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ABSTRACT Low operating voltages, rapid response, and high-throughput fabrication compatibility are key
advantages for the development of electrolyte-gated field effect transistors (EGFETs) for biological sensing.
Among the key components in EGFET biosensors, electrolyte materials are relatively less investigated,
especially alternatives to water-based liquid electrolytes such as ionic liquids, ion gels, polyelectrolytes,
and solid polymer electrolytes. These electrolytes enable portable devices and environmental stability
superior to their water-based liquid alternatives. In this review, we offer an up-to-date evaluation of the
state of EGFET research and gauge the strengths and limitations of high-performance electrolytes for
use in EGFET biosensor applications as well as the potential for computer-aided design of such sensing
platforms. The recent progress of EGFET biosensors for some popular analytes are reviewed and the
performance of these alternative electrolytes in transistor biosensing is assessed. The challenges and
opportunities for electrolytes in EGFETs are discussed for future research directions in this field.

INDEX TERMS Biological sensing, electrolyte dielectrics, polymer electrolytes, printed electronics, thin
film transistor.

I. INTRODUCTION
Electrolyte materials and electrolyte-gated field effect tran-
sistors (EGFETs) have gained attention for their printability,
flexibility, and potential for large-scale manufacturing as well
as their use in IoT devices, making them a promising option
for emerging technologies such as artificial synapses [1]–[3],
wearable electronics [4], [5], and biological sensing [6]–[8].
Different from a traditional organic thin film transistor that
uses a layer of SiO2 or polymer dielectric material, EGFETs
use electrolytes – a liquid or solid-state ion-conducting
material. Due to the high gating capacitance enabled by
electrolyte materials, low-voltage operation of less than 1 V
can be achieved, with enhanced portability.
Since the year 2000, there has been an interest in

EGFET biosensors as shown in Fig. 1. After demon-
strating that a thin film transistor (TFT) could be gated
with just water [9], EGFETs have been seen as a viable
option for sensing in body fluids. However, various chal-
lenges have emerged in the areas of device stability,

printability, and large-scale manufacturing potential for aque-
ous devices. Alternative electrolytes like ionic liquids and
solid or quasi-solid electrolytes such as ion gels, poly-
electrolytes, and polymer electrolytes have emerged as
materials with greater ambient stability, printability, and
electrochemical performance, but further work is needed
to identify compatible high-performance electrolytes for
biosensors.
Once promising electrolytes for EGFET biosensors are

identified, computer aided design will be indispensable
in translating the biosensor into a mathematical model.
This modeling will help determine the compatibility of
the sensor components as well as guide experimental
work and accelerate development while reducing trial
and error.
The scope of this review is on EGFETs for biosens-

ing applications focusing on the challenges and advantages
of different types of electrolyte materials in EGFETs for
biosensors. It is organized as follows:
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FIGURE 1. This figure was obtained using the search terms “electrolyte
AND transistor” and “electrolyte AND transistor AND biosensor” on
Scopus. It shows an exponentially increase in the number of scientific
publications reported on electrolyte transistors, and linearly increase in
electrolyte transistor biosensors from the years 2000-2020 (as of
December 10, 2020).

Section II introduces the fundamental concepts related to
biosensors and EGFETs;
Section III evaluates the merit of different electrolyte

materials used in EGFETs;
Section IV discusses the achievements of EGFET biosen-

sors so far;
Section V offers a perspective of the direction of devel-

opment on electrolyte materials for transistor biosensors.

II. EGFET BIOSENSORS
A. BIOSENSOR BASIS AND COMPONENTS
The main components of the biosensor are a bio-recognition
element, a transducer, and a signal processing unit [10].
A layer of bio-recognition elements is covalently attached to
either the semiconductor or gate electrode interface, or less
commonly on the substrate, in a surface functionalization
step. For example, one method is to attach an enzyme to
a carboxylated polyimide surface via a condensation reac-
tion between an amine group on the enzyme and carboxylic
acid [11].
The three main bio-recognition element types are

complementary DNA pairings, antibody/antigen pairs, or
enzyme/substrate pairs, which offer specific and selective
binding of the target analyte to the bioreceptor as shown in
Fig. 2. As the target analytes interact and bind with their
recognition elements, certain changes in physical quantity of
the transistor output will occur.
Some key FOM proposed by Picca et al. [12] for EGFET

biosensors are the limit of detection (LOD), sensitivity, and
dynamic range. The LOD is defined as the lowest amount of
analyte discernible from a blank measurement with a confi-
dence level of 99%, corresponding to 3 standard deviations
from the mean measurement. The sensitivity is defined as the
slope of a signal vs. concentration calibration curve covering
at least 3 orders of magnitude [12]. The dynamic range is
the concentration range over which a changing output signal
is detected.

FIGURE 2. Selective bindings in recognition events for complementary
DNA pairings, antibody/antigen pairs, and enzyme/substrate pairs.
Reprinted (adapted) with permission from [12]. Copyright 2020, Adv. Funct.
Mater.

FIGURE 3. Common EGFET architectures. a) Top gate bottom contact with
liquid dielectric. b) Side gate, also known as in-plane or coplanar
configuration.

A key advantage of using an EGFET biosensor is that
they are label-free. Unlike label-based biosensors which
require an additional fluorescent or radioactive tag to quan-
tify the presence of analytes, label-free biosensors detect
analytes through the direct transduction of physical prop-
erties. This greatly reduces manufacturing complexity and
cost. In addition, the use of an electrolyte dielectric pro-
vides a large capacitance to enable low-power operation,
printability, and flexibility. Challenges for transistor biosen-
sors lie in the sensing of only charged biomolecules, low
reproducibility, and some limitations in sensing beyond the
Debye length [13]–[15].

B. EGFET CONFIGURATIONS AND COMPONENTS
There are four general configurations: top gate bottom
contact (TGBC), top gate top contact (TGTC), bottom
gate bottom contact (BGBC), and bottom gate top con-
tact (BGTC). There are various advantages in fabrication
and performance when it comes to the types of configura-
tions. When using liquid electrolytes, the dielectric may be
a droplet on the surface of the semiconductor with a probe
acting as a gate electrode immersed in the dielectric, as
shown in Fig. 3a. Another common architecture is side-gate,
where the source, drain, and gate electrodes are coplanar as
shown in Fig. 3b.

C. EGFET OPERATION MECHANISM
When a bias is applied to the gate electrode, an electri-
cal double layer (EDL) forms at the gate/electrolyte and
semiconductor/electrolyte interfaces from the migration and
accumulation of electrolyte ions according to the Stern-
modified Gouy-Chapman double layer model. There is
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FIGURE 4. Thin film transistors that are a) unbiased b) biased EDLTs
c) biased ECTs.

a Helmholtz layer at the immediate interface from an accu-
mulated monolayer of ions, followed by the diffusion layer
which has a high concentration of accumulated ions that
decay exponentially with distance [16]. The EDLs can be
considered as nanocapacitors with a thickness of approxi-
mately 1 nm. This small thickness permits high capacitance
between 1-10 μF cm−2 at operating voltages of less than
2 V. The specific capacitance can be estimated by (1) [17]:

C=κε0

λ
(1)

where κ is the effective dielectric constant, ε0 is the vac-
uum permittivity constant, and λ is the thickness of the
EDL. The total EDL capacitance can be represented as the
sum of the gate/electrolyte interface capacitance (CGE) and
the electrolyte/semiconductor interface capacitance (CES) as
shown in (2). The gate/electrolyte capacitance is usually
much higher than the electrolyte/semiconductor capacitance
due to a larger contact area with the gate electrode. Thus,
the capacitance of the latter dominates.

CEDL=
(
C−1
GE+C−1

ES

)−1
(2)

The thickness of the EDL is known as the Debye screen-
ing length, the distance from the interface to the boundary
between the diffusion and bulk layers. In the applications of
biological sensing, the Debye length may limit the sensing
distance of the receptor, as analytes beyond this length are
shielded by ions in solution [18]. For this reason, a very
concentrated solution or large or long receptor will cause
detection issues [19]. However, sensing beyond the Debye
length has been reported [20]–[22], which is desirable as
high ionic concentrations are needed for large capacitances
which simultaneously lower the Debye length. As reported
by Palazzo et al. it is possible to obtain sensing many times
beyond the Debye length with capacitive-controlled sens-
ing at high salt concentrations [23]. Additional strategies
for overcoming the Debye length have also been explored,
including tuning the morphology of the channel, changing
the design of the aptamer, and device modulation [19].
Fig. 4 illustrates the EDL formation mechanism for

EGFETs. The unbiased state of the thin film transistor is
shown in Fig. 4a. In the case that the semiconductor is
impermeable under bias, a 2D EDL capacitor is formed at
the interface when ions accumulate, resulting in high capac-
itance and low voltage operation, which dissipates when
the bias is removed. These types of EGFETS are known
as electrical double layer transistors (EDLTs). An example

of an impermeable n-type transistor operating in accumu-
lation mode is shown in Fig. 4b. In the case where the
semiconductor can be penetrated under a bias, this electro-
chemical doping forms a 3D EDL. As the bias is removed,
the channel de-dopes. These types of EGFETs are known as
electrochemical transistors (ECTs). An example of a typical
ECT operating in depletion mode is shown in Fig. 4c. Thus,
the main difference between an EDLT and an ECT is the per-
meability of the channel. It should be noted that EDLTs may
have some penetration of ions into the semiconductor, but the
effects are minor compared to ECTs. In addition, as a gate
bias is applied, the channel current for EDLTs is primarily
modulated by the field effect, while the ECT channel cur-
rent is modulated through the doping/de-doping of ions into
the channel [24]. Although ECTs are well known in biolog-
ical sensing applications due to their low voltage operation,
high transconductance, and stable performance in aqueous
environments [24], [25], this review focuses on the use of
EDLTs due to their relative impermeability which reduces
the degradation of the semiconductor, and their potential for
solid-state, portable and flexible devices.

D. KEY FOM OF EGFETS
Some important indications of transistor performance are
the ON-OFF current ratio (ION/IOFF), mobility of the semi-
conductor, subthreshold swing, and OFF current. These are
values that can be extracted from the voltage-current char-
acteristics of the transistor. The drain current in the linear
and saturated regions are expressed by (3) and (4):

IDS = W

L
μC(VG − VT)VDS − VDS

2

2

(3)

IDS = W

2L
μC(VG−VT)2 (4)

where IDS is the drain current, W is the semiconductor
channel width, L is the semiconductor channel length, μ

is mobility, C is the specific capacitance of the dielectric,
VG is the gate voltage, and VT is the threshold voltage.

III. DIELECTRICS USED IN EGFETS
A. AQUEOUS ELECTROLYTES
Aqueous electrolytes can form EDLs at the elec-
trode interfaces with capacitances ranging from
0.9 - 3.8 μF cm−2 [9], [26], [27] which enable the
transistors to operate at driving voltage <|0.5| V. To avoid
cell rupture due to osmotic pressure, a salt solution or buffer
is often used. Initially, the fabrication of a water-gated
FET was demonstrated using deionized (DI) water with
a reported specific capacitance of 3 μF cm−2 [9]. It was
noted that the mobility of the rubrene semiconductor was
lower than reported using SiO2. Since water provides
a larger capacitance, the charge carrier distribution is
compressed more to the insulator/semiconductor interface,
leading to a higher sensitivity to surface roughness and
defects. It was then shown that a 0.2 M NaCl solution
could be used to gate an organic device [26]. The mobility

VOLUME 9, 2021 941



WANG et al.: EGFETs IN BIOLOGICAL SENSING: A SURVEY OF ELECTROLYTES

of the organic semiconductor is comparable to the rubrene
transistor described above due to its elongated alkyl chains
forming a barrier at the water interface, preventing water
penetration into the semiconductor.
There are several challenges and advantages for biological

sensing. Aqueous electrolytes are not environmentally stable
due to their fluid nature which hinders wearable solid-state
device creation. However, this may be useful in a microflu-
idic sensing device which can be easily cleaned and disposed
of. Their liquid state also allows receptors to be function-
alized directly on the channel or gate of the transistor in
a dense layer for higher sensitivity. Aqueous electrolytes
can also have low conductivity, leading to slower EDL for-
mation and slower switching speed [28]. For example, DI
water can have conductivity as low as 5.5×10−5 mS cm−1.
Specifically for water-gated organic devices, the environ-
mental instability of conjugated polymers such as P3HT in
water lead to limited charge carrier mobility on the order of
10−3. The low mobility may negate the advantage of high
specific capacitance, reducing their useful usage in practical
applications [26]. Adding salt may increase the ionic con-
ductivity and increase the biological compatibility. However,
this may cause ion penetration into the semiconductor layer,
resulting in higher OFF current and reduced mobility, as
well as hindering sensitive detection [27].

B. IONIC LIQUIDS (ILS)
ILs are defined as molten salts at room temperature, with
a solvent-less composition of ions [29]. They are usually
composed of nitrogen-containing organic cations and inor-
ganic anions [30]. Due to their highly polar composition,
high ionic conductivity, thermal and electrochemical stability,
and non-volatility, they are attractive gate dielectric mate-
rials for EGFETs [30], [31]. Ionic diffusion can be in the
range of 1 microsecond which translates to 1 MHz switching
frequency [32], [33].
In 2008, Ono et al. demonstrated the fabrication

of an IL-gated FET using a single crystal rubrene
semiconductor [32]. Two similar devices were created using
1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)
imide ([EMIM][TFSI]) and 1-ethyl-3methylimidazolium
bis (fluorosulfonyl) imide ([EMIM][FSI]) IL. [EMIM][FSI]
was shown to have a larger hysteresis than the
[EMIM][TFSI]-gated device, attributed to the difference in
interfacial interactions between the ionic liquid and semi-
conductor such as hole traps formed by impurities in the
IL or absorption of moisture provided by the additional
fluorine atoms.
In an example of a high-performance device, an extremely

thin layer of IL, N,N-diethyl-N-methyl-N-(2-methoxyethyl)
ammonium bis(trifluoromethanesulfonyl) imide ([DEME]
[TFSI]), was applied to electrostatically dope its MoS2
semiconductor, resulting in a specific capacitance of
1.55 μF cm−2 and good device performance at low driving
voltage [34].
Similar to aqueous electrolytes, ILs are limited by their

fluid state. As a result of their liquid state, they also

have lower resistance and may induce higher gate leak-
age current [35] from a combination of electrochemical
reactions and absorption of environmental impurities such
as water, nitrogen, and oxygen. Although generally con-
sidered stable, ILs have had unexpected reactions with
other species in solution or at elevated temperatures [36].
Furthermore, there have been some environmental concerns
with using fluorinated ILs. For example, [EMIM][TFSI] is
a known toxin and environmental hazard, and [C4mim][PF6]
is found to degrade to form hydrofluoric acid (HF) [37].
Thus, ILs may be hazardous and should be handled
with care.

C. ION GELS
Ion gels are composed of a polymer matrix incorporated in
an ionic liquid [38]. The polymer matrix can be chemically
or physically crosslinked, and thus referred to as “chemical
ion gels” or “physical ion gels”. The IL acts as a plasticizing
salt, and the resulting ion gel is a quasi-solid or solid-state
composite electrolyte distinct from polymer gels due to their
non-volatility. ILs in ion gels provide high ionic conductivity,
low vapour pressure, as well as thermal and electrochemi-
cal stability [31]. In addition, they have a short polarization
response time due to the decoupling of fast ion motion from
polymer segmental motion [38] and high concentration of
ionic species [39]. Mechanically supported by the polymer
matrix, ion gels are a very promising electrolyte material for
EGFETs.

C.1. PHYSICAL ION GELS
Triblock copolymers have been used as polymer matrices in
ion gels due to their tunable structure and self-assembling
capability. Cho et al. presented a high-performance fully
printed ion gel gate dielectric transistor via aerosol jet [39].
The ion gel was a PS-PEO-PS triblock copolymer matrix
self-assembled in [EMIM][TFSI] leading to a specific
capacitance of approximately 20 μF cm−2 and an ionic
conductivity of 8 mS cm−1. The high ionic conductivity
was attributed to the low gelation point of this physical
self-assembled ion gel.
In an attempt to increase the electrical performance,

Nketia-Yawson et al. demonstrated a high-performance
solid-state electrolyte gate insulator (SEGI) made of
poly(vinylidene difluoride-trifluoroethylene) (PVDF-TrFE)
/poly(vinylidene fluoride-co-hexafluroropropylene) (PVDF-
HFP)/[EMIM][TFSI] [40]. Their devices and performance
can be seen in Fig. 5. In addition to edge-on orientation of the
organic semiconductor enabling high mobility in the TGBC
configuration, the good performance was also attributed to
the high capacitance of up to 4.9 μF cm−2 provided by the
SEGI and low contact resistance from the optimized device
geometry.

C.2. CHEMICAL ION GELS
Chemical ion gels have been less developed due to more
difficulties in controlling the crosslinking. To address this,
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FIGURE 5. The a, b) device performance and c) molecular structure, device
configuration of SEGI EGFETs. Reprinted (adapted) with permission
from [40]. Copyright 2018, Am. Chem. Soc.

Jeong et al. presented a chemically crosslinked, inkjet-
printable self-assembling ion gel in EGFETs. The ion
gel was composed of PVA polymer backbone, poly(ethyl
methacrylate) (PEMA) chemical crosslinker, [EMIM][OTf]
ionic species, and DMSO solvent [41]. The ion gel was
reported to have a specific capacitance of 5.4 μF cm−2 and
an ionic conductivity of 5 mS cm−1. These printed tran-
sistors had excellent, stable performance between 20-90%
relative humidity, because of the non-volatility of the ionic
liquid [EMIM][OTf].
Generally, ion gels provide a high specific capacitance

ranging between 1-31 μF cm−2 [39], [40], [42]–[49] and as
large as 162 μF cm−2 [50] for low power operation; high
ionic conductivities between 1-10 mS cm−1 also promote
fast EDL formation. However, in addition to intrinsic prop-
erties of the electrolyte, excellent electrical performance also
depends on material compatibility as well as a fabrication
processes and geometry to optimize the overall performance
of the devices.

D. POLYELECTROLYTES
Polyelectrolytes are polymers with ionizable groups in
the backbone, where the small ions can dissociate and
become mobile in solution [38]. Depending on the charge
of the backbone group, polyelectrolytes can be polyca-
tions or polyanions. Polyacrylic acid (PAA) and polystyrene
sulfonate (PSS)-based polyelectrolytes are common, with
specific capacitances of approximately 10 μF cm−2. A sub-
category of polyelectrolytes are poly(ionic liquids) (PILs),
which use ionic liquid instead of solid salt monomer. PILs
have cationic or anionic centers in repeating units of the
polymer chain. Overall, good mobility, large capacitance,
and low OFF currents have been achieved, the ION/IOFF

FIGURE 6. a) Device configuration and chemical structure of
polyelectrolyte EGFET. Reprinted (adapted) with permission from [54].
Copyright 2007, Adv. Mater. b) Device performance of single-ion
conducting triblock copolymer polyelectrolyte. Reprinted (adapted) with
permission from [51]. Copyright 2015, Am. Chem. Soc.

ratio of the polyelectrolyte-gated devices and the ionic con-
ductivity of these dielectric materials are often poor or
unreported [51]–[56].
Herlogsson et al. presented a proton-conducting poly-

electrolyte. The dielectric material used was P(VPA-AA),
a random copolymer of vinyl phosphonic acid and acrylic
acid, with a specific capacitance of 20 μF cm−2 [54]. The
device configuration can be seen in Fig. 6a. Although the
ION/IOFF ratio of 140 is low, the electrolyte provided low
voltage operation without electrochemical reactions in the
semiconductor. This was possible due to the usage of large
polyanionic chains that cannot penetrate the semiconductor,
and the presence of protons naturally found in P(VPA-AA)
to neutralize hydroxide from absorbed water which may
penetrate the semiconductor.
An ion gel of polymerized ionic liquid triblock

copolymer, PS-PIL-PS, composed of polystyrene and the
polyionic liquid [EMIM][TFSI], with the cationic species
[EMIM]+polymerized into the backbone of the triblock
copolymer was evaluated [51]. The device configuration
and transfer and output curves for a typical device is dis-
played in Fig. 6b. An ionic conductivity of approximately
1×10−3 mS cm−1 and specific capacitance of approxi-
mately 1 μF cm−2 were obtained. The good electrical
performance of this device and low hysteresis was due
to limited ionic doping from bulky cation chains which
prevented semiconductor degradation. In addition, the PS-
PIL-PS was highly printable due to its mechanical robustness
and hydrophobicity.

E. POLYMER ELECTROLYTES
Polymer electrolytes are ion-coordinating polymer matri-
ces containing mobile ions [38]. Unlike polyelectrolytes, the
mobile ions are not free in solution, but coupled to the
polymer backbone. They are often cast or printed as solid
or gel-like films, hence referred to as “solid polymer elec-
trolytes” or “gel electrolytes”. EDL formation is often slower
and depends on the speed of segmental chain motion. The
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TABLE 1. Summary of properties and performance of EGFET examples with different electrolytes.

ionic conductivity is in the range of 10−1 – 10−4 mS cm−1,
although recently developed electrolytes can have ionic con-
ductivities of greater than 20 mS cm−1 [59], [60]. The low
ionic conductivity is a concern resulting in slow switching
time of the device. One longstanding and extensively studied
example of a polymer electrolyte is PEO/LiClO4 [61]–[63].

To improve the ionic conductivity, approaches such as
adding another polymer to form a blend, adding plas-
ticizing agents, or developing nanocomposites have been
explored. Some groups have reported the fabrication of
high performance printed transistors using a composite solid
polymer electrolyte (CSPE) [64]–[66]. For example, Von
Seggern et al. have shown that their CSPE, containing
PVA polymer matrix, PC plasticizer, DMSO solvent, and
LiClO4 salt has good electrical performance in their device
and a high ionic conductivity of 5.37 mS cm−1 as well as
a specific capacitance of 5.97 μF cm−2 [57]. The advan-
tage of using this CSPE is its good conformation to the
rough surface of the semiconductor channel, enabling high
capacitance gating [67]. In addition, the CSPE is mechan-
ically robust and compatible with inkjet printing as well
as forms a fast-drying film on which additional layers of
different materials can be printed. The improvement in con-
ductivity for the solid polymer electrolyte was attributed to
plasticizer and solvent being trapped in the polymer, form-
ing solvent channels for ions to travel, leading to fast EDL
formation [68].
Aside from CSPEs, dielectrics based on biopolymers have

also been reported with promising performance, desirable
capacitance and ionic conductivity [69]–[72]. In addition,
a proton-conducting H3PO4-PVA electrolyte has also been
demonstrated with promising performance [58]. In general,
the capacitance for these polymer electrolyte devices range
from 0.93 to 40 μF cm−2, with an ION/IOFF ratio as large as
5×106 [28], [57], [63], [67], [69]–[75]. While these polymer

FIGURE 7. For aqueous, ionic liquid, ion gel, polyelectrolyte, and polymer
electrolyte dielectrics, the a) specific capacitance and b) ionic conductivity.

electrolyte-gated FETs have high electrical performance, they
are still susceptible to issues with temperature and moisture
stability. Moving forward, the addition of additives may be
crucial in optimizing high-performance polymer electrolytes.

F. SUMMARY OF ELECTROLYTES
Table 1 summarizes the transistor examples mentioned in
Sections III A–E. Fig. 7a shows the range of specific capac-
itances for different types of electrolytes in EGFETs over
the years. Even as early as 2006, electrolyte materials with
capacitances greater than 10 μF cm−2 were reported. Ion
gels and polymer electrolytes are mostly in the recent years
and the highest specific capacitance values is up to 162 μF
cm−2, which is three to four orders of magnitude higher
than the common dielectric material, such as SiOx and PVP
in OTFTs.
Fig. 7b shows the ionic conductivities between the differ-

ent types of electrolytes as well as DI water (ca. 5.5×10−5

mS cm−1) and PBS (ca. 3 mS cm−1) [17], [76]. The
ionic conductivity of ILs was found to be in a large
range between 1 and 30 mS cm−1 [32], [77]. The ionic
conductivity of polymer electrolytes is usually reported to
be ranging from ca. 10−4 to 10−1 mS cm−1 [38], [78],

944 VOLUME 9, 2021



WANG et al.: EGFETs IN BIOLOGICAL SENSING: A SURVEY OF ELECTROLYTES

FIGURE 8. For aqueous, ionic liquid, ion gel, polyelectrolyte, and polymer
electrolyte dielectrics, the a) ION/IOFF ratio and b) the majority carrier
mobility.

but some recent work reports higher ionic conductivity of
approximately 20 mS cm−1 [59], [60]. Although ionic con-
ductivity is an important factor affecting EDL formation
time and device performance, a significant portion of papers
reporting transistor performance did not include them. It is
highly recommended to report ionic conductivity of the elec-
trolyte when presenting transistor performance to help the
community identify potential high-performance materials.
Fig. 8a shows the ION/IOFF ratio for different types of

electrolyte-gated transistors. The ION/IOFF ratio for liquid-
state electrolytes were generally around 100 and below 103 for
polyelectrolytes. Those for ion gels and polymer electrolytes
were among some of the highest, mostly between 104-106.

The reported mobility of the majority carriers from the
literature is shown in Fig. 8b for the EGFETs classified
based on the type of electrolyte. It is not surprising that
2D materials like graphene and MoS2 consistently give high
mobility regardless of the type of electrolyte used, and that
the mobility of P3HT is mostly consistent, especially within
electrolyte types. It is also noted that polymer electrolytes
mainly use inorganic while the rest use organic semicon-
ductors. One reason for this could be the incompatibility
of inorganic semiconductors with certain device configu-
rations. For example, BGTC devices have a semiconductor
layer deposited after the polymer electrolyte layer which may
damage the polymer electrolytes if annealing of the semi-
conductor is required. Another reason might be that these
devices are focusing on the high mobility and performance of
inorganic semiconductors, where low-temperature processing
and flexibility are less of a concern.
In addition to the survey of the figures for capaci-

tance, ionic conductivity, and ION/IOFF ratio, a qualitative

FIGURE 9. Qualitatively assessed electrolyte performance in terms of
capacitance, ionic conductivity, ease of synthesis, environmental stability,
and printability.

assessment of the performance of electrolyte materials for
EGFETs was performed based on five performance and pro-
cessing criteria as a radar graph in Fig. 9. In the graph,
5 types of electrolyte are analyzed for their: 1) specific
capacitance, 2) ionic conductivity, 3) ease of synthesis,
4) environmental stability, and 5) printability/compatibility
with printing technology.
Aqueous electrolytes have the advantages of high ionic

conductivity and facile synthesis, but lower capacitances,
poor compatibility with printing fabrication techniques and
low environmental stability due to their evaporation. Ionic
liquids, while possessing high capacitance, ionic conductiv-
ity, and environmental stability as well as good printability,
are not easily synthesized and are more expensive to pro-
duce. Ion gels are well-balanced, with good capacitance and
ionic conductivity, and often simple but time-consuming
synthesis procedures. They are more environmentally sta-
ble than aqueous electrolytes, but are still susceptible to
changes in humidity and temperature. They are also compati-
ble with printing processes, but less so than polyelectrolytes.
Polyelectrolytes possess high printability and environmental
stability, but have mediocre capacitance, ionic conductiv-
ity, and a complicated synthesis depending on the type
of material. Finally, polymer electrolytes boast high print-
ability. Similar to ion gels, they often have simple but
time-consuming fabrication. They have excellent capacitance
and acceptable ionic conductivity, and possess higher envi-
ronmental stability than aqueous electrolytes but less than
that of ionic liquids.

IV. BIOLOGICAL SENSING
Currently, most electrolytes applied in EGFET for biological
sensing are aqueous as depicted in Fig. 10a with less than
10% employing non-aqueous electrolytes. The most com-
mon aqueous electrolyte is phosphate-buffered saline (PBS),
which accounts for almost 70% of the electrolytes among
over 50 papers surveyed. Aside from PBS, numerous other
examples of aqueous electrolytes include DI water [79]–[82],
salt solutions such as KCl/HEPES [83], and other cell culture
mediums such as mTeSR [84], Dulbecco’s modified Eagle’s
medium [85], or Bold’s basal medium [7].
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FIGURE 10. a) Comparing the percentage of aqueous-based and
non-aqueous based electrolyte dielectrics in the literature surveyed.
b) LODs reported for glucose EGFET, OECT, FET biosensors from the years
2008-2020.

A. GLUCOSE BIOSENSING
One of the most popular biological sensing applications is
glucose sensing. A common operating mechanism for the
sensing of glucose is the utilization of the enzyme-substrate
pair of glucose oxidase (GOx) and glucose. GOx is cova-
lently attached to the channel surface. As glucose is captured
and oxidized, H2O2 is produced, which decomposes under
the applied bias to yield electrons. The electrons are trans-
ferred to the gate electrode and results in a drop in potential
across the gate electrode, which is transduced and recorded.
This mechanism is shown in (4) and (5) [86]:

glucose+O2
GOx−→ gluconolactone+H2O2 (5)

H2O2→O2+2H++2e− (6)

Most of the reported EGFET and OECT glucose biosensors
used PBS liquid electrolyte [11], [44], [86]–[92]. Notably,
an exception that uses a non-water-based electrolyte dielec-
tric is an OECT by Yang et al., which incorporates room
temperature IL, triisobutyl-(methyl)-phosphonium tosylate
([P1,4,4,4][Tos]), for label-free glucose sensors [29]. The
IL acts as a reservoir for the redox enzyme glucose oxi-
dase (GOx) and mediator ferrocene. When PBS is added,
the IL is dissolved and allows all components to interact.
The OECT obtained a LOD of 10−7 M and a dynamic range
spanning 10−7 to 10−2 M.
Fig. 10b summarizes the LODs reported for various

EGFET glucose biosensors alongside those of OECTs and
FETs. In general, EGFETs were able to match and out-
perform OECT and FET devices, with an LOD as low as
1 pM [11]. Typical glucose levels in body fluids are tens of
mM for blood, under 0.6 mM for sweat, and under 0.08 mM
for saliva [93]. Thus, the LODs reported for EGFETs are
acceptable for detection in a variety of body fluids, not
just blood. Commercial glucose tests from major companies,
which typically use electrochemical sensing, were reported
to have detection ranges between 0.6 and 33 mM [94]. This
is suitable for their intended use in blood glucose tests but
are not sensitive enough for other body fluids. Thus, elec-
trochemical sensors are currently being developed to meet
the sensing requirements for other fluids such as sweat [95].
Furthermore, the accuracy of commercial glucose monitoring
test strips was reported to not yet meet the necessary ISO
criteria [93], [96], suggesting a need for further development

of glucose biosensors in order to increase the accuracy and
stability of the commercial product.

B. CORTISOL BIOSENSING
Another popular biological sensing application is cortisol
detection. Cortisol is a stress biomarker found in various bod-
ily fluids. Due to the association between stress and health,
it is an important biomarker in health diagnostics. The gate
dielectric is commonly PBS [97]–[99] and the LOD can be
as low as 1 pM [99]. A stacked dielectric EGFET device
structure has been developed by Massey et al. for the sens-
ing of complex biofluids such as cortisol in saliva [100]
without using PBS. They demonstrated the fabrication of
a TGBC structure where the PMMA, Teflon coating, and cor-
tisol aptamer-functionalized biofilm stack can be considered
as the gate dielectric. Compared to a conventional EGFET,
the advantages are a fast response time of 1 ms, selectivity
in the presence of cortisone and progesterone, resistance to
changes in bulk conductivity and dielectric permittivity, and
reliable response to changes in concentration. The LOD and
dynamic ranges of this device had comparable performance
to conventional cortisol biosensors.

C. NEUROTRANSMITTER BIOSENSING
Another promising application is neurotransmitter detec-
tion of serotonin [101], dopamine [102], [103], and
acetylcholine [104], [105]. LODs in EGFETs as low as
1 pM [102] have been reported for dopamine which out-
perform FET and OECTs [106]–[109]. A notable example
of dopamine sensing is presented by Massey et al., using
a stacked dielectric reusable device with a fast response
time on the order of 1 μs [110].

D. LIMITATIONS IN SOLID-STATE ELECTROLYTE-GATED
BIOSENSORS
While there have been many studies on aqueous electrolyte-
gated biosensors, research on solid-state electrolyte-gated
biosensors is sparse. Issues may lie in the integration of
solid-state electrolytes with biosensor receptors, or lack of
exploration in the relatively new field of solid-state materials
for EGFETs. There are still many efforts in detecting dif-
ferent target analytes in water-based liquids. So far, almost
all examples not using water-based liquid electrolytes have
been in floating or back gate EGFETs or OECTs which
provides a simple setup and mimics human body fluid con-
ditions. However, there may be lower sensitivity from limited
diffusive transport in the aqueous media.
Two notable examples of biosensor EGFETs not using

water-based liquid electrolytes are for ricin [111] and
Cdk5 [112] which separate the “sensing” and “transduc-
ing” components of the transistor biosensor to reap the
benefit of having aqueous biosensing as well as sensitive
transduction. In the former example, a floating gate tran-
sistor was applied for the label-free detection of ricin in
complex media with a flow-based microfluidic setup [111].
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Polystryene-b- methylmethacrylate-stryene (SMS)/[EMIM]
[TFSI] ion gel was used. One arm of the floating gate was
coupled to a control gate using an aqueous electrolyte for
transduction. The other arm of the floating gate was func-
tionalized with ricin-specific DNA aptamers as the capture
surface. From the transfer curve, an ION/IOFF ratio of approx-
imately 106 and an OFF current of 10−10 A was extracted.
The device had a LOD of 30 pM (1 ng/mL) in PBS buffer
and 300 pM (10 ng/mL) in orange juice, which is within
the LD50 of approximately 20 μg/kg for ricin.

V. CONCLUSION AND PERSPECTIVES
This review focuses on the applications of electrolytes
in EGFETs as well as EGFET enabled biosensors. Many
electrolytes used in EGFETs also have characteristics advan-
tageous to biological sensing. Five types of electrolytes were
analyzed for their strengths and weaknesses as follows:

• Aqueous electrolytes are the current preferred elec-
trolytes for gating due to their compatibility with
biological analytes, resemblance to biological fluids,
simple synthesis and testing procedures, as well as
standardized composition, but are not environmentally
stable which limits their use in portable or wearable
biosensors;

• Ionic liquids have high stability, but are susceptible
to the same limitations as aqueous electrolytes due to
their liquid nature. In addition, their difficult synthetic
processes and higher cost may be limiting factors in
large-scale manufacturing of disposable devices;

• Ion gels can improve the issues in ionic liquids
while maintaining high performance, and good com-
patibility with printing technologies which enables
high-throughput manufacturing and portable devices;

• Polyelectrolytes have high printability but poor ionic
conductivity. One important challenge for these materi-
als is their susceptibility to the environment. The devices
are recommended to be encapsulated;

• Polymer electrolytes can have high performance, and
portable withsimple processability and printability,
albeit may need lengthy synthesis.

Considering the parameters of cost, printability, and large-
scale manufacturing, one key issue that limits the all-printed
fabrication of EGFETs is a shortage of compatible electrodes.
Currently, the standard electrode is gold, fabricated through
sputtering or evaporation. Although gold nanoparticle ink is
commercially available, it is too expensive for mass manufac-
turing. Silver nanoparticle ink is a much cheaper alternative,
but silver has compatibility issues with most electrolytes due
to oxidation or corrosion. In order to realize all-printed, dis-
posable, and low-cost devices, a suitable printable electrolyte
material for transistors must be realized.
Another issue for EGFETs is their stability. Materials

selection and transistor design are highly influential in deter-
mining the stability of an EGFET. Many approaches have
been used for improving the stability of TFTs so far:
the addition of additives [68], fine-tuning the composition

of a component [113], encapsulation [114], barriers [51],
or modification of the transistor geometry [115]. Further
exploration is needed, especially to control the temperature,
humidity, and electrochemical stability of EGFETs.
In biosensing, a majority of the published work focuses on

expanding analyte detection and improving the FOM such
as LOD, dynamic range, sensitivity, signal-to-noise ratio,
and selectivity. There is less emphasis on how the com-
ponent materials of the biosensor can be integrated and
optimized, so the use of water-based liquids to complete
a proof of concept for the device is sufficient. In non-
water-based liquids, solids, and quasi-solids the receptors
cannot be functionalized directly on the channel or gate
and covered by the gating electrolyte. However, these non-
water electrolytes are significantly more stable and possess
better electrochemical performance. Once promising elec-
trolytes are identified, computer-aided design will become
important for accelerating the development of both high-
performance devices and integrated circuits in biosensing.
The compact model, for example, can be a tool that bridges
the device development and incorporation into integrated cir-
cuits for practical applications. Using a compact model, the
cost and time required from trial and error will be greatly
reduced. For example, compact models have been developed
for inorganic [116], organic [117], [118], and electrolyte-
gated [119] FETs. In the future, using a device architecture
that separates the “sensing” and “transducing” parts of the
EGFET may become a viable strategy to achieve high
sensitivity, selectivity, and stability for biosensors.
Overall, while aqueous electrolytes are indisputably the

current majority for EGFET biosensing, ion gels and polymer
electrolyte devices are promising in their high capacitance,
high ionic conductivity, facile synthesis, and printability
for disposable, mass-manufactured, flexible, and portable
biosensors. Current EGFETs have been incorporated into
printed circuits [120], [121]. In the future, fully printed
devices and integrated sensors can be expected, especially
with the aid of computer-aided design. In addition, the sta-
bility of these electrolytes must be improved to increase
their compatibility in EGFET for biosensor applications to
meet the requirements for next generation of portable and
wearable biosensing platforms.
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