Received 27 October 2020; revised 26 December 2020; accepted 4 January 2021. Date of publication 11 January 2021; date of current version 25 February 2021. The review of this article was arranged by Editor S. Ikeda.

Digital Object Identifier 10.1109/JEDS.2021.3050801

Sheet Resistance Reduction of MoS₂ Film Using **Sputtering and Chlorine Plasma Treatment Followed by Sulfur Vapor Annealing**

TAKUYA HAMADA[®]¹, SHIGETAKA TOMIYA², TETSUYA TATSUMI², MASAYA HAMADA[®]¹, TAIGA HORIGUCHI¹, KUNIYUKI KAKUSHIMA³ (Member, IEEE), KAZUO TSUTSUI^D⁴ (Senior, Member, IEEE),

AND HITOSHI WAKABAYASHI^D 1 (Senior, Member, IEEE)

1 Department of Electrical and Electronic Engineering, School of Engineering, Tokyo Institute of Technology (Suzukakedai Campus), Yokohama 226-8503, Japan 2 Research Institute for the Earth Inclusive Sensing, Tokyo Institute of Technology (Suzukakedai Campus), Yokohama 226-8503, Japan

This work was supported in part by the Collaborative Research Program founded by Sony Corporation and in part by the Japan Science and Technology Agency Center of Innovation Program (JST COI) under Grant JPMJCE1309

ABSTRACT Sheet resistance (R_{sheet}) reduction of a-few-layered molybdenum disulfide (MoS₂) film using sputtering is investigated in this study. To enhance the carrier density, chlorine (Cl₂) gas excited by inductively coupled plasma is introduced as a substitute for sulfur. To electrically activate the Cl dopants and simultaneously prevent out-diffusion of sulfur, a furnace annealing was performed in sulfur-vapor ambient. Consequently, the R_{sheet} in the MoS₂ film with the Cl₂ plasma treatment remarkably reduced by one order lower than that without one, because of the activation of Cl dopants in the MoS₂ film.

INDEX TERMS Activation annealing, chlorine plasma, molybdenum disulfide (MoS₂), radio-frequency magnetron sputtering, transition metal dichalcogenide (TMDC).

I. INTRODUCTION

MoS₂ film which is one of the transiton metal dichalcogenides (TMDCs) has attracted great attentions, because of its excellent electrical and physical properties such as its high mobility even at atomically thin thickness, adequate band-gap, flexibility and transparency [1]-[4] for advanced LSIs, energy harvesters, displays and sensors [5]-[10]. To obtain an atomically thin MoS₂ film with large area for such applications, a chemical vapor deposition (CVD) method is considered. However, to synthesize large MoS₂ film on substrate, a special treatment with alkali metal is used [11], [12], that influences in the Fermi-level pinning near the conduction band minimum [13]. As a method to avoid the unexpected difficulties and achieve large films, a sputtering method under ultra high vacuum (UHV) has been proposed as a physical vapor deposition (PVD) [14], [15]. For the Seebeck device in thermoelectric generator as an energy harvester, high efficiency of energy conversion was achieved in a sputtered MoS₂ film by low thermal conductivity [16]. However, sulfur

atoms are easily out-diffused from the MoS₂ film during sputtering process, which cause high carrier density. We have found that sulfur vapor annealing (SVA) compensates for S defects resulting in a carrier density reduction down to 1.8 $\times 10^{16}$ cm⁻³ and also a mobility enhancement [17], [18]. Furthermore, normally-off nMISFETs with an appropriate threshold voltage were performed, because of the low carrier density in MoS₂ film formed by sputtering and treated by SVA and an appropriate work function of metal gate [19].

To intentionally enhance the carrier density in low carrierdensity MoS₂ film for the Seebeck device, intrinsic and extrinsic carrier generations are expected. Although the intrinsic technique such as vacancies and interstitials of the consisting materials generates several energy levels in the band gap [20]–[22], the extrinsic technique is favorable rather than intrinsic one to significantly enhance the carrier density with high controllability [23], for which electrostatic doping [24], molecular adsorption [25]-[27] and substitutional doping [28]-[33] can be considered. Although electrostatic

³ Tokyo Institute of Technology, Yokohama 226-8503, Japan 4 Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Yokohama 152-8550, Japan

CORRESPONDING AUTHOR: T. HAMADA (e-mail: hamada.m..af@m.titech.ac.jp)

doping has high carrier density, a device structure is complex. And molecular adsorption is unstable on thermodynamics. Therefore, substitutional doping technology is selected in this study, because of its simple structure and stability. Since high carrier mobility is required to enhance the power factor (PF) of the Seebeck device, an n-type MoS₂ film is selected rather than p-type one [34], [35]. As candidates for the ntype dopant, Group 7 and 17 elements were examined as substitution for molybdenum (Mo) and S, respectively. In terms of ionization and formation energies, chlorine (Cl) substituting for S was selected as the n-type dopant in the MoS_2 film [36], [37]. For the fabrication method, ion implantation and plasma exposure in dopant ambient have been investigated [28]-[31]. However, energetic dopants in these methods can generate S vacancies and an activation of dopants in the MoS_2 film is required [31].

In this study, we investigates the combination of Cl_2 -plasma treatment and SVA for sheet resistance reduction in MoS_2 films formed by sputtering.

II. EXPERIMENTAL METHODS

To examine the sheet resistance in the MoS_2 film, a circular transmission line model (CTLM) pattern was used, as shown in Fig. 1 [38]–[40]. A base material of silicon dioxide (SiO₂) on a silicon substrate was cleaned in a wet process using a piranha solution. Titanium-nitride (TiN) electrodes of 40 nm thickness were formed by sputtering and wet etching with H₂O₂. The MoS₂ films were formed using an ultra-high vacuum (UHV) radio frequency (RF) magnetron sputtering tool with MoS₂ target of 99.99% purity, at a substrate temperature of 300°C, under argon (Ar) pressure of 0.55 Pa, an Ar flow rate of 7 sccm, an RF power of 40 W and a distance of 150 mm between the MoS₂ target and the substrate. We note that the sputter-deposited MoS₂ film has layered structure in parallel to the substrate because of high temperature at 300°C. The detail of the film was investigated in our previous work [18]. The MoS2 films were exposed to a Cl₂ plasma generated using an inductive coupling plasma reactive ion etching (ICP-RIE) tool (SAMCO RIE-101iPH), under Cl_2) pressures from 0.4 to 3.2 Pa, with a Cl_2 flow rate of 7 sccm, ICP powers from 5 to 20 W, for 20 to 160 s. Herein, the bias power is set to 0 W resulting in a floating potential at the sample. The MoS₂ films were annealed by SVA at the 700°C in a sulfur ambient under 100 Pa for 40 min to activate the dopants and compensate for the sulfur vacancies, simultaneously. The thickness of the MoS₂ film was approximately 2.0 nm measured using the X-ray reflection (XRR) method. Sheet resistances in the MoS₂ film were extracted from the CTLM measurement with spacing from 5 to 30 μ m and r = 90 μ m.

Raman spectroscopy was performed at 532 nm wavelength and pseudo-Voigt function was used to fit the Raman spectrum of the MoS_2 film. An atomic force microscope (AFM) was performed in dynamic force microscope (DFM) mode. The changes in the thickness of the MoS_2 layer with and

FIGURE 1. Schematic illustrations of the CTLM pattern with TiN contacts and MoS₂ film. (a) Cross-sectional and (b) top views with $r = 90 \ \mu$ m and several contact distances *d* from 5 to 30 μ m.

without the Cl₂ plasma treatment were observed using transmission electron microscopy (TEM) with an accelerating voltage of 200 keV. An X-ray photoelectron spectroscopy (XPS) using an Al K_{α} X-ray source was also performed with spectral fitting using the pseudo-Voigt function. The composition ratio of the MoS₂ film is expressed as follows:

$$C_i = \frac{A_i / \text{RSF}_i}{\sum_j A_j \text{RSF}_j} \tag{1}$$

where C_i , A_i , and RSF_i are the composition ratio, peak area, and relative sensitivity factor of the atom i, respectively [17]. Depth profiling of time-of-flight secondary ion mass spectroscopy (TOF-SIMS) were performed using bismuth and cesium ions as the primary and sputtering ion sources, respectively.

III. RESULTS AND DISCUSSION

To evaluate the sheet resistance reduction in the MoS_2 film, typical results from CTLM with and without Cl_2 plasma treatment are shown in Fig. 2, as a function of the contact distance at 5 W under 0.4 Pa for 40 s. The total resistance depending on contact distance is shown in following Equation (2),

$$R_{total} = \frac{R_{sheet}}{2\pi} \left[\frac{L_t}{r} + \frac{L_t}{r+d} + \ln\left(1 + \frac{d}{r}\right) \right]$$
(2)

where R_{sheet} , L_t , r, and d are the sheet resistance, transfer length, inner radius, and contact distance, respectively. The R_{sheet} of 8.50 M Ω /sq. with the Cl₂ plasma treatment is

FIGURE 2. Resistance dependence on contact distance in MoS₂ films with and without Cl₂ plasma treatment at 5 W under 0.4 Pa for 40 s, followed by the SVA.

FIGURE 3. Sheet resistance of MoS_2 film as a function of Cl_2 plasma exposure time. The duration time was varied at 5 W under 0.4 Pa. SVA was applied at 700°C for 40 min.

approximately ten times less than that of 105 M Ω /sq. without the treatment. Furthermore, the contact resistance normalized by the channel width decreases down to 1.07 k Ω .cm. Both sheet and contact resistances are significantly reduced by the Cl₂ plasma treatment.

In order to further reduce the resistance of the MoS_2 film, a sheet resistance dependence on plasma exposure time is shown in Fig. 3. R_{sheet} decreases and increases with an increase in plasma exposure time up to and beyond 40 s, respectively. It is speculated that the resistance reduction is because of an increase in the quantity of Cl dopants.

To discuss the cause of increase in the resistance, cross-sectional TEM images were examined, as shown in Figs. 4(a), (b), and (c) for each exposure time of the Cl_2 plasma treatment. The thickness with Cl_2 plasma treatment for 40 s approximately equals to that without treatment. However, the thickness of the MoS_2 film with exposure time of 160 s is thinner than that of 40 s maintaining the layered

280

structure and the uniformity of the film thickness, as shown in Fig. 4(c). This is because due to etching influences.

To explain the sheet resistance characteristics consisting of both doping and etching at the same time, we assume the following conditions. Initially, the conductance (G_n) of the *n*-th layer from the top layer of the MoS₂ film as a function of the exposure time *t* of the Cl₂ plasma is expressed as

$$G_n(t) = \frac{1}{R_n(t)} = A^{n-1}B(t - t_{incubation}) + G_{initial}, \quad (3)$$

where A, B, $t_{incubation}$, and $G_{initial}$ are ratio of conductance increase on the number of layer, conductance increase over time, incubation time to stabilize the Cl₂ plasma and an incremental conductance at 0 s, respectively. If t was less than $t_{incubation}$, $G_n(t)$ is equal to $G_{initial}$. Therefore, the sheet resistance $R_{sheet}(t)$ is given by

$$R_{sheet}(t) = \frac{1}{\sum_{n} G_n(t)}.$$
(4)

Furthermore, we assume that the top layer of the MoS₂ film is etched in the order with top-S, middle-Mo and bottom-S by the Cl₂ plasma with a low ICP power [41], as shown in Fig. 4(c). Moreover, if the middle-Mo remained after etching, the S-Mo-S structure in the layer is going to be recovered by the SVA [17]. Under these speculations, if the middle-Mo in the top layer was not etched, the sheet resistance decreases with an increase in exposure time, because of the doping effect of less than 40 s, as shown in Fig. 3. In contrast, if the middle-Mo was etched, it is difficult to reduce the sheet resistance any more. Therefore these phenomena are expected in a cyclic manner, which is consistent with experimental results, as shown with dotted lines in Fig. 5 Eventually, the minimum R_{sheet} at an exposure time of 40 s is approximately ten times less than that without treatment.

To confirm improvements in crystallinity of low resistance MoS_2 film, the Raman spectra with and without plasma treatment are shown in Fig. 6. The peaks of E_{2g}^1 (in-plane vibration mode of Mo and S) and A_{1g} (out-of-plane mode vibration of S) were observed even after Cl_2 plasma treatment. Fig. 7 shows the full width at half maximum (FWHM) values of E_{2g}^1 and A_{1g} with and without the Cl_2 plasma treatment followed by the SVA. The FWHM values increase after the plasma treatment. this is due to the damaged crystallinity of MoS_2 film by the Cl_2 plasma treatment. On the other hand, although the FWHM values of the film significantly decrease after the SVA, the FWHM values with the Cl_2 plasma treatment are still greater than those without treatment, because of disorder of phonon can be considered due to Cl dopants.

Root mean square (RMS) values of the roughness obtained by the AFM, as shown in Fig. 8, increase after the plasma treatment and decrease by the SVA, whose trend is consistent with the changes in crystallinity discussed on the Raman spectra in Fig. 7.

To discuss the dopant characteristics, a resistivity depending on temperature is modeled using the thermally activated

FIGURE 4. Cross-sectional TEM images of MoS₂ film depending on Cl₂ plasma exposure times of (a) no exposure, (b) 40 s, and (c) 160 s, each followed by SVA.

FIGURE 5. Comparison of the model and experimental results on sheet resistance of the MoS₂ film as a function of the Cl₂ plasma exposure time. The dotted line shows the calculated sheet resistance in the MoS₂ film from the model, and the value at 0 s corresponds to that without the Cl₂ plasma treatment.

FIGURE 6. Raman spectra of MoS₂ films with and without Cl₂ plasma treatment at 5 W under 0.4 Pa for 40 s followed by SVA.

transport equation [42]:

$$\rho = \frac{1}{\sigma} = \frac{1}{qn(T)\mu(T)} = \frac{1}{\sigma_0(T)} \exp\left(\frac{E_a}{k_B T}\right) \tag{5}$$

FIGURE 7. FWHM values in E_{2g}^1 and A_g^1 of the Raman spectra for MoS₂ films along each process. The dotted lines connect the FWHM values without the Cl₂ plasma treatment.

FIGURE 8. RMS values in the AFM of MoS₂ film along process.

where E_a , k_B , and σ_0 are the activation energy, the Boltzmann constant, and pre-factor depending on the temperature, respectively. It has been reported that σ_0 is insensitive at the temperature above 170 K [43], [44]. Therefore, the Arrhenius plot of resistivity in the MoS₂ film was determined using Van der Pauw measurement with 1 cm × 1 cm MoS₂/SiO₂/Si samples patterned with TiN bottom contacts, as shown in Fig. 9. The resistivity values of the MoS₂ film below 170 K

FIGURE 9. Arrhenius plots of resistivity in MoS₂ film with and without Cl₂ plasma treatment at 5 W under 0.4 Pa for 40 s, followed by SVA.

FIGURE 10. XPS spectra of (a) Mo 3*d* and (b) S 2*p* in the MoS₂ film with and without Cl_2 plasma treatment at 5 W under 0.4 Pa for 40 s, followed by SVA.

and 190 K with and without the Cl₂ plasma treatment, respectively, were ignored due to the Schottky I - V characteristics. The activation energies with and without the Cl₂

FIGURE 11. S/Mo composition ratio of the MoS₂ film determined from the Mo-S and S-Mo peak areas in the XPS spectra along each process.

FIGURE 12. XPS spectra of Cl 2p in the MoS₂ films along each process.

plasma treatment were 117 and 154 meV, respectively. To validate the polarity of the dopants, XPS analyses of the MoS₂ film surface with and without the Cl₂ plasma treatment were performed. From Figs. 10(a) and (b), the binding energy peaks of Mo $3d_{5/2}$ and S $2p_{3/2}$ shift toward the positive direction. These explain that positive-increases in a position of binding energy peaks correspond to the Fermi level shift approaching to the conduction band minimum.

To discuss the cause of the Fermi level shift to the conduction band minimum, there are two main candidates of S vacancy and Cl doping. A S/Mo composition ratio in the MoS₂ film with the Cl₂ plasma treatment calculated from the Mo-S and S-Mo peak areas in the XPS, presented in Fig. 11, was approximately two. This means that the density of S vacancies in the film was significantly reduced by the SVA. In addition, the ratio slightly decreases with an increase in the duration time of the Cl₂ plasma treatment and a S/Mo ratio of 1.56 with the plasma treatment for 40 s. If the ratio in each layer of 4-layer sputter-deposited MoS₂ film had the same value of 1.66 however only the top-S in the top layer of the film was removed by the plasma, the ratio would be

Formation	Thickness [nm]	Contact	Dopant	Туре	Hall effect mobility [cm ² V ⁻¹ s ⁻¹]	Carrier density [cm ⁻³]	R_{sheet} [Ω /sq.]	Calculated ρ [Ω cm]	R_c [k Ω /µm]	Ref.
Sputtering	2.4	TiN	C1	n	-	-	8.50×10^{6}	6.0	1.07×10^{4}	This work
CVD	13	Ni /Au/Ni	Nb	p	8.5	3.1×10^{20}	1.8×10^3	2.4×10^{-3}	0.6	[45]
CVD	61	Au/Ti	Nb	p	14	3.0×10^{19}	2.5×10^{3}	1.5×10^{-2}	-	[46]
CVD	1.9×10^{5}	Au/Ti	Nb	p	7.5	4.3×10^{19}		1.9×10^{-2}	4.98	[47]
CVD	5	Ag	Р	p	0.53	1.0×10^{19}	-	1.2	-	[48]
Exfoliation	-	-	Benzyl viologen	n	2.39	2.97×10^{14}	1.0×10^{6}	4.4×10^{2}	-	[49]

TABLE 1. Comparisons of electric characteristics in MoS₂ film with various dopants and contact metals, whose mobility and carrier density are simultaneously obtained by the hall effect measurement.

FIGURE 13. TOF-SIMS depth profiles from MoS₂ film in special structure, consisting of Al₂O₃ film on MoS₂/SiO₂/Si with Cl₂ plasma treatment at 5 W under 0.4 Pa for 40 s, followed by the SVA.

reduced down to 1.45. Therefore the etching effect discussed on the sheet resistance reduction is supposed. Fig. 12 shows the Cl 2p peaks of Cl₂ plasma treated MoS₂ films together with each process procedure. Although the Cl peaks were detected after the Cl₂ plasma treatment, it is difficult to find them after the Cl₂ plasma treatment and the SVA, due to the detection limit of the XPS evaluation method. Therefore, the TOF-SIMS was performed to determine the existence of chlorine in the MoS₂ film with Cl₂ plasma treatment after SVA, for which an Al₂O₃ film was deposited on the MoS₂ film after the SVA. From the depth profiles in Fig. 13, a Cl ion peak is clearly observed in the MoS₂ film located near the surface without any adsorption on the surface. Moreover, considering with the electrical properties, Cl atoms in the MoS₂ film are successfully activated as n-type dopant during the SVA.

As a benchmark, Table 1 shows comparison of electric characteristics between our result and MoS_2 films applied various doping techniques. Resistivities were calculated from a carrier density and the Hall mobility. Low resistivities in p-type are attributed to degenerative doping over 10^{19} cm³. In contrast, non-degenerative doping is considered for our technique because the sheet resistance in the doped film is ten times smaller than that with only the SVA, whose carrier density is considered as around 10^{16} cm³ [17]. On the other hand, low contact resistances for p-type film have been also reported. Although the obtained contact resistance

in our n-type work is higher than those due to a wide Schottly barrier width by the relatively low carrier density, the doping technology using combination of Cl_2 plasma and SVA in this article can enable us a good controllability in order of 10^{17} to 10^{18} cm⁻³ of carrier density.

IV. CONCLUSION

Sheet resistance reduction in the MoS₂ film by a combination of Cl₂ plasma and SVA was investigated in the atomic thin film region. The sheet resistance of 8.50 M Ω /sq. with Cl₂ plasma treatment, which is approximately ten times smaller than that without treatment, was observed. The MoS₂ film was successfully doped in n-type with Cl dopants. This technique is promising to control the carrier density in the MoS₂ film for various applications, such as MISFETs and thermoelectric devices.

ACKNOWLEDGMENT

The authors would like to thank Dr. Takuya Hoshii for the variable discussions and his warm supports. Their measurements were supported by Associate Professor Ken Motokura and Open Facility Center at the Tokyo Institute of Technology.

REFERENCES

- B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS₂ transistor," *Nat. Nanotechnol.*, vol. 6, no. 3, pp. 147–150, Jan. 2011, doi: 10.1038/nnano.2010.279.
- [2] S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, "High performance multilayer MoS₂ transistors with scandium contacts," *Nano Lett.*, vol. 13. no. 1, pp. 100–105, Dec. 2012, doi: 10.1021/nl303583v.
- [3] A. Splendiani *et al.*, "Emerging photoluminescence in monolayer MoS₂," *Nano Lett.*, vol. 10, no. 4, pp. 1271–1275, Mar. 2010, doi: 10.1021/nl903868w.
- [4] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically thin MoS₂: A new direct-gap semiconductor," *Phys. Rev. Lett.*, vol. 105, no. 13, pp. 2–5, Apr. 2010, doi: 10.1103/PhysRevLett.105.136805.
- [5] W. P. Risk, G. S. Kino, and H. J. Shaw, "Integrated circuits based on bilayer MoS₂ transistors," *Nano Lett.*, vol. 12, no. 9, pp. 4674–4680, Aug. 2012, doi: 10.1021/nl302015v.
- [6] W. Wu, L. Wang, R. Yu, S. H. Wei, J. Hone, and Z. L. Wang, "Piezophototronic effect in single-atomic-layer MoS₂ for strain-gated flexible optoelectronics," *Adv. Mater.*, vol. 28, no. 38, pp. 8463–8468, Aug. 2016, doi: 10.1002/adma.201602854.
- [7] N. Choudhary *et al.*, "Directly deposited MoS₂ thin film electrodes for high performance supercapacitors," *J. Mater. Chem. A*, vol. 3, no. 47, pp. 24049–24054, Oct. 2015, doi: 10.1039/c5ta08095a.

- [8] D. Sarker, W. Liu, X. Xiw, A. C. Anselmo, S. Mitragotri, and K. Banerjee, "MoS₂ field-effect transistor for next-generation labelfree biosensors," *ACS Nano*, vol. 8, no. 4, pp. 3992–4003, Mar. 2014, doi: 10.1021/nn5009148.
- [9] W. Wu *et al.*, "Piezoelectricity of single-atomic-layer MoS₂ for energy conversion and piezotronics," *Nature*, vol. 514, p. 470, Oct. 2014, doi: 10.1038/nature13792.
- [10] A. Arab and Q. Li, "Anisotropic thermoelectric behavior in armchair and zigzag mono- and fewlayer MoS₂ in thermoelectric generator applications," *Sci. Rep.*, vol. 5, Sep. 2015, Art. no. 13706, doi: 10.1038/srep13706.
- [11] H. Wang *et al.*, "Large-scale 2D electronics based on singlelayer MoS₂ grown by chemical vapor deposition," in *Proc. Int. Electron Devices Meeting*, San Francisco, CA, USA, 2012, pp. 4–6, doi: 10.1109/IEDM.2012.6478980.
- [12] K. K. H. Smithe, S. V. Suryavanshi, M. M. Rojo, A. D. Tedjarati, and E. Pop, "Low variability in synthetic monolayer MoS₂ devices," *ACS Nano*, vol. 11, no. 8, pp. 8456–8463, Jul. 2017, doi: 10.1021/acsnano.7b04100.
- [13] K. Dolui, I. Rungger, C.-D. Pemmaraju, and S. Sanvito, "Possible doping strategies for MoS₂ monolayers: An AB initio study" *Phys. Rev. B, Condens. Matter*, vol. 88, no. 7, Aug. 2013, Art. no. 075420, doi: 10.1103/PhysRevB.88.075420.
- [14] T. Ohashi *et al.*, "Multi-layered MoS₂ film formed by hightemperature sputtering for enhancement-mode nMOSFETs," *Jpn. J. Appl. Phys.*, vol. 54, no. 4, Mar. 2015, Art. no. 04DN08, doi: 10.7567/JJAP.54.04DN08.
- [15] T. Sakamoto *et al.*, "Mechanism for high hall-effect mobility in sputtered-MoS₂ film controlling particle energy," in *Proc. S3S Conf.*, Burlingame, CA, USA, pp. 1–2, 2018, doi: 10.1109/S3S.2018.8640168.
- [16] G. Kogo *et al.*, "A thin film efficient pn-junction thermoelectric device fabricated by self-align shadow mask," *Sci. Rep.*, vol. 10, p. 1067, Jan. 2020, doi: 10.1038/s41598-020-57991-y.
 [17] K. Matsuura *et al.*, "Low-carrier-density sputtered MoS₂ film
- [17] K. Matsuura *et al.*, "Low-carrier-density sputtered MoS₂ film by vapor-phase sulfurization," *J. Elect. Mater.*, vol. 47, no. 7, pp. 3497–3501, Mar. 2018, doi: 10.1007/s11664-018-6191-z.
- [18] S. Imai et al., "Important of MoS₂-compound sputtering even with sulfur-vapor anneal for chip-size fabrication," in Proc. Int. Conf. Solid-State Devices Mater. VIRTUAL Conf., 2020, pp. 503–504.
- [19] K. Matsuura *et al.*, "Sputter-deposited-MoS₂ n MISFETs with topgate and Al₂O₃ passivation under low thermal budget for large area integration," *IEEE J. Electron Devices Soc.*, vol. 6, pp. 1246–1252, Nov. 2018, doi: 10.1109/JEDS.2018.2883133.
- [20] S. Tongay *et al.*, "Defects activated photoluminescence in twodimensional semiconductors: Interplay between bound, charged and free excitons," *Sci. Rep.*, vol. 3, p. 2657, Sep. 2013, doi: 10.1038/srep02657.
- [21] D. Liu, Y. Guo, L. Fang, and J. Robertson, "Sulfur vacancies in monolayer MoS₂ and its electrical contacts," *Appl. Phys. Lett.*, vol. 103, no. 18, Oct. 2013, Art. no. 183113, doi: 10.1063/1.4824893.
- [22] B. Akdim, R. Pachter, and S. Mou, "Theoretical analysis of the combined effects of sulfur vacancies and analyte adsorption on the electronic properties of single-layer MoS₂," *Nanotechnology*, vol. 27, no. 18, Mar. 2016, Art. no. 185701, doi: 10.1088/0957-4484/27/18/185701.
- [23] S. M. Sze and K. K. Ng, *Physics of Semiconductor Devices*, 3rd ed. Hoboken, NJ, USA: Wiley, 2006, pp. 21–23.
- [24] G. V. Resta *et al.*, "Polarity control in WSe₂ double-gate transistors," *Sci. Rep.*, vol. 6, Jul. 2016, Art. no. 29448, doi: 10.1038/srep29448.
- [25] D. Kiriya, M. Tosun, P. Zhao, J. S. Kang, and A. Javey, "Airstable surface charge transfer doping of MoS₂ by benzyl viologen," *J. Amer. Chem. Soc.*, vol. 136, no. 22, pp. 7853–7856, May 2014, doi: 10.1021/ja5033327.
- [26] D. M. Sim *et al.*, "Controlled doping of vacancy-containing fewlayer MoS₂ via highly stable thiol-based molecular chemisorption," ACS Nano, vol. 9, no. 12, pp. 12115–12123, Oct. 2015, doi: 10.1021/acsnano.5b05173.
- [27] C. J. L. de la Rosa *et al.*, "Highly efficient and stable MoS₂ FETs with reversible n-doping using a dehydrated poly(vinyl-alcohol) coating," *Nanoscale*, vol. 9, no. 258, pp. 258–265, Nov. 2016, doi: 10.1039/C6NR06980K.
- [28] M. Chen et al., "Stable few-layer MoS₂ rectifying diodes formed by plasma-assisted doping," App. Phys. Lett., vol. 103, no. 14, Oct. 2013, Art. no. 142110, doi: 10.1063/1.4824205.

- [29] A. Nipane, D. Kamakar, N. Kaushik, S. Karande, and S. Lodha, "Few-layer MoS₂p-type devices enabled by selective doping using low energy phosphorus implantation," ACS Nano, vol. 10, no. 2, pp. 2128–2137, Jan. 2016, doi: 10.1021/acsnano.5b06529.
- [30] A. Azcatl *et al.*, "Covalent nitrogen doping and compressive strain in MoS₂ by remote N₂ plasma exposure," *Nano Lett.*, vol. 16, no. 9, pp. 5437–5443, Aug. 2016, doi: 10.1021/acs.nanolett.6b01853.
- [31] R. Murray, K. Haynes, X. Zhao, S. Perry, C. Hatem, and K. Jones, "The effect of low energy Ion implantation on MoS₂," *ECS J. Solid-State Sci. Technol.*, vol. 5, no. 11, pp. Q3050–Q3053, Aug. 2016, doi: 10.1149/2.0111611jss.
- [32] L. Yang et al., "Chloride molecular doping technique on 2D materials: WS₂ and MoS₂," Nano. Lett., vol. 14, no. 11, pp. 6275–6280, Oct. 2014, doi: 10.1021/nl502603d.
- [33] L. Yang *et al.*, "High-performance MoS₂ field-effect transistors enabled by chloride doping: Record low contact resistance (0.5 kΩ μm) and record high drain current (460 μA/μm)," in *Proc. Symp. VLSI Technol.*, Jun. 2014, pp. 1–2, doi: 10.1109/VLSIT.2014.6894432.
- [34] B. Radisavljevic, M. B. Whitwick, and A. Kis, "Small-signal amplifier based on single-layer MoS₂," *Appl. Phys. Lett.*, vol. 101, no. 4, Jul. 2012, Art. no. 043103, doi: 10.1063/1.4738986.
- [35] F. Guo, Z. Liu, M. Zhu, and Y. Zheng, "Electron-phonon scattering limited hole mobility at room temperature in a MoS₂ monolayer: Firstprinciples calculations," *Phys. Chem. Chem. Phys.*, vol. 21, no. 41, pp. 22879–22887, Sep. 2019, doi: 10.1039/c9cp04418c.
- [36] Y. Okada et al., "Resistivity reduction of low-carrier-density sputtered-MoS₂ film using fluorine gas," in *Proc. 17th Int. Workshop Junction Technol. (IWJT)*, 2017, pp. 44–66, doi: 10.23919/IWJT.2017.7966510.
- [37] T. Hamada, S. Yamaguchi, T. Horiguchi, K. Kakushima, K. Tsutsui, and H. Wakabayashi, "Comparative and systematic study of doping technology for 2D-sputtered MoS₂ film," in *Proc. Mater. Res. Meeting*, Yokohama, Japan, 2019, pp. 12–25.
- [38] G. K. Reeves, "Specific contact resistance using a circular transmission line model," *Solid-State Electron.*, vol. 23, no. 5, pp. 487–490, May 1980, doi: 10.1016/0038-1101(80)90086-6.
- [39] A. J. Willis and A. P. Botha, "Investigation of ring structures for metal-semiconductor contact resistance determination," *Thin Solid Films*, vol. 146, no. 1, pp. 15–20, Jan. 1987, doi: 10.1016/0040-6090(87)90335-X.
- [40] M. Toyama *et al.*, "Ohmic contact between titanium and sputtered MoS₂ films achieved by forming-gas annealing," *Jpn. J. Appl. Phys.*, vol. 57, no. 7S2, Jun. 2018, Art. no. 07MA04, doi: 10.7567/JJAP.57.07MA04.
- [41] K. S. Kim, K. H. Kim, Y. J. Ji, and G. Y. Yeom, "Layer control of 2D-MoS₂ by atomic layer etching and its device characteristics," *ECS Trans.*, vol. 86, no. 6, pp. 69–74, Jul. 2018, doi: 10.1149/08606.0069ecst.
- [42] C. Tian and S. W. Chan, "Electrical conductivities (CeO₂)_{1-x}(Y₂O₃)_x of thin films," *J. Amer. Ceram. Soc.*, vol. 85, no, 9, pp. 2222–2229, Dec. 2004, doi: 10.1111/j.1151-2916.2002.tb00439.x.
- [43] H. Qiu *et al.*, "Hopping transport through defect-induced localized states in molybdenum disulphide," *Nat. Commun.*, vol. 4, no. 1, pp. 1–6, Dec. 2014, doi: 10.1038/ncomms3642.
- [44] S. Shin, Z. Jin, D. H. Kwon, R. Bose, and Y. S. Min, "High turnover frequency of hydrogen evolution reaction on amorphous MoS₂ thin film directly grown by atomic layer deposition," *Langmuir*, vol. 31, no, 3, pp. 1196–1202, Oct. 2015, doi: 10.1021/la504162u.
- [45] M. R. Laskar *et al.*, "p-type doping of MoS₂ thin films using Nb," *Appl. Phys. Lett.*, vol. 104, no. 9, Mar. 2014, Art. no. 092104, doi: 10.1063/1.4867197.
- [46] J. Suh *et al.*, "Doping against the native propensity of MoS₂: Degenerate hole doping by cation substitution," *Nano Lett.*, vol. 14, no. 12, pp. 6976–6982, Nov. 2014, doi: 10.1021/nl503251h.
- [47] G. Mirabelli et al., "Back-gated Nb-doped MoS₂ junctionless fieldeffect-transistors," AIP Adv., vol. 6, no. 2, Feb. 2016, Art. no. 025323, doi: 10.1063/1.4943080.
- [48] T. Momose, A. Nakamura, M. Daniel, and M. Shimomura, "Phosphorous doped p-type MoS₂ polycrystalline thin films via direct sulfurization of Mo film," *AIP Adv.*, vol. 8, no. 2, Feb. 2018, Art. no. 025009, doi: 10.1063/1.5019223.
- [49] K. Jo, J. Choia, and H. Kim, "Phosphorous doped p-type MoS₂ polycrystalline thin films via direct sulfurization of Mo film," *J. Mater. Chem.*, vol. 5, no. 22, pp. 5395–5401, May 2017, doi: 10.1039/c7tc01099k.

TAKUYA HAMADA received the M.E. degree in electrical engineering from the Tokyo Institute of Technology, Japan, in 2019, where he is currently pursuing the Doctoral degree.

TAIGA HORIGUCHI received the B.E. degree in electrical engineering from the Tokyo Institute of Technology, Japan, in 2020, where he is currently pursuing the master's degree.

SHIGETAKA TOMIYA received the B.S. and M.S. degrees in physics and the Ph.D. degree in electronics engineering from Keio University, Japan, in 1986, 1988, and 1999, respectively.

In 1988, he joined the Sony Corporation Research Center, Yokohama, Japan. He has engaged in the material analysis of compound semiconductors and the development of (mainly ZnSe- and GaN-based) short-wave laser diodes. He was with the University of California at Santa Barbara, Santa Barbara, CA, USA, as a Visiting

Researcher from 1991 to 1992, where he engaged in novel quantum structures. Following that, he has engaged in various electronic material systems for sensors and optical devices. He is currently a Distinguished Researcher of Sony Corporation, Atsugi, Japan, and is a specially appointed Professor with the Tokyo Institute of Technology, Yokohama, Japan.

Dr. Tomiya has served as a Vice-Chair of the Committee of Manufacturing Process Innovation by Materials Informatics of JSPS, from 2016 to 2019.

KUNIYUKI KAKUSHIMA (Member, IEEE) received the B.S., M.S., and Ph.D. degrees in electrical engineering from the University of Tokyo, Japan, in 1999, 2001, and 2004, respectively.

He is currently an Associate Professor with the Tokyo Institute of Technology, Yokohama, Japan.

KAZUO TSUTSUI (Senior Member, IEEE) received the B.E., M.E., and Ph.D. degrees in electrical engineering from the Tokyo Institute of Technology, Japan, in 1981, 1983, and 1986, respectively.

He was with the Tokyo Institute of Technology, as a Research Associate with the Department of Physical Electronics and Department of Applied Electronics from 1986 to 1990 and as an Associate Professor with the Department of Applied Electronics from 1990 to 2010. He is

a Professor with the Institute of Innovative Research, Tokyo Institute of Technology. His research interests are in the field of semiconductor electron devices, process technologies, and related characterization. He is the Fellow of Japan Society of Applied Physics, a Senior Member of the IEEE Electron Device Society, a Member of the Electrochemical Society, and a Member of the Institute of Electronics, Information, and Communication Engineers.

TETSUYA TATSUMI received the B.S. and M.S. degrees from Waseda University in 1987 and 1989, respectively, and the Ph.D. degree from Keio University in 2000. He joined the Sony Corporation in 1989, and was engaged in the development of plasma technology for various semiconductor devices. He was a Member of the Association for Super Advanced Electronics Technology from 1997 to 2001, where he led the basic research on dry etching plasma. He is currently a Distinguished Engineer with the Sony

Semiconductor Solutions Corporation and a specially appointed Professor with the Tokyo Institute of Technology. He has been awarded a Fellow of the Japanese Society of Applied Physics, since 2015.

MASAYA HAMADA received the M.E. degree in electrical engineering from the Tokyo Institute of Technology, Japan, in 2019, where he is currently pursuing the Doctoral degree.

HITOSHI WAKABAYASHI (Senior Member, IEEE) received the M.E. and Ph.D. degrees in electrical engineering from the Tokyo Institute of Technology, Japan, in 1993 and 2003, respectively. He was with the NEC Corporation from 1993 to 2006, the Massachusetts Institute of Technology from 2000 to 2001, and Sony Corporation from 2006 to 2012. He has been with the Tokyo Institute of Technology, since 2013. He was a recipient of the Young Scientist Presentation Award 2000 of JSAP. He has served as the Chair of

VLSI Technology and Circuits Committee, EDS, and the General Chair for Symposium on VLSI Technology 2013, EDTM 2018, and IWJT 2017/2019/2021.