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ABSTRACT Sheet resistance (Rsheet) reduction of a-few-layered molybdenum disulfide (MoS2) film using
sputtering is investigated in this study. To enhance the carrier density, chlorine (Cl2) gas excited by
inductively coupled plasma is introduced as a substitute for sulfur. To electrically activate the Cl dopants
and simultaneously prevent out-diffusion of sulfur, a furnace annealing was performed in sulfur-vapor
ambient. Consequently, the Rsheet in the MoS2 film with the Cl2 plasma treatment remarkably reduced
by one order lower than that without one, because of the activation of Cl dopants in the MoS2 film.

INDEX TERMS Activation annealing, chlorine plasma, molybdenum disulfide (MoS2), radio-frequency
magnetron sputtering, transition metal dichalcogenide (TMDC).

I. INTRODUCTION
MoS2 film which is one of the transiton metal dichalco-
genides (TMDCs) has attracted great attentions, because of
its excellent electrical and physical properties such as its
high mobility even at atomically thin thickness, adequate
band-gap, flexibility and transparency [1]–[4] for advanced
LSIs, energy harvesters, displays and sensors [5]–[10]. To
obtain an atomically thin MoS2 film with large area for such
applications, a chemical vapor deposition (CVD) method is
considered. However, to synthesize large MoS2 film on sub-
strate, a special treatment with alkali metal is used [11], [12],
that influences in the Fermi-level pinning near the conduction
band minimum [13]. As a method to avoid the unexpected
difficulties and achieve large films, a sputtering method under
ultra high vacuum (UHV) has been proposed as a physical
vapor deposition (PVD) [14], [15]. For the Seebeck device
in thermoelectric generator as an energy harvester, high effi-
ciency of energy conversion was achieved in a sputtered
MoS2 film by low thermal conductivity [16]. However, sulfur

atoms are easily out-diffused from the MoS2 film during
sputtering process, which cause high carrier density. We have
found that sulfur vapor annealing (SVA) compensates for S
defects resulting in a carrier density reduction down to 1.8
× 1016 cm−3 and also a mobility enhancement [17], [18].
Furthermore, normally-off nMISFETs with an appropriate
threshold voltage were performed, because of the low car-
rier density in MoS2 film formed by sputtering and treated
by SVA and an appropriate work function of metal gate [19].
To intentionally enhance the carrier density in low carrier-

density MoS2 film for the Seebeck device, intrinsic and
extrinsic carrier generations are expected. Although the
intrinsic technique such as vacancies and interstitials of the
consisting materials generates several energy levels in the
band gap [20]–[22], the extrinsic technique is favorable rather
than intrinsic one to significantly enhance the carrier density
with high controllability [23], for which electrostatic dop-
ing [24], molecular adsorption [25]–[27] and substitutional
doping [28]–[33] can be considered. Although electrostatic
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doping has high carrier density, a device structure is complex.
And molecular adsorption is unstable on thermodynamics.
Therefore, substitutional doping technology is selected in
this study, because of its simple structure and stability. Since
high carrier mobility is required to enhance the power factor
(PF) of the Seebeck device, an n-type MoS2 film is selected
rather than p-type one [34], [35]. As candidates for the n-
type dopant, Group 7 and 17 elements were examined as
substitution for molybdenum (Mo) and S, respectively. In
terms of ionization and formation energies, chlorine (Cl)
substituting for S was selected as the n-type dopant in
the MoS2 film [36], [37]. For the fabrication method, ion
implantation and plasma exposure in dopant ambient have
been investigated [28]–[31]. However, energetic dopants in
these methods can generate S vacancies and an activation of
dopants in the MoS2 film is required [31].

In this study, we investigates the combination of
Cl2-plasma treatment and SVA for sheet resistance reduction
in MoS2 films formed by sputtering.

II. EXPERIMENTAL METHODS
To examine the sheet resistance in the MoS2 film, a circular
transmission line model (CTLM) pattern was used, as shown
in Fig. 1 [38]–[40]. A base material of silicon dioxide (SiO2)
on a silicon substrate was cleaned in a wet process using a
piranha solution. Titanium-nitride (TiN) electrodes of 40 nm
thickness were formed by sputtering and wet etching with
H2O2. The MoS2 films were formed using an ultra-high vac-
uum (UHV) radio frequency (RF) magnetron sputtering tool
with MoS2 target of 99.99% purity, at a substrate temper-
ature of 300◦C, under argon (Ar) pressure of 0.55 Pa, an
Ar flow rate of 7 sccm, an RF power of 40 W and a dis-
tance of 150 mm between the MoS2 target and the substrate.
We note that the sputter-deposited MoS2 film has layered
structure in parallel to the substrate because of high temper-
ature at 300◦C. The detail of the film was investigated in
our previous work [18]. The MoS2 films were exposed to
a Cl2 plasma generated using an inductive coupling plasma
reactive ion etching (ICP-RIE) tool (SAMCO RIE-101iPH),
under Cl2) pressures from 0.4 to 3.2 Pa, with a Cl2 flow
rate of 7 sccm, ICP powers from 5 to 20 W, for 20 to 160 s.
Herein, the bias power is set to 0 W resulting in a floating
potential at the sample. The MoS2 films were annealed by
SVA at the 700◦C in a sulfur ambient under 100 Pa for
40 min to activate the dopants and compensate for the sul-
fur vacancies, simultaneously. The thickness of the MoS2
film was approximately 2.0 nm measured using the X-ray
reflection (XRR) method. Sheet resistances in the MoS2 film
were extracted from the CTLM measurement with spacing
from 5 to 30 µm and r = 90 µm.

Raman spectroscopy was performed at 532 nm wavelength
and pseudo-Voigt function was used to fit the Raman spec-
trum of the MoS2 film. An atomic force microscope (AFM)
was performed in dynamic force microscope (DFM) mode.
The changes in the thickness of the MoS2 layer with and

FIGURE 1. Schematic illustrations of the CTLM pattern with TiN contacts
and MoS2 film. (a) Cross-sectional and (b) top views with r = 90 µm and
several contact distances d from 5 to 30 µm.

without the Cl2 plasma treatment were observed using trans-
mission electron microscopy (TEM) with an accelerating
voltage of 200 keV. An X-ray photoelectron spectroscopy
(XPS) using an Al Kα X-ray source was also performed
with spectral fitting using the pseudo-Voigt function. The
composition ratio of the MoS2 film is expressed as follows:

Ci = Ai/RSFi
∑

j AjRSFj
(1)

where Ci, Ai, and RSFi are the composition ratio, peak area,
and relative sensitivity factor of the atom i, respectively
[17]. Depth profiling of time-of-flight secondary ion mass
spectroscopy (TOF-SIMS) were performed using bismuth
and cesium ions as the primary and sputtering ion sources,
respectively.

III. RESULTS AND DISCUSSION
To evaluate the sheet resistance reduction in the MoS2 film,
typical results from CTLM with and without Cl2 plasma
treatment are shown in Fig. 2, as a function of the contact
distance at 5 W under 0.4 Pa for 40 s. The total resis-
tance depending on contact distance is shown in following
Equation (2),

Rtotal = Rsheet
2π

[
Lt
r

+ Lt
r + d

+ ln

(

1 + d

r

)]

(2)

where Rsheet, Lt, r, and d are the sheet resistance, trans-
fer length, inner radius, and contact distance, respectively.
The Rsheet of 8.50 M�/sq. with the Cl2 plasma treatment is
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FIGURE 2. Resistance dependence on contact distance in MoS2 films with
and without Cl2 plasma treatment at 5 W under 0.4 Pa for 40 s, followed
by the SVA.

FIGURE 3. Sheet resistance of MoS2 film as a function of Cl2 plasma
exposure time. The duration time was varied at 5 W under 0.4 Pa. SVA was
applied at 700◦C for 40 min.

approximately ten times less than that of 105 M�/sq. without
the treatment. Furthermore, the contact resistance normalized
by the channel width decreases down to 1.07 k�.cm. Both
sheet and contact resistances are significantly reduced by the
Cl2 plasma treatment.
In order to further reduce the resistance of the MoS2

film, a sheet resistance dependence on plasma exposure time
is shown in Fig. 3. Rsheet decreases and increases with an
increase in plasma exposure time up to and beyond 40 s,
respectively. It is speculated that the resistance reduction is
because of an increase in the quantity of Cl dopants.
To discuss the cause of increase in the resistance,

cross-sectional TEM images were examined, as shown in
Figs. 4(a), (b), and (c) for each exposure time of the Cl2
plasma treatment. The thickness with Cl2 plasma treatment
for 40 s approximately equals to that without treatment.
However, the thickness of the MoS2 film with exposure time
of 160 s is thinner than that of 40 s maintaining the layered

structure and the uniformity of the film thickness, as shown
in Fig. 4(c). This is because due to etching influences.
To explain the sheet resistance characteristics consisting

of both doping and etching at the same time, we assume the
following conditions. Initially, the conductance (Gn) of the
n-th layer from the top layer of the MoS2 film as a function
of the exposure time t of the Cl2 plasma is expressed as

Gn(t) = 1

Rn(t)
= An−1B(t − tincubation) + Ginitial, (3)

where A, B, tincubation, and Ginitial are ratio of conductance
increase on the number of layer, conductance increase over
time, incubation time to stabilize the Cl2 plasma and an
incremental conductance at 0 s, respectively. If t was less
than tincubation, Gn(t) is equal to Ginitial. Therefore, the sheet
resistance Rsheet(t) is given by

Rsheet(t) = 1
∑

n Gn(t)
. (4)

Furthermore, we assume that the top layer of the MoS2
film is etched in the order with top-S, middle-Mo and
bottom-S by the Cl2 plasma with a low ICP power [41],
as shown in Fig. 4(c). Moreover, if the middle-Mo remained
after etching, the S-Mo-S structure in the layer is going to be
recovered by the SVA [17]. Under these speculations, if the
middle-Mo in the top layer was not etched, the sheet resis-
tance decreases with an increase in exposure time, because
of the doping effect of less than 40 s, as shown in Fig. 3. In
contrast, if the middle-Mo was etched, it is difficult to reduce
the sheet resistance any more. Therefore these phenomena
are expected in a cyclic manner, which is consistent with
experimental results, as shown with dotted lines in Fig. 5
Eventually, the minimum Rsheet at an exposure time of 40 s
is approximately ten times less than that without treatment.
To confirm improvements in crystallinity of low resistance

MoS2 film, the Raman spectra with and without plasma
treatment are shown in Fig. 6. The peaks of E1

2g (in-plane
vibration mode of Mo and S) and A1g (out-of-plane mode
vibration of S) were observed even after Cl2 plasma treat-
ment. Fig. 7 shows the full width at half maximum (FWHM)
values of E1

2g and A1g with and without the Cl2 plasma treat-
ment followed by the SVA. The FWHM values increase after
the plasma treatment. this is due to the damaged crystallinity
of MoS2 film by the Cl2 plasma treatment. On the other hand,
although the FWHM values of the film significantly decrease
after the SVA, the FWHM values with the Cl2 plasma treat-
ment are still greater than those without treatment, because
of disorder of phonon can be considered due to Cl dopants.
Root mean square (RMS) values of the roughness obtained

by the AFM, as shown in Fig. 8, increase after the plasma
treatment and decrease by the SVA, whose trend is consistent
with the changes in crystallinity discussed on the Raman
spectra in Fig. 7.
To discuss the dopant characteristics, a resistivity depend-

ing on temperature is modeled using the thermally activated
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FIGURE 4. Cross-sectional TEM images of MoS2 film depending on Cl2 plasma exposure times of (a) no exposure, (b) 40 s, and (c) 160 s, each followed
by SVA.

FIGURE 5. Comparison of the model and experimental results on sheet
resistance of the MoS2 film as a function of the Cl2 plasma exposure time.
The dotted line shows the calculated sheet resistance in the MoS2 film
from the model, and the value at 0 s corresponds to that without the Cl2
plasma treatment.

FIGURE 6. Raman spectra of MoS2 films with and without Cl2 plasma
treatment at 5 W under 0.4 Pa for 40 s followed by SVA.

transport equation [42]:

ρ = 1

σ
= 1

qn(T)μ(T)
= 1

σ0(T)
exp

(
Ea
kBT

)

(5)

FIGURE 7. FWHM values in E1
2g and A1

g of the Raman spectra for MoS2
films along each process. The dotted lines connect the FWHM values
without the Cl2 plasma treatment.

FIGURE 8. RMS values in the AFM of MoS2 film along process.

where Ea, kB, and σ0 are the activation energy, the Boltzmann
constant, and pre-factor depending on the temperature,
respectively. It has been reported that σ0 is insensitive at the
temperature above 170 K [43], [44]. Therefore, the Arrhenius
plot of resistivity in the MoS2 film was determined using Van
der Pauw measurement with 1 cm × 1 cm MoS2/SiO2/Si
samples patterned with TiN bottom contacts, as shown in
Fig. 9. The resistivity values of the MoS2 film below 170 K
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FIGURE 9. Arrhenius plots of resistivity in MoS2 film with and without Cl2
plasma treatment at 5 W under 0.4 Pa for 40 s, followed by SVA.

FIGURE 10. XPS spectra of (a) Mo 3d and (b) S 2p in the MoS2 film with
and without Cl2 plasma treatment at 5 W under 0.4 Pa for 40 s, followed
by SVA.

and 190 K with and without the Cl2 plasma treatment,
respectively, were ignored due to the Schottky I − V char-
acteristics. The activation energies with and without the Cl2

FIGURE 11. S/Mo composition ratio of the MoS2 film determined from the
Mo-S and S-Mo peak areas in the XPS spectra along each process.

FIGURE 12. XPS spectra of Cl 2p in the MoS2 films along each process.

plasma treatment were 117 and 154 meV, respectively. To
validate the polarity of the dopants, XPS analyses of the
MoS2 film surface with and without the Cl2 plasma treat-
ment were performed. From Figs. 10(a) and (b), the binding
energy peaks of Mo 3d5/2 and S 2p3/2 shift toward the
positive direction. These explain that positive-increases in a
position of binding energy peaks correspond to the Fermi
level shift approaching to the conduction band minimum.
To discuss the cause of the Fermi level shift to the con-

duction band minimum, there are two main candidates of
S vacancy and Cl doping. A S/Mo composition ratio in the
MoS2 film with the Cl2 plasma treatment calculated from
the Mo-S and S-Mo peak areas in the XPS, presented in
Fig. 11, was approximately two. This means that the density
of S vacancies in the film was significantly reduced by the
SVA. In addition, the ratio slightly decreases with an increase
in the duration time of the Cl2 plasma treatment and a S/Mo
ratio of 1.56 with the plasma treatment for 40 s. If the ratio
in each layer of 4-layer sputter-deposited MoS2 film had the
same value of 1.66 however only the top-S in the top layer
of the film was removed by the plasma, the ratio would be
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TABLE 1. Comparisons of electric characteristics in MoS2 film with various dopants and contact metals, whose mobility and carrier density are

simultaneously obtained by the hall effect measurement.

FIGURE 13. TOF-SIMS depth profiles from MoS2 film in special structure,
consisting of Al2O3 film on MoS2/SiO2/Si with Cl2 plasma treatment at
5 W under 0.4 Pa for 40 s, followed by the SVA.

reduced down to 1.45. Therefore the etching effect discussed
on the sheet resistance reduction is supposed. Fig. 12 shows
the Cl 2p peaks of Cl2 plasma treated MoS2 films together
with each process procedure. Although the Cl peaks were
detected after the Cl2 plasma treatment, it is difficult to find
them after the Cl2 plasma treatment and the SVA, due to
the detection limit of the XPS evaluation method. Therefore,
the TOF-SIMS was performed to determine the existence of
chlorine in the MoS2 film with Cl2 plasma treatment after
SVA, for which an Al2O3 film was deposited on the MoS2
film after the SVA. From the depth profiles in Fig. 13, a Cl
ion peak is clearly observed in the MoS2 film located near
the surface without any adsorption on the surface. Moreover,
considering with the electrical properties, Cl atoms in the
MoS2 film are successfully activated as n-type dopant during
the SVA.
As a benchmark, Table 1 shows comparison of electric

characteristics between our result and MoS2 films applied
various doping techniques. Resistivities were calculated from
a carrier density and the Hall mobility. Low resistivities in
p-type are attributed to degenerative doping over 1019 cm3.
In contrast, non-degenerative doping is considered for our
technique because the sheet resistance in the doped film
is ten times smaller than that with only the SVA, whose
carrier density is considered as around 1016 cm3 [17]. On
the other hand, low contact resistances for p-type film have
been also reported. Although the obtained contact resistance

in our n-type work is higher than those due to a wide Schottly
barrier width by the relatively low carrier density, the doping
technology using combination of Cl2 plasma and SVA in this
article can enable us a good controllability in order of 1017

to 1018 cm−3 of carrier density.

IV. CONCLUSION
Sheet resistance reduction in the MoS2 film by a combination
of Cl2 plasma and SVA was investigated in the atomic thin
film region. The sheet resistance of 8.50 M�/sq. with Cl2
plasma treatment, which is approximately ten times smaller
than that without treatment, was observed. The MoS2 film
was successfully doped in n-type with Cl dopants. This
technique is promising to control the carrier density in the
MoS2 film for various applications, such as MISFETs and
thermoelectric devices.
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