Received 24 January 2021; accepted 8 February 2021. Date of publication 11 February 2021; date of current version 26 February 2021. The review of this article was arranged by Editor N. Collaert.

Digital Object Identifier 10.1109/JEDS.2021.3058631

Graded Crystalline HfO₂ Gate Dielectric Layer for High-k/Ge MOS Gate Stack

CHAN HO LEE^{® 1}, JEONG YONG YANG^{® 1}, JUNSEOK HEO^{® 2} (Member, IEEE), AND GEONWOOK YOO^{® 1}

1 School of Electronic Engineering, Soongsil University, Seoul 06938, South Korea 2 Department of Electrical and Computer Engineering, Ajou University, Suwon 16499, South Korea

CORRESPONDING AUTHOR: J.HEO and G. YOO (e-mail: jsheo@ajou.ac.kr; gwyoo@ssu.ac.kr)

This work was supported in part by the Industrial Strategic Technology Development Program under Grant 20000300; and in part by the National Research and Development Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT under Grant 2020M3F3A2A01082593

ABSTRACT Germanium (Ge) has gained great attention not only for future nanoelectronics but for back-end of line (BEOL) compatible monolithic three-dimensional (M3D) integration recently. For high performance and low power devices, various high-k oxide/Ge gate stacks including ferroelectric oxides have been investigated. Here, we demonstrate atomic layer deposited (ALD) polycrystalline (p-) HfO₂/GeO_X/Ge stack with an amorphous (a-) HfO₂ capping layer. The consecutively deposited a-HfO₂ capping layer improves hysteretic behaviors (ΔV) and interface state density (D_{it}) of the p-HfO₂/GeO_X/Ge stack. Furthermore, leakage current density (*J*) is significantly reduced (×100) by passivating leakage paths through grain boundaries of p-HfO₂. The proposed HfO₂ layer with the graded crystallinity suggests possible high-k/Ge stacks for further optimized Ge MOS structures.

INDEX TERMS Ge, amorphous, polycrystalline, ALD HfO₂, leakage.

I. INTRODUCTION

Germanium (Ge) has been one of the promising candidates for modern very large-scale integrated circuits and future nanoelectronics because of its high carrier mobility, stable performance and relatively silicon-compatible low-temperature process [1]-[5]. Most recently, back-end of line (BEOL) compatible monolithic three-dimensional (M3D) integration of high performance memory and logic has attracted much attention [6], [7]. Under the constraint of thermal budget (< 400 °C), polycrystalline (p-) Ge is one of the strong candidates along with p-Si, metal-oxides, and two-dimensional semiconductors [7]-[11]. Although the scaling of Ge devices to the physical limit and thus thin equivalent oxide thickness (EOT) of gate-oxide are not aggressively demanded for BEOL-M3D integration, the thermal budget and other process conditions should be considered.

The stable and high quality gate stack formation on Ge has been the critical challenge to realize the aforementioned prediction [1], [3]. In particular, high-permittivity (k) oxides is mandatory for low power consumption [12]. For the high-k/Ge gate stack, HfO₂, one of the most promising

high-k materials in Si, is also very attractive because of its k value and/or ferroelectricity by doping or elaborated thermal annealing [13], [14], [15]. However, Ge atoms can easily diffuse into the HfO₂ during the atomic layer deposition (ALD) process and even low-temperature annealing process, resulting in large leakage current [16]. Moreover, the diffused Ge atoms significantly affect electrical characteristics such as poor hysteresis and mobility degeneration [1], [17], [18]. Other than single crystal oxides, poor interface properties and large leakage current are inevitable without an interfacial passivating layer.

Regarding the interfacial layer, extensive research has been conducted to passivate the Ge surface and various methods of high-quality GeO₂ [18]–[21], oxynitrides [22], [23], and 2-D materials such as molybdenum disulfied (MoS₂) [24] have been investigated. Unlike the HfO₂ and ZrO₂, the Y₂O₃ layer is known to achieve high interface quality by suppressing the GeO₂ desorption [25]. However, the post-oxidation to introduce high-quality GeO₂ typically requires high-temperature thermal annealing process [26], [27], which is not compatible with the BEOL M3D integration. The Hf-based ferroelectric oxides with negative capacitance, which is very promising for

FIGURE 1. (a) A schematic diagram of the fabricated Ge MOSCAP with p-HfO₂ (10 nm)/a-HfO₂ (10 nm) gate dielectric layer, and (b) its cross-sectional TEM image.

low-power steep switching transistors, also require thermal annealing process. So alternative schemes of high-k oxide stack needs be considered.

In this work, we proposed a-HfO₂ capping layer on top of the p-HfO₂/GeO_X/Ge gate stack. An oxide stack of HfO₂ with different oxide layers is known to have high density of dipoles inducing hysteresis and interface states [28], [29]; This HfO₂ stack allows minimized formation of dipoles inbetween. The crystallinity of the ALD p-HfO₂/a-HfO₂ stack was confirmed by high resolutiontransmission electron microscopy (HR-TEM). Bidirectional frequency-dependent capacitance- voltage (C-V) measurements were conducted to compare hysteretic behaviors (ΔV) of both p-HfO₂/a-HfO₂ and p-HfO₂ gate stacks as a control sample. Moreover, interface trap densities (D_{it}) were characterized and compared using Hi-Lo and conductance methods. Finally, leakage current density (J) vs. oxide electric field (E_{OX}) was characterized, and the effects of a-HfO₂ capping layer was discussed.

II. EXPERIMENTS

Ge MOSCAPs were fabricated on n-type As-doped (100) Ge wafer with a nominal resistivity of 0.04 \sim 0.05 Ω cm. First, the surface was chemically cleaned, and then p-HfO₂ dielectric layer (10 nm) was deposited using ALD at an elevated stage temperature of 350 °C, followed by a-HfO₂ (~10 nm) deposition at 200 °C. Tetrakis(ethylmethy lamino)hafnium (TEMAH) and ozone were used as Hf precursor and oxygen source, respectively. The deposition rate was ~ 0.9 Å/cycle. To avoid crystallization of the a-HfO₂, we first deposit p-HfO₂ using ALD at 350 °C followed by a-HfO₂ deposition at 200 °C, consecutively. Top contact electrodes of Ni/Au (10/50nm) were deposited by thermal evaporation and patterned using conventional photolithography and lift off process. Next, as a bottom contact, Ti/Au (20/80nm) was deposited by e-beam evaporation. No post-deposition annealing was conducted. For the comparison, Ge MOSCAPs with only p-HfO₂ dielectric layer (15 nm) was also prepared. Figs. 1 (a) and (b) show a schematic of the fabricated MOSCAP with p-HfO₂/a-HfO₂ bilayer dielectrics and its cross-sectional TEM image at a low magnification, confirming the Ge gate stacks. C-V and current density-voltage (J-V) measurements were conducted using a HP 4284A LCR meter and 4200A SCS

FIGURE 2. (a) A cross sectional HR-TEM image of the

p-HfO₂/a-HfO₂/GeO_X stack with a FFT micrograph of the p-HfO₂ in the inset. (b) STEM EDS line profiles of the p-HfO₂/a-HfO₂/GeO_X/Ge showing the change of atomic ratios at the interfaces. (c) Compositional element mapping of the several layer (Ge, Hf and O), and a higher density of Hf atom from the p-HfO₂ is observed.

FIGURE 3. Frequency dependent C-V characteristics of Ge MOSCAPs with (a) p-HfO₂ monolayer and (b) p-HfO₂/a-HfO₂ bilayer gate dielectric.

semiconductor parameter analyzer, respectively. Structural analysis was conducted using focused ion-beam (FIB)-SEM and transmission electron microscopy (TEM, JEOL JEM-2100F) equipped with an energy-dispersive X-ray spectrometer (EDS).

III. RESULTS AND DISCUSSION

Fig. 2(a) shows the cross-sectional high-resolution (HR)-TEM image of the p-HfO₂/a-HfO₂/Ge (100) interface; The crystallinity of each HfO₂ layer is clearly shown. The p-HfO₂ layer possesses a polycrystalline structure containing multiple grains and boundaries, and an interfacial GeO_X layer of ~ 0.54 nm is formed on the Ge surface. The inset shows a fast Fourier transform (FFT) micrograph of the HfO₂ grain, clearly indicating its crystallized phase. Fig. 2(b) shows changes of atomic ratio across the interface, and Fig. 2(c) represents the EDS mapping of individual layers, confirming the uniform distribution of elements Ge, Hf, and O. A higher density of Hf atom was observed in p-HfO₂ compared with a-HfO₂ layer.

Figs. 3(a) and (b) show the frequency-dependent C-V curves of the p-HfO₂/a-HfO₂ and p-HfO₂ Ge MOSCAPs from 500 Hz to 1 MHz, respectively. Stronger inversion and less frequency-dispersion were observed in the p-HfO₂/a-HfO₂ MOSCAPs due to improved leakage characteristics achieved by a-HfO₂ capping layer [30]. However, a relatively

FIGURE 4. Bidirectional C-V characteristics of Ge MOSCAPs with (a) p-HfO₂ monolayer and (b) p-HfO₂/a-HfO₂ bilayer gate dielectric. (c) $1/C^2$ vs. gate voltage plot for extracting V_{FB} through linear fitting. (d) Comparison of extracted hysteresis (Δ V_{FB}) versus frequency.

low k value of ~ 9 was obtained from p-HfO₂/a-HfO₂ in comparison with $k \sim 15$ of p-HfO₂ gate dielectric. Further experiments to optimize the thickness ratio between p-HfO₂ and a-HfO₂ layer and ALD process conditions could enhance the k of p-HfO₂/a-HfO₂ [31].

Figs. 4(a) and (b) show the frequency-dependent bidirectional C-V curves of the Ge MOSCAPS with p-HfO₂/a-HfO₂ and p-HfO₂ for the same frequency range of 500 Hz to 1 MHz, respectively. Although the a-HfO₂ layer contains various oxide defects inducing non-ideal C-V properties, p-HfO₂ capped by a-HfO₂ layer (i.e., p-HfO₂/a-HfO₂) exhibits significant reduction of hysteresis (ΔV_{FB}) as well as dispersion. In order to describe the effect of a-HfO₂ capping layer on $\Delta V_{\rm FB}$ quantitatively, the $V_{\rm FB}$ is determined through the extrapolated line of $1/C^2 - V_{GS}$ in the depletion region as shown in Fig. 4(c) exhibiting V_{FB} of 0.32 V. ΔV_{FB} is calculated to be difference of $V_{\rm FB}$ under bi-directional bias sweep C-V measurements, and Fig. 4(d) compares the hysteresis $(\Delta V_{\rm FB})$ as a function of frequency. The average $\Delta V_{\rm FB}$ of p-HfO₂/a-HfO₂ and p-HfO₂ was 0.28 V and 1.46 V, respectively. Therefore, the additional a-HfO2 layer deposited on p-HfO₂ results in the reduction of $V_{\rm FB}$ by ~ 1.18 V, and exhibits lower $\Delta V_{\rm FB}$ in comparison with the reported value of a Ge gate stack with a-HfO₂ layer [32].

Next, Hi-Lo and conductance methods were used to investigate D_{it} at the interface. The ac conductance (G_m) and capacitance (C_m) of the MOSCAPs were measured at various gate biases. Based on the measured G_m , the normalized equivalent parallel conductance is calculated using [28], [29]:

$$\frac{Gp}{\omega} = \frac{C^2 \omega G_m}{G_m^2 + \omega^2 (C_{ox} - C_m)^2},\tag{1}$$

where C_{OX} is the oxide capacitance measured in accumulation region and ω is the angular frequency. Figs. 5(a) and (b) show the extracted equivalent conductance (G_p) versus measurement frequency (ω) for both MOSCAPs. The

FIGURE 5. Normalized equivalent conductance spectrum at various gate bias derived from conductance measurements for (a) p-HfO₂ and (b) p-HfO₂/a-HfO₂. Interface trap density (D_{it}) versus ΔE calculated from (c) conductance method and (d) Hi-Lo method.

peaks correspond to interface states' response, and their positions were modulated by the gate bias. From the conductance peak, D_{it} was extracted using [33], [34],

$$D_{it} = \frac{2.5}{Aq} \left(\frac{Gp}{\omega}\right)_{peak},\tag{2}$$

where A is the area of devices. Fig. 5(c) shows the calculated D_{it} as a function of ΔE which is the energy difference between trap level (E_T) and conduction band edge (E_C). The D_{it} of p-HfO₂ and p-HfO₂/a-HfO₂ were extracted to be 6.0×10^{12} and 3.5×10^{12} cm⁻²eV⁻¹, respectively, at ΔE = 0.26 eV; D_{it} from p-HfO₂/a-HfO₂ was lower than that of p-HfO₂. Because the conductance method could overestimate D_{it} due to the minority carrier responses in the weak inversion and provide D_{it} values only over the limited energy range [35], [36], we further investigated the D_{it} using the Hi-Lo method and D_{it} was calculated from Figs. 3(a) and (b) using

$$D_{ii}(V_g) = \left(\frac{C_{OX}C_{LF}}{C_{OX} - C_{LF}} - \frac{C_{OX}C_{HF}}{C_{OX} - C_{HF}}\right)/qA,\qquad(3)$$

where A is the area, C_{LF} and C_{HF} is the capacitance at low and high frequency, respectively [33], [37]. The p-HfO₂/a-HfO₂ also exhibits reduced D_{it} of 2.0 × 10¹² cm⁻²eV⁻¹ compared with p-HfO₂ of 4.0×10^{12} cm⁻²eV⁻¹. The reduced hysteretic behaviors and improved interface states of Ge MOSCAPs with the p-HfO₂/a-HfO₂ dielectric can be attributed not only to capping effects of the p-HfO₂ surface by the a-HfO₂ layer but the post-oxidation at the interface between p-HfO₂ and Ge during ALD deposition process [12], [38]. Although the ALD temperature (~ 200 °C) of a-HfO₂ was relatively low, thermal diffusion of oxygen can proceed and the oxidation at the interface is speculated to be involved [16].

Fig. 6 shows a schematic illustration of the a-HfO₂ capping effect on p-HfO₂/GeO_x/Ge stack. Although the p-HfO₂

FIGURE 6. Schematic illustration of the reactions occurring within the Ge MOSCAPs with (a) p-HfO₂ and (b) p-HfO₂/a-HfO₂ stack. The a-HfO₂ capping layer and post-oxidation at the interface during ALD a-HfO₂ process (200 °C, 2 hours) suppress the diffusion of Ge atoms through grain boundaries and passivate leakage paths.

monolayer provides a relatively higher k of ~ 15, the incorporation of Ge atoms into p-HfO₂ and their diffusion within the layer are known to be the origin of poor electrical characteristics [1], [18]. Even worse, the GeO (g) is known to trigger metal-Ge (HfGe₂) generation playing a role of leakage current paths as shown in the following reactions [1],

$$3\text{GeO}_2 + 3\text{Ge6GeO}$$
 (g) (4)

$$HfO_2 + 6GeO (g)HfGe_2 + 4GeO_2$$
(5)

As shown in Fig. 6(a), the diffusion of Ge atoms into the p-HfO₂ through grain boundaries induces larger hysteresis as well as higher D_{it} . In order to confine the Ge diffusion within the p-HfO2, the a-HfO2 capping layer is deposited as shown in Fig. 6(b). Although other amorphous high-k films can be applied as a capping layer, it is reported that the interface dipoles at the boundary of different oxide layers can cause additional hysteresis [28], [29]. Even compared with the direct diffusion of Ge atoms into the a-HfO₂ gate-dielectric, the proposed p-HfO₂/a-HfO₂ dielectric shows better interface quality [32]. Therefore, the proposed p-HfO₂ dielectric capped by a-HfO₂ can exhibit improvement of interface quality and reduction of leakage current. Moreover, the consecutive ALD deposition of polycrystalline and amorphous HfO2 at different temperature can simplify the gate-oxide deposition process. It is to be noted that the results can be limited because the reference p-HfO₂ dielectric did not adopt high-quality GeO₂ or passivation layer using additional processes. At the same time, it can be further improved by adopting thin Al₂O₃ interlayer and/or additional pre-/post-oxidation of GeO_x [21], [26], [27]. In particular, considering the thermal budget for BEOL-M3D integration, the plasma postoxidation method might be preferred [21], [39].

Furthermore, the proposed graded HfO₂ gate dielectric layer can yield significantly improved leakage current and breakdown characteristics. Fig. 7 shows the gate leakage current density (*J*) vs. oxide electric field (E_{OX}) of the measured devices; An equivalent oxide thickness (EOT) was used for calculating E_{OX} . At the same effective V_G bias condition of V_{FB} + 1 V, the *J* of p-HfO₂ and p-HfO₂/a-HfO₂ was 3.47×10^{-5} A/cm² and 1.93×10^{-7} A/cm², respectively. This suppressed leakage current can be attained by

FIGURE 7. Current density (J) versus oxide electric field (E_{0X}) curves of the Ge MOSCAPs showing p-HfO₂/a-HfO₂ stack exhibits reduced leakage current and improved breakdown characteristics compared with p-HfO₂.

eliminating leakage paths. Regarding the breakdown E_{OX} , p-HfO₂/a-HfO₂ exhibits 4.9 × 10⁻⁶ A/cm² at 4.4 MV/cm, and p-HfO₂ shows 1.0 × 10⁻⁴ A/cm² at 1.0 MV/cm. The p-HfO₂/a-HfO₂ exhibits significantly lower J (< 100 ×) and better breakdown characteristics (> 4 ×) compared with p-HfO₂, attributed to the aforementioned capping effect of the a-HfO₂.

IV. CONCLUSION

In summary, we proposed and investigated p-HfO₂/a-HfO₂ gate dielectric for n-Ge MOSCAPs in comparison with p-HfO₂ dielectric. The crystallinity of each HfO₂ layer and interfacial GeO_X layer were confirmed by HR-TEM. Although the p-HfO₂/a-HfO₂ has a lower dielectric constant $(k \sim 9)$ than that $(k \sim 15)$ of p-HfO₂, it showed a reduced hysteresis ($\Delta V_{\rm FB}$) by the amount of ~ 1.3 V. The k is expected to be increased by optimizing the thickness ratio. Both Hi-Lo and conductance methods were used to evaluate the interface state. D_{it} of p-HfO₂/a-HfO₂ and p-HfO₂ were extracted to be 6.0×10^{12} and 3.5×10^{12} cm⁻²eV⁻¹, respectively, at $\Delta E = 0.26$ eV. Similar level of difference (~ $2.0 \times 10^{12} \text{ cm}^{-2} \text{eV}^{-1}$) was obtained from the Hi-Lo method. These reduced hysteresis and improved interface quality can be attributed to the effect of surface capping by the a-HfO₂ layer and additional post-oxidation at the interface between p-HfO₂ and GeO_X/Ge substrate during ALD a-HfO₂ deposition. Moreover, the diffused Ge atoms through the grain boundaries were speculated to be confined within p-HfO₂ layer by a-HfO₂ capping layer. Consequently, a-HfO₂ could suppress leakage current paths, and thus significantly reduced leakage J of 1.93×10^{-7} A/cm² was obtained from the p- $HfO_2/a-HfO_2$ compared with 3.47 \times 10⁻⁵ A/cm² from the p-HfO₂ at the bias of $V_{FB} + 1$ V. These results show that the p-HfO₂ with consecutively deposited a-HfO₂ capping layer can be a promising gate stack for Ge devices.

ACKNOWLEDGMENT

The EDA tool was supported by the IC Design Education Center (IDEC), South Korea.

REFERENCES

- Y. Kamata, "High-k/Ge MOSFETs for future nanoelectronics," *Mater. Today*, vol. 11, nos. 1–2, pp. 30–38, 2008, doi: 10.1016/S1369-7021(07)70350-4.
- [2] A. Toriumi *et al.*, "Material potential and scalability challenges of germanium CMOS," in *Tech. Dig. Int. Electron Devices Meeting*, 2011, pp. 646–649, doi: 10.1109/IEDM.2011.6131631.
- [3] P. S. Goley and M. K. Hudait, "Germanium based field-effect transistors: Challenges and opportunities," *Materials*, vol. 7, no. 3, pp. 2301–2339, 2014, doi: 10.3390/ma7032301.
- [4] C. Claeys et al., "Status and trends in Ge CMOS technology," ECS Trans., vol. 54, no. 1, pp. 25–37, 2013.
- [5] S. Gupta, X. Gong, R. Zhang, Y. C. Yeo, S. Takagi, and K. C. Saraswat, "New materials for post-Si computing: Ge and GeSn devices," MRS Bull., vol. 39, no. 8, pp. 678–686, 2014, doi: 10.1557/mrs.2014.163.
- [6] P. Batude *et al.*, "Advances, challenges and opportunities in 3D CMOS sequential integration," in *Tech. Dig. Int. Electron Devices Meeting*, May 2014, pp. 3–7, doi: 10.1109/IEDM.2011.6131506.
- [7] S. Datta, S. Dutta, B. Grisafe, J. Smith, S. Srinivasa, and H. Ye, "Back-end-of-line compatible transistors for monolithic 3-D integration," *IEEE Micro*, vol. 39, no. 6, pp. 8–15, Nov./Dec. 2019, doi: 10.1109/MM.2019.2942978.
- [8] M. M. Shulaker *et al.*, "Three-dimensional integration of nanotechnologies for computing and data storage on a single chip," *Nature*, vol. 547, no. 7661, pp. 74–78, 2017, doi: 10.1038/nature22994.
- [9] G. Hautier, A. Miglio, G. Ceder, G. M. Rignanese, and X. Gonze, "Identification and design principles of low hole effective mass ptype transparent conducting oxides," *Nat. Commun.*, vol. 4, pp. 1–7, Aug. 2013, doi: 10.1038/ncomms3292.
- [10] M. Jiang and D. Ahn, "Seed-induced crystallization of polycrystalline germanium thin films at low temperature," *Results Phys.*, vol. 14, Sep. 2019, Art. no. 102502, doi: 10.1016/j.rinp.2019.102502.
- [11] Y.-S. Li *et al.*, "Effects of crystallinity on the electrical characteristics of counter-doped polycrystalline germanium thinfilm transistor via continuous-wave laser crystallization," *IEEE J. Electron Devices Soc.*, vol. 7, pp. 544–550, Nov. 2019, doi: 10.1109/JEDS.2019.2914831.
- [12] C. Hu et al., "A low-leakage epitaxial high-κ gate oxide for germanium metal-oxide-semiconductor devices," ACS Appl. Mater. Interfaces, vol. 8, no. 8, pp. 5416–5423, 2016, doi: 10.1021/acsami.5b10661.
- [13] J. A. Kittl *et al.*, "High-k dielectrics for future generation memory devices (invited paper)," *Microelectron. Eng.*, vol. 86, nos. 7–9, pp. 1789–1795, 2009, doi: 10.1016/j.mee.2009.03.045.
- [14] M. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, and C. S. Hwang, "Review and perspective on ferroelectric HfO₂-based thin films for memory applications," *MRS Commun.*, vol. 8, no. 3, pp. 795–808, 2018, doi: 10.1557/mrc.2018.175.
- [15] P. Polakowski and J. Müller, "Ferroelectricity in undoped hafnium oxide," *Appl. Phys. Lett.*, vol. 106, no. 23, 2015, Art. no. 232905, doi: 10.1063/1.4922272.
- [16] S. Ogawa *et al.*, "Insights into thermal diffusion of germanium and oxygen atoms in HfO₂/GeO₂/Ge gate stacks and their suppressed reaction with atomically thin AlOx interlayers," *J. Appl. Phys.*, vol. 118, no. 23, pp. 1–6, 2015, doi: 10.1063/1.4937573.
- [17] Y. Kamata, Y. Kamimuta, T. Ino, R. Iijima, M. Koyama, and A. Nishiyama, "Dramatic improvement of Ge p-MOSFET characteristics realized by amorphous Zr-silicate/Ge gate stack with excellent structural stability through process temperatures," in *Tech. Dig. Int. Electron Devices Meeting*, vol. 2005, 2005, pp. 429–432, doi: 10.1109/iedm.2005.1609370.
- [18] N. Lu *et al.*, "Ge diffusion in Ge metal oxide semiconductor with chemical vapor deposition HfO₂ dielectric," *Appl. Phys. Lett.*, vol. 87, no. 5, pp. 1–4, 2005, doi: 10.1063/1.2001757.
- [19] C. H. Lee, T. Tabata, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, "Ge/GeO₂ interface control with high-pressure oxidation for improving electrical characteristics," *Appl. Phys. Exp.*, vol. 2, no. 7, pp. 3–6, 2009, doi: 10.1143/APEX.2.071404.
- [20] B. Kaczer *et al.*, "Electrical and reliability characterization of metalgate/HfO₂/Ge FET's with Si passivation," *Microelectron. Eng.*, vol. 84, nos. 9–10, pp. 2067–2070, 2007, doi: 10.1016/j.mee.2007.04.100.

- [21] R. Zhang, P.-C. Huang, J.-C. Lin, N. Taoka, M. Takenaka, and S. Takagi, "High-mobility Ge p- and n-MOSFETs with 0.7-nm EOT using HfO₂/Al₂O₃/GeOx/Ge gate stacks fabricated by plasma postoxidation," *IEEE Trans. Electron Devices*, vol. 60, no. 3, pp. 927–934, Mar. 2013, doi: 10.1109/TED.2013.2238942.
- [22] E. P. Gusev *et al.*, "Microstructure and thermal stability of HfO₂ gate dielectric deposited on Ge(100)," *Appl. Phys. Lett.*, vol. 85, no. 12, pp. 2334–2336, 2004, doi: 10.1063/1.1794849.
- [23] C. O. Chui, H. Kim, P. C. McIntyre, and K. C. Saraswat, "Atomic layerdeposition of high-κ dielectric for germanium MOS applications— Substrate surface preparation," *IEEE Electron Device Lett.*, vol. 25, no. 5, pp. 274–276, May 2004, doi: 10.1109/LED.2004.827285.
- [24] J. Li *et al.*, "High performance and reliability Ge channel CMOS with a MoS₂ capping layer," in *Tech. Dig. Int. Electron Devices Meeting*, 2017, pp. 33.3.1–33.3.4, doi: 10.1109/IEDM.2016.7838533.
- [25] Y. Seo *et al.*, "The impact of an ultrathin Y₂O₃ layer on GeO₂ passivation in Ge MOS gate stacks," *IEEE Trans. Electron Devices*, vol. 64, no. 8, pp. 3303–3307, Aug. 2017, doi: 10.1109/TED.2017.2710182.
- [26] R. Zhang, J. Li, and X. Yu, "Electrical properties of Ge pMOS-FETs with ultrathin EOT HfO₂/AlO_x/GeO_x gate-stacks and NiGe metal source/drain," *IEEE Trans. Electron Devices*, vol. 64, no. 12, pp. 4831–4837, Dec. 2017, doi: 10.1109/TED.2017.2761885.
- [27] M. Ke, M. Takenaka, and S. Takagi, "Impact of atomic layer deposition high k films on slow trap density in Ge MOS interfaces with GeOx interfacial layers formed by plasma pre-oxidation," *IEEE J. Electron Devices Soc.*, vol. 6, pp. 950–955, Feb. 2018, doi: 10.1109/JEDS.2018.2822758.
- [28] E. Chen, Y.-T. Tung, Z.-R. Xiao, T.-M. Shen, J. Wu, and C. H. Diaz, "Ab initio study of dipole-induced threshold voltage shift in HfO 2/Al₂O₃/(100)Si," in *Proc. Int. Workshop Comput. Electron. (IWCE)*, 2014, pp. 1–3, doi: 10.1109/IWCE.2014.6865828.
- [29] F.-Y. Jin *et al.*, "Abnormal positive bias temperature instability induced by dipole doped N-type MOSCAP," *IEEE J. Electron Devices Soc.*, vol. 7, pp. 897–901, May 2019, doi: 10.1109/jeds.2019.2932603.
- [30] J. Tao *et al.*, "Extrinsic and intrinsic frequency dispersion of highk materials in capacitance-voltage measurements," *Materials*, vol. 5, no. 6, pp. 1005–1032, 2012, doi: 10.3390/ma5061005.
- [31] D. W. McNeill *et al.*, "Atomic layer deposition of hafnium oxide dielectrics on silicon and germanium substrates," *J. Mater. Sci. Mater. Electron.*, vol. 19, no. 2, pp. 119–123, 2008, doi: 10.1007/s10854-007-9337-y.
- [32] H.-S. Jung *et al.*, "Properties of atomic layer deposited HfO₂ films on Ge substrates depending on process temperatures," *J. Electrochem. Soc.*, vol. 159, no. 4, pp. G33–G39, 2012, doi: 10.1149/2.014204jes.
- [33] K. Zeng, Y. Jia, and U. Singisetti, "Interface state density in atomic layer deposited SiO₂/β-Ga₂O₃ (2-01) MOSCAPs," *IEEE Electron Device Lett.*, vol. 37, no. 7, pp. 906–909, Jul. 2016, doi: 10.1109/LED.2016.2570521.
- [34] R. Engel-Herbert, Y. Hwang, and S. Stemmer, "Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces," *J. Appl. Phys.*, vol. 108, no. 12, 2010, Art. no. 124101, doi: 10.1063/1.3520431.
- [35] K. Martens *et al.*, "On the correct extraction of interface trap density of MOS devices with high-mobility semiconductor substrates," *IEEE Trans. Electron Devices*, vol. 55, no. 2, pp. 547–556, Feb. 2008, doi: 10.1109/TED.2007.912365.
- [36] C. Schulte-Braucks *et al.*, "Low temperature deposition of highk/metal gate stacks on high-Sn content (Si)GeSn-alloys," ACS Appl. Mater. Interfaces, vol. 8, no. 20, pp. 13133–13139, 2016, doi: 10.1021/acsami.6b02425.
- [37] H. Dong *et al.*, "C-V and J-V investigation of HfO₂/Al₂O₃ bilayer dielectrics MOSCAPs on (100) β-Ga₂O₃," *AIP Adv.*, vol. 8, no. 6, 2018, Art. no. 065215, doi: 10.1063/1.5031183.
- [38] H. Matsubara, T. Sasada, M. Takenaka, and S. Takagi, "Evidence of low interface trap density in GeO₂/Ge metal-oxide- semiconductor structures fabricated by thermal oxidation," *Appl. Phys. Lett.*, vol. 93, no. 3, 2008, Art. no. 032104, doi: 10.1063/1.2959731.
- [39] R. Asahara *et al.*, "Comprehensive study and design of scaled metal/high-k/Ge gate stacks with ultrathin aluminum oxide interlayers," *Appl. Phys. Lett.*, vol. 106, no. 23, 2015, Art. no. 233503, doi: 10.1063/1.4922447.