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ABSTRACT This article presents an extensive study and demonstration of efficient electrothermal large-
signal GaN HEMT modeling approaches based on combined techniques of Genetic Algorithm (GA)
with Artificial Neural Networks (ANN), and Particle Swarm optimization (PSO) with Support Vector
Regression (SVR). Another promising Gaussian Process Regression (GPR) based large-signal modeling
approach is also explored and presented. The GA-ANN addresses the typical problem of local min-
ima associated with the backpropagation (BP) based ANN. The GA successfully aids in the determination
of optimal initial values for BP-ANN and enables it to find a unique optimal solution after subsequent of
iterations with higher rate of convergence. This is also achieved using PSO-SVR with lower optimization
variables. The developed modeling techniques are demonstrated and used to simulate the gate and drain
currents of a 2-mm GaN device. All the models are relatively simple, practical, and easy to implement.
The gate and drain currents models are embedded in an equivalent large-signal circuit’s model and built in
Advanced Design System (ADS) software. The implemented model is validated by large-signal measure-
ments and very good fitting results have been obtained. The model also showed an accurate simulation
for a nonlinear power amplifier with very good computational speed and convergence.

INDEX TERMS ANN modeling, GaN HEMT, GPR modeling, large-signal modeling, SVR modeling.

I. INTRODUCTION
The power amplifiers employed in broadcasting and com-
munication transmitter applications are high power and are
intrinsically non-linear [1]–[7]. Therefore, in these applica-
tions, the GaN High Electron Mobility Transistor (HEMT)
is becoming an optimal device [8]. This is owing to its
ability to provide high output power at high frequency
with excellent efficiency to meet the requirements of
advanced broadcasting and communication systems [9]–[11].
The device has also higher gain with very good noise
characteristics and is therefore a very good candidate for
the design of low noise amplifiers and integrated GaN
based transceivers [12], [13]. Overall, the reliability of power

amplifiers in wireless and broadcasting transmitters depends
on the accuracy of the employed GaN HEMT device large-
signal models [14]. The model in essence should consider
the parasitic effects under high frequency and self-heating
under high power derive of operation. Another important
effect is the surface and buffer trapping, which reduce
the RF power of the transistor amplifiers and increase the
memory effects. Both self-heating and trapping are frequency
dependent phenomena and represent the source of the
well-known memory effects [15]. These issues have strong
impact on the GaN HEMT device performance and must
be taken into account in their corresponding large-signal
models [8].
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A number of papers have been reported in literature
addressing large-signal modeling of GaN HEMT [16]–[30].
Out of these, some of them rely on robust small-signal
modeling approach before the eventual large-signal model
developments. In general, the commonly used modeling tech-
niques include table-based, analytical, physics-based, and
artificial neural networks (ANN) based. The table-based
modeling [16], [17] has lower cost in terms of the develop-
ment and implementation but with lower speed and rate of
convergence. This is due to its discrete nature and therefore
leads to its poor performance at high frequency of opera-
tion. The analytical modeling, on the other hand, relies on
closed-form formulations [18], [19]. The continuous nature
of this technique makes it faster with higher rate of con-
vergence and better prediction capability. The drawback
of this approach is it requires relatively longer time and
substantial efforts for the optimization of the fitting param-
eters of the model. The other conventional physics-based
modeling technique provides more insight about the device’s
physics and could be an optimal tool for design-oriented
technology development [20], [21]. However, this technique
requires extra effort to collect technology-based information
of the device and also suffers from lower speed of simula-
tion and thus is not appropriate for the design of relatively
complicated or multi-cell transistor based circuits. The last
few years has seen emergence of learning-based models
utilizing tools such as ANN [22]–[30]. This technique is
promising as it is simple to develop and offers excellent
trade-off between accuracy and simulation time. The black
box nature of this technique reduces the cost of searching for
proper formula and computation of the model’s parameters.
It exhibits higher rate of convergence when compared to the
analytical modeling and its prediction capability can also be
improved by choosing suitable model topology and activa-
tion function. It is well known that the ANN based model
“learns” the relationship between the input voltages and out-
put current from the measured I-V data, and then efficiently
predicts the current value for any input voltage [30]. During
training, the ANN calculates the resulting output current at
certain input voltages and compares it with the measured
current to estimate the error, which is then propagated back
through the system to adjust the weights for best fitting.
This represents the typical procedure of the widely used
Back Propagation (BP) ANN.
The main limitation of the back propagation (BP), as a gra-

dient method, is its higher sensitivity to the initial guess as
the solution could get stuck in local minima [31]. To over-
come this problem, more effort is needed to find proper
initial guess (close to the global minimum), tune the model
topology, modify the objective function, or change the acti-
vation function [32]–[33]. The local minima issue becomes
more obvious in a non-linear problem of larger scale ANN
model such as IV device’s modeling. Herein, the training
processes need to be re-initiated many times to find the best
fitting. Also increasing the order of the ANN to improve
the model fitting complicates the model implementation in

CAD software and affect the convergence of simulation. This
aspect can be addressed by utilizing global optimization tech-
niques such as genetic algorithm (GA) and particle swarm
optimization (PSO) as they have been found to be very good
alternatives to train neural networks [34], [35].
In this article, an efficient and simple GA augmented ANN

based large-signal modeling of GaN HEMT is developed
and reported. Furthermore, there have been reports of
Support Vector Regression (SVR) and PSO augmented SVR
based techniques to address various behavioral modeling
issues [36]–[41]. In this article, SVR technique is revisited
and adapted for large-signal modeling of GaN HEMT. To
further improve the performance, a PSO augmented SVR
based modelling technique is developed. Finally, Gaussian
Process Regression (GPR) technique [42]–[44] is also

exploited to model the drain and gate currents. The Bayesian
approach is considered herein to model the regression-based
problem a non-parametric modeling process. Unlike ANN
and SVR, the GPR determines the probability distribution
over all possible admissible functions that fits the data, which
make it more robust against measurement errors and outlier
measured data. In brief, the main contributions of this arti-
cle are: (i) development of improved GA augmented ANN
and PSO augmented SVR based GaN HEMT modeling tech-
niques, and (ii) demonstration of GPR as a new promising
modeling technique for GaN HEMT for the first time.
The proposed modeling technique is a hybrid of “black

box” and “equivalent circuits” approaches. The implemented
equivalent circuit is physical relevant and could be used to
predict some physics related behavior such as structure or
technology induced parasitic effects. Also, the addition of
some parameter in the model such as thermal factor and RC
circuit could be used to predict the device performance under
different conditions of trapping and self-heating. In gen-
eral, the developed modeling approach could provide a very
good alternative for both device and circuit designers. The
equivalent circuit make it compatible with the device struc-
ture and could provide relevant insights about the device
physics. On the other side the proposed black box approach
could be applied efficiently to simulate intrinsic nonlinear
elements with higher rate of convergence, which is needed
for complicated circuit and sub-system design.
This article begins by introducing the large-signal equiv-

alent circuit model in Section II and then presents the
developed approaches in Sections III, IV and V. The three
approaches are validated in Section VI. The transistor model
implementation and validation are presented in Section VII
and the conclusion is drawn in Section VIII.

II. EQUIVALENT CIRCUIT MODEL
Figure 1 shows the implemented large-signal equivalent cir-
cuit model. The dotted area encompasses the intrinsic part
of the transistor including intrinsic gate current and capac-
itance in addition to the drain-source channel current. The
self-heating effect and its associated dispersion is character-
ized by the electro-thermal model in the sub-circuit. Further
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FIGURE 1. Equivalent circuit based electro-thermal large-signal model for
GaN HEMTs.

details about this model are provided in the following sec-
tions. The trapping effect is described by the RrfCrf circuit
in the drain side to synthesize the buffer trapping effects,
which has stronger impact of the RF characteristic of the
device [17]. The extrinsic part of the model includes lumped
elements to represent the resistance, the inductance, and
the capacitance parasitic effects. These elements are directly
extracted from cold S-parameters measurement for the inves-
tigated device [17]. The intrinsic capacitances are extracted
from the de-embedded bias-dependent S-parameters. The
respective variations with VGS and VDS are mimicked and
modelled by simple ANN models as explained in the next
sections.

III. GA AUGMENTED ANN BASED MODEL
The proposed architecture consists of two-hidden layers with
4 nodes in each layer as shown in Fig. 2. In the proposed
model of drain current there are in total 28 weights and
9 biases. The drain current IDS is modeled using the GA aug-
mented ANN based model, where IDS, DC is governed
by (1).

IDS,DC = w3
b +

4∑

k=1

wktanh

×
⎛

⎝w2
kb +

4∑

j=1

wkjtanh
(
w1jVGS + w2jVDS + w1

bj

)
⎞

⎠

(1)

where VGS, and VDS are extrinsic gate and drain voltages,
respectively. The terms w1j, and w2j are input weights, wkj
are the intermediate weights (between two hidden layers).
Furthermore, w1

bj, w
2
kb and w3

b are the input-layer, hidden-
layer and output-layer biases, respectively. The model uses
the non-linear ψ = tanh(.) activation or threshold function
at each layer. It is also imperative to point out that particular
nodes utilize (2) to learn the model parameters. If the output
of one neuron is given by k, inputs to the neuron are t1,

FIGURE 2. The proposed ANN architecture for the drain current.

FIGURE 3. The proposed ANN architecture for the gate current.

t2, . . . , tn, weights corresponding to each connection from
inputs are W1, W2, . . . ,Wn and bias as p, then the equation
of one neuron model can be formulated by (2).

k = ψ

(
n∑

i=1

Witi + p

)
. (2)

Furthermore, the gate current is also modeled using 2 hid-
den layers based GA augmented ANN model. Each hidden
layer consists of 3 neurons as shown in Fig. 3. The gate cur-
rent has exponential behavior in the tried-forward region and
it is mainly depends on VGS. On the other hand, the drain
current depends on both VGS and VDS and it has multiple
nonlinearities in triode, pinch-off and forward region. The
stronger nonlinear behavior of the drain current justify the
required higher number of neurons. This also agrees with
the reported analytical model in [23], which presented more
complicated nonlinear formula for the drain current with
respect to the exponential based formula of the gate current.
The BP based algorithms are susceptible to initial values
of weights and biases in order to produce fast converging
and better results. To overcome this problem, GA augmented
ANN models are developed. GA is well-known for its pow-
erful exploration capability. The GA aids in the optimization
of the initial weights and biases and later uses these optimal
set to build the models [45]. The gate current is expressed
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FIGURE 4. The proposed GA augmented ANN-based model.

in (3), where the terms are explained above.

IGS = w3
b +

3∑

k=1

wktanh

×
⎛

⎝w2
kb +

3∑

j=1

wkjtanh
(
w1jVGS + w2jVDS + w1

bj

)
⎞

⎠.

(3)

This approach is developed based on the natural selection
method. Weights and biases are the models’ parameter in
case of ANN. Selecting the right initial values can strongly
affect the overall efficiency of the ANN model, especially
for large- size model with increased number of parameters.
Any BP method starts the algorithm by randomly selecting
initial value for the weights and biases by using appropriate
probability distribution. However, if the search space is spa-
cious, finding the right initial values to converge at global
optimums is less probable. The GA can easily address this
problem as it allows efficient exploration in the search space
to find optimal initial values for the models’ parameters. This

eventually drives the algorithm to converge at the global opti-
mums, which improves the overall accuracy of the models.
Two separate models are developed. The procedure is briefed
in the flow chart shown in Fig. 4. The same procedure is
repeated for both models, i.e., both for modeling of IDS and
IGS.
The only difference is the number of variables used.

A brief summary of the modelling process is:

• First the training sets are prepared. The training set for
the drain current is composed of input data of applied
VGS, VDS and measured IDS as an output parameter.
The second model consists of the same input data but
with the gate current (IGS) as output parameter. The
dataset is further divided into training and unseen testing
sets. Almost two-third of the entire data samples are
implemented for training and the remaining are used
for testing. To get this distribution, for respective VGS,
two-third of entire VDS biasing sets are included into
training set and remaining into testing set. This process
is applied for each model. The whole data is fed to the
GA based algorithm to produce the optimal initial sets
of weights and biases of the NN models.

• The optimization first generates initial population of
1000 individuals. Each individual embodies the total
number of variables (37 variables: 28 weights and
9 biases for the first model and 25 variables: 18 weights
and 7 biases for the second model). The variables are
set within the range of −1 and 1 and are initialized
randomly within this range.

• The objective function or fitness function (MSE) in
(4) is defined with the objective to minimize the squared
difference between the predicted values and the mea-
sured values. If K is the total number of samples
then:

MSE = 1

K

K∑

j=1

(
Imeas − Ipred

)2
. (4)

• Once initialized properly and, regarded as parent gener-
ation, each individual is fitted using the error equation
and then the fitness value is calculated. Based on the
fitness value, 10 % of them are rejected (in the 1st
iteration) and the remaining individuals are passed the
recombination and mutation stages and eventually ren-
der the “offspring” for this second generation. These
candidate solutions are evaluated by calculating their
fitness errors. Then 90% of the less error are selected.
The rejected 10% are replaced by the best candidate of
the last generation (parents). The new formed solutions
represent parents for the next third generation and the
process will repeat itself. This will continue up to the
predefined maximum number of iteration Nmax. In our
case Nmax is set to 500 to produce the best results

• For the effective reproduction of the off-springs,
a highly efficient double-edge crossover technique is
exploited. The newly generated offspring’s values go
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TABLE 1. Gate and drain bias voltages of the drain current.

through the same stages repeatedly, through a process
called reinsertion. At the next generation, the same steps
are re-evaluated until the termination condition is met.

• Then GA produces optimal set of weights and biases
for the given fitness function.

• These determined sets are initial values and are used to
override the BP based weights and biases. The ANN
models are then trained and validated based on these
initial values.

IV. PSO AUGMENTED SVR BASED MODEL
Support vector regression (SVR) is derived from Support
vector machine (SVM) classification for regression-based
problems. In general, for any regression-based problem the
objective of the models is to minimize the squared error.
However, in SVR, the objective is to minimize the absolute
error term defined using certain constraints. Moreover, SVR
allows the developer to define a certain error range [46]. The
SVR implements linear-epsilon insensitive (e–SVM) regres-
sion, which is sometimes also referred to as L1-loss. It
is a supervised model where the user provides a training
set consisting of predictor variables and target values. The
model learns the optimal weights and biases by solving the
optimization problem to produce the most effective results.
More details about the SVR and the implanted combined
technique of SVR and PSO are provided in Appendix A.

V. GPR BASED MODEL
The Gaussian process regression (GPR) models come under
the category of nonparametric kernel-based probabilistic
models. A brief summary of GPR is discussed in this section.
The details are available in [47]–[48]. Also more details to
explain the drain and gate current modeling using GPR are
provided in Appendix B.

VI. THE DEVELOPED MODEL VALIDATION
The proposed modeling approach has been applied on the
DC IV measurements listed in Table 1 for a 2mm packaged
GaN HEMT on Si substrate.

A. GA AUGMENTED ANN MODEL VALIDATION
The measured dataset is preprocessed before training to
drive the range of features and output within [−1, 1]. Then
the models are trained to simulate bias dependence of the
DC drain and gate currents. For this purpose, the topolo-
gies depicted in Figs. 2 and 3 have been implemented and
trained with the measured data. The well-known tan-sigmoid
activation function is used at each layer.

TABLE 2. Mean squared error at randomly selected bias conditions (ga aug-

mented ANN model for the drain current).

TABLE 3. Mean squared error at randomly selected bias conditions (GA aug-

mented ANN model for the gate current).

FIGURE 5. Measured and simulated drain current of 2-mm packaged GaN
HEMT using GA augmented ANN model.

The GA is used to produce optimal initial values for
the weights and biases. Then the models are trained using
Levenburg-Marquardt (LM) BP algorithm [49] after over-
writing the determined initial weights and biases. The MSE
is recorded at randomly selected different biases to check
the robustness of the modelled drain current and the out-
come is given in Table 2. The same for the gate current
is given in Table 3. Moreover, the measured and simulated
plots for the drain current for a wide range of 0-48 V in
Fig. 5 shows the overall behavior of the proposed model.
The plots for the gate current are shown in Fig. 6. It can be
observed that the GA augmented ANN provides excellent
fitting for the measurements. The same results are obtained
with multiple running of the program and this validates the
robustness and uniqueness of the obtained solutions with
respect to the conventional BP based ANN.

B. PSO AUGMENTED SVR MODEL VALIDATION
It is imperative to note that the hyper-parameters tuning
plays a vital role in improving the performance of the SVR
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FIGURE 6. Measured and simulated gate current of 2-mm packaged GaN
HEMT using GA augmented ANN model.

TABLE 4. The optimal values of hyper parameters to simulate drain current

using PSO algorithm.

TABLE 5. The optimal values of hyper parameters to simulate gate current

using PSO algorithm.

TABLE 6. Mean squared error at randomly selected bias conditions (PSO

augmented SVR model for drain current.

based models. Keeping this in context, the PSO algorithm
is used to tune the parameters. The parameters to be opti-
mized are Box Constraint (C), width of the tube size (ε),
Kernel function, standardization of data, polynomial order,
and kernel scale. The Gaussian kernel is chosen after compar-
ing the performance of linear kernel, polynomial kernel with
polynomial order up to 5 in terms of MSE. The Gaussian
kernel outperformed every other kernels. The standardized
dataset is used. Now, the models are trained using PSO
to find the optimal values of C, ε and σ. The same mea-
surement set listed in Table 1 is used to train and validate
the model. The optimal parameters of SVR models are
listed in Tables 4 and 5 for the drain and gate currents,
respectively. The models are again validated at randomly
selected weights and biases to check the performance in
different region of operations whose results are given in
Tables 6 and 7. The measured and simulated plot is drawn

FIGURE 7. Measured and simulated drain current of 2-mm packaged GaN
HEMT using PSO augmented SVR model.

FIGURE 8. Measured and simulated gate current of 2-mm packaged GaN
HEMT using PSO augmented SVR model.

TABLE 7. Mean squared error at randomly selected bias conditions (PSO

augmented SVR model for gate current).

for a broad voltage range. It can be inferred from the plots
shown in Figs. 7 and 8 that the models have shown good
agreement. Around zero drain current the SVR has shown
some deficiency. It is due to the fact that if the error lies
within the ε-insensitive tube region then the SVR considers
those observation to be by default as zero error and does
not optimize them. This could be also observed from the
higher MSE (see Tables 6 and 7) with respect to the case
of GA-ANN in Tables 2 and 3.
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TABLE 8. Mean squared error at randomly selected bias conditions (GPR

based model for the drain current).

C. GPR MODEL VALIDATION
Two models, one for drain and other for gate current are
developed. To reiterate, the GPR is a probability based
non-parametric method. Unlike other supervised methods
such as ANN, the GPR uses Bayesian optimization to cre-
ate a Gaussian probability distribution over all the possible
results. Generally, the flow in ANN and SVR is that we fit
the data and compute the parameters using the best fitted
decision boundary. In the GPR, however, the algorithm pro-
cess training dataset of the current to lean their probability
distribution. Then, it can predict the current at any input
voltages. The datasets are standardized before training. The
models then utilize the subset of data points approximation
to estimate the parameters of the GPR model. This method
is chosen based on the number of samples. The models also
use constant basis function, exact method to predict, and
Quasi-Newton method to optimize the parameters of the
GPR models. These parameters are chosen by comparing
MSE and number of training samples. Moreover, the key
component in GPR is known as Kernel function or covari-
ance function. The accuracy of the GPR models are greatly
dependent on the kernel function as the output of the model
depends on the mean and covariance matrix. Once we have
the mean and covariance matrix, we can easily calculate the
Gaussian distribution associated with the data. For small-
sized data, the GPR has proven to work well. The squared
exponential kernel is used in this work and it is expressed
by (5).

k
(
ti, tj|ϑ

) = σ 2
f exp

([
−1

2

(
ti−tj

)T(
ti−tj

)

σ 2
i

])
(5)

where σiis the characteristic length scale, and σf is the signal
standard deviation. The same training set is used to train the
model listed in Table 1. To check the robustness of the mod-
els the MSE tallies are computed and listed in Tables 8 and
9 for drain and gate current, respectively. Once again, the
measured and simulated plots in Figs. 9 and 10 show excel-
lent agreement between the modelled and measured data for
the entire range of voltages and thus validate the efficiency
of the proposed GPR based modeling technique. As it can be
noted from the values of MES in Tables 8 and 9 the GPR has
comparable accuracy to the GA-ANN. However the random
nature of the GPR could complicate model implementation
in CAD software such as ADS.
Overall, the GA augmented ANN shows excellent agree-

ment for both the drain and gate currents. Due to the
simplicity of analytical formula of drain and gate current it

FIGURE 9. Measured and simulated drain current of 2-mm packaged GaN
HEMT using GPR model.

FIGURE 10. Measured and simulated gate current of 2-mm packaged GaN
HEMT using GPR model.

TABLE 9. Mean squared error at randomly selected bias conditions (GPR

based model for the gate current).

has an advantage of easy implementation in ADS. Whereas
the PSO based SVR is robust due to the uniqueness and its
embodiment of the SRM principle. However, it has major
limitation for the target values which are exactly zero as it
cannot deal with the target values which are within the ε–
tube region. On the other hand, the GPR has shown the best
performance in terms of MSE. Unlike the SVR, it can also
easily deal with zero target values. It is found that simula-
tion time of GPR is less when compared to the PSO-SVR
and GA-ANN models. Furthermore, the GPR is very robust
and the algorithm needs not to run many times due to the
uniqueness of the solutions at each run. This also further
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FIGURE 11. Measured and simulated drain current of 2-mm packaged GaN
HEMT using: (a) GA-ANN; (b) PSO-SVR; and (c) GPR model.

TABLE 10. A compassion table of all the models.

clarifier in Fig. 11, which compares simulation of the three
models for the strong nonlinear behavior in the triode region.
A brief comparison table of all the proposed models is given
in Table 10 and a comparison of simulation time to build
the entire model is given in Table 11.

VII. LARGE-SIGNAL MODEL REALIZATION AND
VALIDATION
As it was mentioned, self-heating and trapping effects induce
a current dispersion that has stronger impact on the device
performance and must be considered in the modeling pro-
cess. The dynamic behavior of both the thermal and trapping

TABLE 11. Simulation time to build the entire models.

represent the main source of long-term memory effect [50].
This effect results in frequency-dependency of nonlinear
characteristics of the transistor amplifier and thus it should
be considered by the model for efficient circuit design.
To simulate these effects, a simple approach has been fol-
lowed by adding two RC circuits. The thermal effect is
simulated by the dynamic electro-thermal sub-circuit (see
Fig. 1) with a thermal constant of 1 ms [51]. Figure 12
depicts a block diagram representation for the electro-thermal
modeling of the self-heating effect, which reduces the drain
current under static and quasi-static of operation; however
it has negligible influence when a fast envelop varying at
Radio Frequency (RF) signal stimulates the device. When
using 4G signal with a modulation bandwidth equal or higher
than 20 MHz, the signal’ envelop is fast enough to prevent
heating up the device and increasing the channel tempera-
ture; however dispersive and trapping effects due to the fast
envelop can be trigged. Thus the DC drain current has to
be corrected to emulate this dispersive behavior under RF
modulated signals. The series RrfCrf circuit in the drain side
of the equivalent circuit in Fig. 1 is to simulate the dynamic
buffer trapping, which has stronger impact with respect to the
previously mentioned surface trapping. This simple approach
is working well for simulating this effect under the consid-
ered bias condition [52] and it has been used here just to
keep the model simplicity. An extended approach such as
the presented on [25] could be used to consider the bias
dependence of both surface and buffer trapping.
As can be seen in Fig. 12 the DC drain current can be

modelled based on any of the proposed approaches namely
the GA-ANN, PSO-SVR, and GPR. It can be deduced that
the model’s drain current output is multiplied by the drain
voltage to calculate the DC power dissipation. This calcu-
lated power is then multiplied by frequency-dependent factor
of KTH(ω) to synthesize the self-heating induced dispersion.
Here, KT is a thermal correction factor that can be deter-
mined by comparing the DC and RF trans-conductance and
output-conductance at active bias condition [17]. The term
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FIGURE 12. Electrothermal model of the drain current.

TABLE 12. Extrinsic elements of a 2-mm packaged GaN HEMT.

H(ω) is a unity high-pass transfer function to account for the
higher impact of self-heating due to static and quasi-static
power dissipation. According to the model in Fig. 12, the
drain current can be formulated as:

Ids = Ids,DC[1 + KTHHP(ω)Pdiss]. (6)

As it is well know that the gate current is not frequency
dependent and thus its value will be the quasi-the same
under DC and RF operating conditions. Therefore, the gate
current could be simulated using one of the GA-ANN, PSO-
SVR or GPR model based on DC measured data. As it was
presented in Figs. 6, 8 and 10 all models showed very good
fitting to the measurements. As it was mentioned, the extrin-
sic elements of the equivalent circuit model of Fig. 1 have
been extracted based on cold S-parameter measurements and
using the same procedure reported in [17]. Table 12 lists the
extracted elements of the investigated 2-mm device. These
extrinsic elements are then de-embedded from active (hot)
S-parameter measurements to model the intrinsic transistor
and deduce the values of its elements. The intrinsic elements
Cgs and Cgd are then extracted by means of curve fitting of
the intrinsic Y-parameters [17]. The bias dependence of Cgs
and Cgd has been simulated using simple single hidden layer
ANN models of three neurons. Fig. 12 shows the extracted
values with the models fitting. Under bias conditions of
the typical high efficient amplifier, Cds is almost constant.
For that reason and to keep the simplicity the model, Cds
is considered as a bias-independent element. The equivalent
circuit model of Fig. 1 with its extracted parameters is imple-
mented in the Advanced Design System (ADS) software.
The GA-ANN models of IDS,DC and IGS are implemented
analytically using the closed-form formulations given in (1)
and (3), respectively. The implemented model is validated by
single-tone large-signal RF characterization under different
bias conditions.
As it can be seen in Fig. 14, the simulation results agree

well with the measurements. The developed model also
shows a greater rate of convergence and a shorter simula-
tion time with respect to the table-based model for the same
device [17]. This of course should be expected because of

FIGURE 13. Measured and Simulated intrinsic capacitances at VGS = −4 V.

FIGURE 14. Simulated (lines) and measured (symbols) power sweep for
50-O terminated 2-mm packaged GaN HEMT at 2.35 GHz and under the
bias conditions of: (a) VGS = −1 V and VDS = 28 V, (b) VGS = −1.6 V and
VDS = 28 V and (c) VGS = −2.5 V and VDS = 28 V.

the discrete nature of the table-based model as compared to
the proposed continuous model.
The developed model has been also used to simulate

an inverse class-F switching-mode power amplifier (see
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FIGURE 15. ADS simulated and fabricated inverse class-F power amplifier.

FIGURE 16. Simulated (lines) and measured (symbols) power sweep for
50-O terminated invers class-F power amplifier at 2.35 GHz and under the
bias conditions of VGS = −2.5 V and VDS = 28 V.

Fig. 15) based on the same considered device. This ampli-
fier has been previously designed using a Table-Based (TB)
model for the same device and the results were reported
in [9]. The amplifier was adopted to operate at 2.35 GHz
frequency. It was also well matched with 50-O source and
load conditions. The amplifier is biased below pinch-off ate
VGS = −2.5 V and VDS = 28 V. The amplifier was simu-
lated in ADS using a Computer with 3.4 GHz core i7 CPU,
16 GB RAM and 64-bit operating system. Fig. 16 shows sim-
ulated and measured output power, power-added-efficiency,
and gain of the amplifier. As it can be seen, the model can
accurately simulate the amplifier and efficiently predict the
peak PAE. The model also showed faster simulation with
higher rate of convergence with respect to the TB model
in [9]. The total simulation time of the amplifier using the TB
model is 27.5 s, while it is 9.6 s using the proposed model.

The simulation time is reduced by nearly three times, which
is very useful especially for simulating more complicated
circuits such as multi-stage power amplifiers.

VIII. CONCLUSION
In this article, efficient large-signal modeling techniques
using machine learning based approaches are developed and
implemented for GaN HEMT. The proposed approaches
employed GA augmented ANN, PSO augmented SVR,
and GPR based models to develop analytical electro-
thermal models for the drain and gate currents of the GaN
HEMT. The developed models are compared in terms of
MSE and simulation time. All the models are validated
using simulation plots and excellent agreement is obtained.
It has been observed that the PSO-SVR training algorithm
is negatively impacted by the drawback of not account-
ing zero target values. The GA augmented ANN model,
owing to its simplicity, was then utilized for investigation
and validation under single-tone large-signal RF excita-
tions. In summary, the GA augmented ANN and GPR
based models offers simple analytical formulation and can
be therefore readily adapted in commercial CAD tools. It
has been found that a reduction of around three times
in simulation time with higher rate of convergence could
be obtained using the proposed modeling with respect to
the table-based technique. This validates the applicability
of the proposed modeling approaches for simulating more
complicated nonlinear circuits.

APPENDIX A
As it was mentioned, the SVR model is based on using
box constraint or regularization parameters, which works as
a trade-off between making the weights (‖ω2‖) small (to
make the margin large) and ensuring that each example has
functional margin of at least 1. In other words, it is a penalty
factor, which penalizes the observations going beyond the
epsilon margin range. The e-insensitive loss function does
not notice and overlook the error values, which are within
the range of e by considering them as zero. Another promi-
nent attribute of SVR is the kernel trick, which in principle,
converts the non-linear low dimension- dataset to linear high-
dimensional dataset and computes dot products to produce
a scalar output and helps in dealing with complex problems.
Assume tn is a multivariate set of N observations and kn
is the corresponding response value. The objective of SVR
model is to find f (x), which does not deviate more than e
from tn for each training point x. The SVR formulation for
a non-linear model is given in (7). Here, ω is the weight and
p is the bias, and φ(x) is the kernel trick or kernel matrix.

f (x) = 〈ω, φ(x)〉 + p. (7)

To insure that f (x) is as flat as possible, find f (x) with min-
imum norm value (ωTω). It can be converted as a convex
optimization problem to minimize, which can be solved using
Lagrange multiplier optimization technique, and to find the
optimal hyperplane and to convert a non-convex problem
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to a convex solvable optimization problem. Generally, we
define functional and geometric margins. By using the
scaling constraints on weights and biases and altering
the maximizing problem to a minimization problem we
reach (8).

Minimize

(
1

2

∣∣∣
∣∣∣ω2

∣∣∣
∣∣∣
)

with the constraints:
∥∥kn − (

t′nω + p
)∥∥ ≤ ε. (8)

There is a possibility that no such term exists which follows
the constraint defined by (8). To deal with such a situation,
other terms known as slack variables (ξi, ξ∗

i ) are added to
the equation. The expression, including the slack variables,
known as primal formula for SVR is given in (9) with subject
to conditions in (10). The primal formula can be solved by
converting it to a Lagrange dual problem [46].

Minimize

(
1

2

∣∣∣
∣∣∣ω2

∣∣∣
∣∣∣+ C

n∑

i=1

(
ξi + ξ∗

i

)
)

(9)

kn − (〈ω, tn 〉 + p) ≤ ε + ξi

(〈ω, tn〉 + p)− kn ≤ ε + ξ∗
i

ξi ≥ 0 and ξ∗
i ≥ 0. (10)

Then the predictive function (f (x)) for the nonlinear primal
function can be completely describe in terms of support
vectors.

f (x) =
N∑

n=1

(
α∗
n − αn

)
G(tn, x)+ p (11)

The terms α∗
n and αn in brackets are weight coefficients

of support vectors, p is the bias and G(·) is the gram matrix.
Then the formulations for drain current can be expressed by
(12). Here, tn is the support vectors, N is the number of
support vectors, σ is the Gaussian kernel parameter and p
is the bias. Similarly, equation for the gate current can be
formulated by (13).

IDS,DC =
N∑

n=1

(
α∗
n − αn

)
exp

×
(
(tn − {[VDS,VGS]})T(tn − {[VDS,VGS]})

2σ 2

)
+ p

(12)

IGS =
N∑

n=1

(
α∗
n − αn

)
exp

×
(
(tn − {[VDS,VGS]})T(tn − {[VDS,VGS]})

2σ 2

)
+ p

(13)

One of the main reasons of degradations of the SVR’s
predictive ability is the inappropriate selection of the parame-
ters. Different parameters affect the performance in different

ways and hence it is important to tune and optimize the cen-
tral parameters to improve the predictive ability of the model.
This article makes use of PSO to tune the parameters. The
PSO comes under the category of global optimization tech-
niques and thus is not susceptible to local solutions but more
inclined towards the global solutions of a given optimization
problem. It is fast and computationally less intensive as
opposed to complex methods such as GA and therefore
works excellently when optimization of fewer parameters
is envisaged. As discussed earlier, the box constraint (C) is
an essential parameter, which directly supervises the over-
fitting and under fitting of the model. For a large value of
C it will lead the model to overfit and for very small value
of C it will lead the model to underfit, so finding a mid-
dle value is very crucial. The ε-insensitive loss function,
defines the margin of tolerance. This directly influences the
number of support vectors. As per (11), the output of the
SVR model is mainly dependent on the quantity and quality
of the support vectors. So, optimizing the error value is of
utmost importance. Moreover, selecting the right kernel for
the problem greatly influences the overall accuracy. For SVR,
there are many kernels available such as Gaussian kernel,
linear kernel, and polynomial kernel. It is also possible to
design a custom kernel function to deal with the specific
problems. However, Gaussian kernel is used in the current
work. Here, two models are developed, one to simulate drain
current and the second to depict the gate current. Both mod-
els utilize the principle of SVR and make use of PSO to
optimize the models’ parameters. The box constraint (C) and
kernel scale or sigma are initialized randomly and set to tra-
verse within the range of [10−3, 103] for both the models.
The ε-insensitive loss function, is also chosen randomly and
allowed to take values between [10−5, 105] for the drain
current and [10−6, 106] for the gate current. This process
is repeated many times until the optimal values of these
terms are obtained. In fact, the PSO is a model developed
by understanding the social behavior of birds flocking or fish
schooling [37], where each particle possesses its own posi-
tion and velocity. All the particles share a common objective
either to seek food or avoid predators or to find the adapt-
able environmental parameters. In order to accomplish the
objective each particle adjust their own positions and veloci-
ties which can be mathematically explained. Moreover, they
also keep track of the best position explored by them. These
local and best position together decide the velocity of each
particle.
The proposed methods are briefly described in the

flow chart of Fig. 17, and can be summarized
as follows:

• The training of PSO starts by feeding the measured
data containing inputs and output to the algorithm. Upon
receiving the data, the algorithm creates initial popula-
tion of particles (100 particles). Each particle contains
3 variables for the parameters C, ε and σ .
These variables are assigned random values within the
above-mentioned ranges.
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FIGURE 17. The proposed PSO augmented SVR-based model.

• The next step is the evaluation of fitness function. Its
value is calculated using (4). Based on the fitness value,
the local best position of individual particle is set.
Moreover, by comparing the positions of the particles,
the global best position is determined. Local best posi-
tion and global best position continue to be updated after
each successful iteration until the termination condition
is met.

• Each particle updates its velocity based on individual
best position and global best position. The velocity of
each particle is updated using (14) and (15).

vn+1 = w∗vn + c1∗r1∗(XLB − xn)+ c2∗r2 ∗ (XGB − xn)

(14)

xn+1 = xn + vn+1 (15)

where, r1 and r2 between 0 and 1 preferably obtained
using stochastic methods. vn+1 is the updated velocity
and vn is the previous or memory velocity. Similarly,
xn+1 is the updated position and xn is the previous
or memory position. XLB and XGB are the local best
and global best positions, respectively. The terms w,
c1 and c2 are the inertia weight factor, self-confidence
factor, and swarm confidence factor. The inertia factor
is calculated using (16).

w = wmax −
(
(wmax − wmin)

MaxIteration
∗Iteration

)
. (16)

Here, wmax and wmin are the maximum and minimum
range for the inertia factor values. These values can be
greatly altered by the internal features associated with
the processes used to update the velocity.

• The updated velocity is then used to update the new
local best and global best positions. This process is
repeated for each particle, at each generation, until the
process stops by the termination condition set by the
user. In our case, the algorithm runs for 250 iterations.

• After the termination condition is reached, the algo-
rithm provides the optimal set of the three above listed
parameters. These values are then used to build the SVR
model. The model is trained and validated in a later
section.

APPENDIX B
As it was mentioned, GPR models come under the category
of nonparametric kernel-based probabilistic models. Assume
the training set, D = {tj, yj}, j = 1, 2, 3, . . . ,m, where the
feature matrix tj ∈ R

d, the target matrix yj ∈ R, from an
unknown distribution. A GPR model assumes a Gaussian
process a priori, which can be characterized in terms of
mean, m(t) and covariance function, k(t, t′) as follows:

f (t) ∼ GP(m(t), k
(
t, t′
)
). (17)

Furthermore, a linear regression model of GPR problem
can be formulated by incorporating the noise or error
information as expressed in (18). Here, ε ∼ N(0, σ 2) that is ε
is independently and identically distributed (i.i.d.) Gaussian
noise with mean zero and variance σ 2. The f (t) is assumed
to be Gaussian distribution and hence the y, the observed
output, can form a Gaussian process expressed by (19). The
term δij is Kronecker delta function, when i = j, δij = 1.
Subsequently, the covariance function is expressed in (20).
In this expression, C(T,T) denotes covariance matrix of
NxN, I denotes the unit matrix of NxN, K(T,T) known as
Gram matrix which denotes nuclear matrix NxN, that con-
tains Kij=k(titj) as its elements. It can be safely stated from
the Gaussian process that the collection of training points
and test points are joint multivariate Gaussian distributed
and their distribution can be expressed by (21). Therefore,
primary GPR equations are in (22). Here, f∗ in (23) is the
predicted mean output of the GPR model on output vector.

y = f (t)+ ε (18)
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y = GP
(
m(t), k

(
t, t′
)+ σ 2

mδij

)
(19)

C(T,T) = K(T,T)+ σ 2
mI (20)[

y
f∗

]
∼ N

([
μ

μ∗

]
,

[
K(T,T)+ σ 2

mI K(T,T∗)
K(T∗,T) K(T∗,T∗)

])
(21)

f∗
∣∣T, y,T∗ ∼ N

(
f∗, �∗

)
(22)

f∗ = μ∗ + K(T∗,T)
[
K(T,T)+ σ 2

mI
]−1

(y− μ) (23)

�∗ = K(T∗,T∗)− K(T∗,T)
[
K(T,T)+ σ 2

mI
]−1

K(T,T∗).
(24)

For the gate and drain current, T is a multivariate set of
inputs composed of VDS and VGS given by (25).

T =
{[
ViDS,V

i
GS

]}
; i = 1, 2, . . . , n. (25)

where ViDs and ViGS are column vectors where each row
defines a new observation and n is the total number of
observations in the test set. To sample a function, it first
computes the covariance between all observations of VDS
and VGS, denoted by K(T,T), and usual prior mean m(T)
as zero. Afterwards, it defines the sample function (f∗) as:

f∗ = N(0,K(T,T)) (26)

Suppose the training set, Dt = {Xt, yt}; where Xt is the
multivariate set of inputs composed of training observa-
tions of gate and drain bias voltages and yt is the drain
or gate current. By using the standard results, the con-
ditional distribution p(f∗|Dt,T) is computed using (27)
and (28).

m(T) = K(T,Xt)
[
K(Xt,Xt)+ σ 2

mI
]−1

yt (27)

kt
(
T,T ′) = k

(
T,T ′)

− k(T,Xt)
[
K(Xt,Xt)+ σ 2

mI
]−1

k
(
Xt,T

′).
(28)

To predict f∗, it uses simply mean function given in
(27) or sample function from the GP with this mean func-
tion and kernel (28) as described before. Now, the predicted
IDs,DC and IGS can be analytically calculated using (29) and
(30) using the mean and kernel defined in (24) and (25).

IDs,DC = N(m(T), kt
(
T,T ′) (29)

IGS = N(m(T), kt
(
T,T ′). (30)
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