samples A-C with varied LGD of 6 µm and 14 µm
to investigate the electric and deep-UV sensing characteris-
tics. Fig. 2(a) shows the cross-sectional transmission electron
microscopy (TEM) photo of the epitaxial structure for sam-
ple C. The layer thicknesses were verified as designed. The
thickness of the USPD-grown Al2O3 was determined to be
25 nm. Besides, Fig. 2(b) shows the secondary ion-mass

FIGURE 2. (a) Cross-sectional TEM photo of the epitaxial structure for
sample C; (b) the SIMS profiles of Al and F contents under the gate oxide
of sample C.

FIGURE 3. XPS profiles of (a) Al 2p and (b) O 1s for the
USPD-grown Al2O3.

spectroscopy (SIMS) profiles of both Al and F contents under
the gate oxide of sample C. The F- ions were successfully
implanted within the surface of Al0.65Ga0.35N barrier.

III. EXPERIMENTAL RESULTS AND DISCUSSION
Hall measurement was performed for the epitaxial sample
under a magnetic field of 5000 G at 300 K. The electron
mobility (μn) and the two-dimensional electron gas concen-
tration (n2DEG) were determined to be 266.6 cm2/V-sec and
1.37 × 1013 cm−2, contributing to the μn-n2DEG product of
3.65 × 1015 (V-sec)−1 and the equivalent conductivity of
1.95 × 102 (�-cm)−1. The 2DEG was formed due to the
polarization effect [19] and confined in the widegap chan-
nel of the Al0.65Ga0.35N/ Al0.3Ga0.7N heterostructure. The
X-ray photo-electron spectroscopy (XPS) was measured for
the USPD-grown Al2O3 oxide. Figs. 3(a)–(b) show the char-
acterized Al 2p and O 1s profiles with respect to binding
energy. The Al 2p peak was found to be 74.9 eV, which is
identical to that [20] of Al2O3 grown by atomic layer deposi-
tion (ALD). The O 1s peak associated with Al-O bonds was
locatedat 531.2eV,which is closer to thebindingenergypeakat
531.1 eV [21] of sapphire than the characterized 531.5 eV [20]
of ALD-grown Al2O3. The USPD-grown Al2O3 has shown
similar binding energies to those in an ALD-deposited Al2O3.
Forming lowcontact resistances (RC) are challenges forAlGaN
channel devices, since it is difficult to form good ohmic con-
tact on high Al-ratio AlGaN barrier with low electron affinity.
Heavily-doped AlGaN barrier with graded channel [22] and
graded AlxGa1−xN barrier with x= 0 on the surface [23] have
been used to reduce RC. Fig. 4 shows the measured resistance
characteristics by using the transfer length method (TLM) [24]
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FIGURE 4. The measured TLM resistance characteristics at 300 K.

FIGURE 5. The measured C-V hysteresis characteristics
for (a) Schottky-diode, (b) MOS-diode, and (c) F- MOS-diode at 300 K.

at spacings of 5 µm, 10 µm, 15 µm, 20 µm, and 25 μm. The
specific contact resistivity (ρc) and RC were determined to be
4.7× 10−4 �-cm2 and 252.4�-mm, which are comparable to
our previous work [15] by using source/drain recess etching
and, yet, higher than 140�-mm [22] and 14�-mm [23]. This
indicated the undoped Al0.65Ga0.35N barrier was too high for
proper electron injection at the semiconductor/metal interface.
Figs. 5(a)–(b) show the measured C-V hysteresis character-

istics for the Schottky-diode, MOS-diode, and F- implanted
MOS-diode (F- MOS-diode) at 300 K, which are correspond-
ing to the gate structures of samples A-C. The diode area is
8000µm2. The bias was increased from−10 (−5) V to 0 (5) V
for samples A-B (C) and, then, decreased back to the starting
voltage immediately. The hysteresis voltage (�V) calculated
by the voltage difference between the mid-points of the C-V
curves are 1.2 V, 0.5 V, and 0.6 V for the Schottky-diode,
MOS-diode, and F- MOS-diode. �V was mainly caused by
the acceptor-like states in the Al2O3 or at the Al2O3/AlGaN
interface [25]. Lower�V ofMOS-diodes in samples B-C than
Schottky-diode in sample A indicated the improved interface
property by USPD-grown Al2O3 passivation, since the trap-
ping and detrapping phenomena [26]were effectively reduced.

FIGURE 6. C-V curves measured at 1 MHz and 10 kHz for (a) MOS-diode
and (b) F- MOS-diode at 300 K; the insets show the extracted Dit profiles.

Though the F- implantation has slightly increased �V in sam-
ple C, comparable interface property is maintained. Besides,
the equivalent oxide capacitance (Cox) was extracted [17] to
be 27.3 pF. The permittivity of the deposited Al2O3was deter-
mined to be k = 9.6. Figs. 6(a)–(b) show the C-V curves
measured at 1 MHz and 10 kHz for the MOS-diode and F-

MOS-diode at 300 K. In addition to the shifted C-V curve
caused by the implanted F- ions, higher capacitance of F-

MOS-diode than MOS-diode was due to the barrier etch-
ing effect [27] accompanied by the CHF3 plasma treatment.
Decreased separation to the 2DEG channel has increased the
capacitance. The interface density (Dit) can be characterized
by using the high/low-frequency method [28]. The extracted
Dit profiles were shown in the insets of Fig. 6. The averaged
Dit values of the MOS-diode and F- MOS-diode are 8.24
× 1010 cm−2-eV−1 and 9.31 × 1010 cm−2-eV−1. The Dit
ranges are about ∼1011 cm−2-eV−1 for both diodes, which
are approximately 1 order lower than those in ALD-deposited
Al2O3 [29], ALD-deposited ZrO2 [30], and SiN grown by
plasma-enhanced chemical vapor deposition (PECVD) [31].
Figs. 7(a)–(c) show the common-source current-voltage

(IDS-VDS) characteristics (left) at 300 K and the transfer
extrinsic transconductance (gm) and saturated drain-source
current (IDS) density as functions of VGS for samples A-C
biased at VDS = 20 V with LGD = 6 μm and 14 μm, respec-
tively. The devices were measured by using a KEITHLEY
4200 analyzer. The VGS voltage was varied from −8/−10/0 V
to 2/10/10 V at 1 V/step for samples A/B/C, as indi-
cated in Figs. 7(a)–(c). Good pinch-off was observed in
the studied devices. The maximum IDS (IDS,max) densities
for samples A-C with LGD = 6 (14) μm were found
to be 134.3 (117.3) mA/mm, 413.4 (348.9) mA/mm, and
206.3 (163.5) mA/mm at VDS = 20 V, with the maximum
extrinsic transconductance (gm,max) of 31.9 (24.9) mS/mm,
32.1 (28.5) mS/mm, and 32.9 (22.0) mS/mm. The dynamic
turn-on resistances (Ron) samples A-C with LGD = 6 (14) μm
were calculated to be 74.1 (118.3) �, 57.5 (92.4) �,
and 61.6 (95.0) �. The corresponding field mobility (μfe)
were 71.1 (63.1) cm2/V-sec, 88.9 (79.4) cm2/V-sec, and
86.4 (74.0) cm2/V-sec. The threshold voltages (Vth) for the
D-mode devices were determined by the extrapolated inter-
cept of the (IDS)1/2 line to the VGS-axis, while Vth of the
E-mode device is the corresponding VGS bias where IDS =
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FIGURE 7. Common-source IDS-VDS characteristics (left) at 300 K and the
transfer gm and IDS as functions of VGS (right) for samples (a)A, (b) B,
and (c) C with LGD = 6 µm and 14 µm, respectively.

1 µA/mm. The respective Vth values were determined to be
−5.5 (−4.7) V, −7.0 (−6.3) V, and 1.2 (1.6) V for samples
A-C with LGD = 6 (14) µm. The Vth values of samples B-C
approximately agree with the C-V threshold of MOS-diode
and F--implanted MOS-diode, as shown in Fig. 5 (b)–(c).
Sample B has demonstrated enhanced D-mode characteristics
than the control sample A. Improved IDS and reduced Ron
are mainly resulted from the reduced channel depletion [32]
due to passivated interface by the USPD-grown Al2O3 cover-
ing the barrier surface between the drain/source electrodes.
Higher gm,max of sample B than sample A is due to the
enhanced gate modulation capability by the high-k gate oxide
of Al2O3. Besides, E-mode operation has been successfully
achieved in sample C by the F- implantation. The obtained
high Vth value is favorable to noise immunity for circuit
switching application. The on/off-current ratios (Ion/Ioff ) for
samples A-C with LGD = 6 (14) μm were determined to
be 1.1 × 104 (2.4 × 104), 7.3 × 108 (1.2 × 109), and
3.7 × 109 (1.8 × 109). The subthreshold slope (SS) was
defined to be the required VGS difference to obtain 10 times
increase/decrease in the IDS density. It represents the device
switching performance for transistor operation. The corre-
sponding SS are 481.0 (522.2) mV/dec, 105.0 (94.4) mV/dec,

FIGURE 8. IDS-VDS curves at VGS = 10 V for sample C with LGD = 6 µm at
300-450 K.

and 87.3 (91.7) mV/dec. Sample B has shown improved
Ion/Ioff and SS characteristics than sample A due to enhanced
gate insulation, gm,max gain, and IDS density. It can also been
that the all devices with large LGD has shown degraded
gm,max, IDS, and SS characteristics. It is due to the increased
channel resistance and reduced gate-drain electric field with
large LGD. Nevertheless, higher Ion/Ioff was observed in
both D-mode samples A-B with larger LGD, since Ioff was
decreased significantly. Though the Ion/Ioff ratio of sample C
was slightly decreased at LGD = 14 µm, superior Ion/Ioff and
SS performances in E-mode operation are achieved, which
are beneficial to circuit switching applications. Fig. 8 shows
the IDS-VDS curves at VGS = 10 V for sample C with LGD =
6 µm at 300-450 K. IDS was observed to decrease with tem-
perature. It is possibly due to the degraded transport property
by the carrier-carrier scattering, since more electrons were
thermally generated at higher temperature. Besides, Vth was
characterized to be 0.8 V, 0.4 V, and −0.3 V at 350 K, 400K,
and 450 K. The present sample C can maintain E-mode oper-
ation up to 400 K and has returned to D-mode at 450 K due
to thermal diffusion of F- ions [33].
Figs. 9–10 show the two-terminal off-state gate-drain

breakdown voltage (BVGD) and three-terminal on-state drain-
source breakdown voltage (BVDS) characteristics at 300 K
for samples A-C with LGD = 6 µm and 14 µm, respectively.
BVGD and BVDS were defined to be the corresponding biases
where the IGD and IDS densities reached 1 mA/mm. VGS
was biased at −20 (−10) V when characterizing BVDS for
samples A-B (C). The measured BVGD for samples A-C at
LGD = 6 (14) µm are −325 (−360) V, −355 (−480) V, and
−370 (−475) V. The corresponding BVDS are 330 (375) V,
340 (400) V, and 330 (395) V. All three devices have
shown good breakdown characteristics due to the effective
reduction in gate/substrate leakages by the devised widegap
Al0.65Ga1−xN/AlN barrier/buffer layers. Enhanced break-
down performance at large LGD spacing were expected due
to decreased gate-drain electric field. Both samples B and C
with different D-mode and E-mode operations have exhibited
superior BVDS and BVGD performance as compared to sample
A. It is attributed by the MOS-gate design to further suppress
the gate leakage due to reduced thermionic emission and
passivated surface states. The breakdown performance and
lateral electric field were strongly related to the gate/drain

1006 VOLUME 9, 2021



LEE et al.: ENHANCEMENT-MODE CHARACTERISTICS OF Al0.65Ga0.35N/Al0.3Ga0.7N/AlN/SiC MOS-HFETs

FIGURE 9. BVGD characteristics at 300 K of samples (a) A, (b) B, and (c) C
with LGD = 6 µm and 14 µm, respectively.

FIGURE 10. BVDS characteristics at 300 K of samples (a) A, (b) B, and (c) C
with LGD = 6 µm and 14 µm, respectively.

isolation designs, including gate dielectric, field-plate, gate-
drain recess, or composite passivation. Besides, the reduction
of the source/drain contact resistance is essential to the break-
down characteristics for widegap channel devices. Sample B
has shown improved D-mode characteristics as compared
to other high-Al content AlGaN devices [22]–[23] with
IDS,max = 126 mA/mm and 350 mA/mm, gm,max = 4.6
and 9 mS/mm, Ion/Ioff = 104 and 107, BVGD = −375 V,
and BVDS = 116 and 275 V. Besides, the present sam-
ple C is also superior to other E-mode devices [34]–[35]
showing IDS,max = 102 mA/mm and 90 mA/mm, gm,max

TABLE 1. Device characteristics of sample A.

TABLE 2. Device characteristics of sample B.

TABLE 3. Device characteristics of sample C.

= 32 mS/mm and 13 mS/mm, and Ion/Ioff = 107 and 108.
Tables 1–3 summarizes the device characteristics for samples
A-C with complete LGD variation of 6 µm, 8 µm, 10 µm,
12 µm, and 14 µm. It can be seen that both IDS, max and
gm,max decreased with LGD for all devices, which are mainly
caused the increased channel resistance since the drain-to-
source distances were also increased. Vth was observed to
increase with LGD. It is because that more negative VGS bias
was needed to turn off higher IDS conduction for the D-mode
operation samples A-B with smaller LGD. On the other hand,
more positive VGS bias was required to initiate IDS conduc-
tion for the E-mode sample C with lower gm gain at larger
LGD. The Ion/Ioff dependences on LGD are similar to the Vth
variations. For samples A-B, the decrease in Ioff at large
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LGD has dominated the Ion/Ioff performance. Higher Ion at
smaller LGD has resulted in higher Ion/Ioff ratio in the E-mode
sample C. Besides, both BVGD and BVDS performance were
improved with LGD. It is mainly caused by the relieved
electric field by the increased LGD separation.

IV. CONCLUSION
E-mode characteristics of Al0.65Ga0.35N/Al0.3Ga0.7N/AlN/
SiCMOS-HFETs with USPD-grown high-k Al2O3 gate-oxide
are investigated. The E-mode operation has been successfully
achieved by F- implantation into the Al0.65Ga0.35N barrier
surface. Improved gate insulation, enhanced gate modulation,
and effective surface passivation are obtained at the same
time by using the cost-effective USPD technique. Devices
with Schottky-gate andMOS-gate structures showing D-mode
operation were fabricated in comparison. The present E-mode
MOS-HFET design with LGD = 6 (14) µm has demon-
strated superior IDS,max of 206.3 (163.5) mA/mm, gm,max of
32.9 (22.0) mS/mm, Ion/Ioff of 3.7 × 109 (1.8 × 109), SS of
87.3 (91.7) mV/dec, BVGD of −370 (−475) V, and BVDS of
330 (395) V with Vth = 1.2 (1.6) V and. The present E-mode
widegap-channel MOS-HFET are suitable for high-voltage
power-switching applications.
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“AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect
transistors with 4 nm thick Al_2O_3 gate oxide,” Semicond. Sci.
Technol., vol. 22, no. 8, pp. 947–951, Aug. 2007.

[29] A. Calzolaro, N. Szabó, A. Großer, J. Gärtner, T. Mikolajick, and
A. Wachowiak, “Surface preconditioning and postmetallization anneal
improving interface properties and Vth stability under positive gate
bias stress in AlGaN/GaN MIS-HEMTs,” Physica Status Solidi A,
vol. 218, Jan. 2021, Art. no. 2000585.

[30] H. Jiang, C. W. Tang, and K. M. Lau, “Enhancement-mode GaN MOS-
HEMTs with recess-free barrier engineering and high-k ZrO2 gate
dielectric,” IEEE Electron Device Lett., vol. 39, no. 3, pp. 405–408,
Mar. 2018.

[31] H. Jiang, C. Liu, Y. Chen, X. Lu, C. W. Tang, and K. M. Lau,
“Investigation of in Situ SiN as gate dielectric and surface passivation
for GaN MISHEMTs,” IEEE Trans. Electron Devices, vol. 64, no. 3,
pp. 832–839, Mar. 2017.

[32] C. Liu, E. F. Chor, and L. S. Tan, “Enhanced device performance of
AlGaN/GaN HEMTs using HfO2 high-k dielectric for surface pas-
sivation and gate oxide,” Semicond. Sci. Technol., vol. 22, no. 5,
pp. 522–527, Mar. 2007.

[33] F. Shen et al., “Enhancement mode AlGaN/GaN HEMTs by fluorine
ion thermal diffusion with high Vth stability,” Appl. Phys. Exp., vol. 12,
no. 6, May 2019, Art. no. 066501.

[34] L. Zhang et al., “AlGaN-channel gate injection transistor on sili-
con substrate with adjustable 4–7-V threshold voltage and 1.3-kV
breakdown voltage,” IEEE Electron Device Lett., vol. 39, no. 7,
pp. 1026–1029, Jul. 2018.

[35] J. J. Freedsman, T. Hamada, M. Miyoshi, and T. Egawa,
“Al2O3/AlGaN channel normally-off MOSFET on silicon with high
breakdown voltage,” IEEE Electron Device Lett., vol. 38, no. 4,
pp. 497–500, Apr. 2017.

1008 VOLUME 9, 2021



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


