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ABSTRACT This paper studies a composite power n-channel lateral-diffused MOSFET device with a super
junction (SJ) and parasitic silicon-controlled rectifier structure (nLDMOS-SJ-SCR) in the drain side, which
can be used for electrostatic discharge (ESD) and latch-up (LU) reliability enhancements of 60-V power
electronics. For ESD and LU protection considerations, the drain side with an SJ structure integrated
with p-n-p- and n-p-n-arranged types of nLDMOS-SCR transistors is demonstrated. According to the
experimental data, the layout of the SJ structure in the drain side has positive effects on ESD and LU
capabilities. The layout type of nLDMOS-SJ with a pillar width W = 9µm has the highest secondary
breakdown current (It2) values; the ESD (LU) improvement was 46.3% (13.3%) compared with the
nLDMOS reference sample. Meanwhile, an nLDMOS-SJ with a pillar width W = 27µm has the highest
figure of merit (FOM) value. By contrast, an embedded p-n-p-(n-p-n-)arranged type SCR structure was
added into the drain side once again. Initially, it has a positive (negative) effect on the ESD reliability.
Furthermore, the ESD (figure of merit; FOM) improvement was 37.9% (13.72%) of the corresponding
nLDMOS-SJ device for nLDMOS-SJ-SCR (p-n-p) with W = 27µm. Overall, an nLDMOS-SJ device
integrated with the p-n-p-arranged-type SCR in the drain side is a favorable choice for ESD and LU
improvements.

INDEX TERMS Electrostatic discharge (ESD), latch-up (LU), n-channel lateral-diffused MOSFET (nLD-
MOS), secondary breakdown current (It2), silicon controller rectifier (SCR), super junction (SJ).

I. INTRODUCTION
Recently, power integrated components in the power system
or module integrations have gained attention. High volt-
age (HV) lateral-diffused metal–oxide–semiconductor field-
effect transistor (LDMOS) components are often used in
smart power ICs, such as switching power supplies, auto-
motive electronics, RF power amplifiers, mobile telecom-
munications, LED drivers, and LCD displays [1]–[16]. For
a high operating-voltage requirement, this power component
requires a favorable range of reliability ability. If a power
integrated circuit (PIC) is stressed by a noise transient and/or
an electrostatic discharge (ESD) pulse, it may lead to the

destruction of HV components caused by ESD or elec-
trical over-stress (EOS). Therefore, in many applications,
a power LDMOS urgently needs to have good ESD and/or
latch-up (LU) capabilities [17]–[27].
However, an HV n-channel LDMOS (nLDMOS) is usu-

ally served as an ESD protection element, but it has some
major disadvantages due to higher trigger voltage (Vt1) and
lower holding voltage (Vh). Then, a gate-grounded nMOS-
FET (GGnMOS) device with a multi-finger layout will be
occurred the non-uniformity turned-on issue, thus leading
to extremely low ESD robustness per unit channel width
particularly in the HV nLDMOS devices due to high Vt1
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value [28]. Moreover, the low holding voltage (Vh) of a com-
ponent is easily prone to LU burnout. How to solve these
difficult reliability problems?
A super-junction (SJ) structure in HV LDMOS devices

can effectively improve the relationship between the break-
down voltage and the on-resistance [29]–[38]. In addition,
this concept can be used to enhance the ESD capability of
HV MOSFETs, but the enhancement is still slightly insuffi-
cient. By contrast, power SCRs are commonly used in HV
applications because their Vt1 values are slightly lower than
those of nMOSFETs fabricated using the same process [39]
and they provide excellent ESD robustness per unit channel
width [24], [40]–[47]. However, SCRs have some disadvan-
tages. Compared with the operating voltage VDD, the Vh
value is extremely low. Consequently, we have some new
ideas to integrate and merge these two HV components.
That is to say, if an SJ structure is added into the drain
terminal of an HV nLDMOS and linked with an embedded
SCR in the drain side again, how will the ESD and LU
reliabilities be affected? Therefore, in this study, various P+
implants were inserted into the drain end of an nLDMOS-SJ
(nLDMOS with a super-junction structure) device to form
an nLDMOS-SJ sample worked together with an embed-
ded parasitic SCR device. Then, this study investigated the
influences of drain-end engineering on the ESD and LU
manifestations of this new power compound device. Finally,
a comprehensive index for weighing the reliability of ESD
and LU, the figure of merit (FOM) of these power samples
of the ESD, LU, and cell area considerations are defined
and evaluated as

FOM = It2 × Vh
cell area

. (1)

II. DEVICE STRUCTURES OF POWER NLDMOS DUTS
A. THE PURE NLDMOS REFERENCE DEVICE
Testing components of 60-V HV pure nLDMOS and the fol-
lowing devices were fabricated using a TSMC 0.25-µm 60-V
Bipolar-CMOS-DMOS (BCD) process. The channel length
(L) of these devices under test (DUTs), channel width of each
finger (Wf ), and total channel width (Wtot) (constant) were 2,
100, and 600 µm, respectively; finger numbers M = 6. Here,
the pure nLDMOS was regarded as a reference or bench-
mark DUT. Figs. 1 and 2 respectively show the schematic
layout diagram and three-dimensional (3D) cross-sectional
view (along the line AA’ of Fig. 1) of this pure nLDMOS
transistor. The HVPB, SH_P, H60PW, H60NW, and shallow-
trench isolation (STI) layers are the necessary well structures
for a 60-V device. Furthermore, spacing of the H60NW edge
to the left drain-side thin-oxide definition (OD) is denoted
by Ld, and the OD zone is denoted by the thin-oxide def-
inition area. In addition, a butted contact structure for the
source-to-bulk electrode connection was used in this study.
A silicide layer was formed at drain and source ends. As
shown in Fig. 2, when an nLDMOS device forms a gate-to-
ground connection, it can conduct the transient ESD current
through the parasitic BJT (Q1) under this MOSFET; Rbulk

FIGURE 1. Layout-view diagram of the HV pure nLDMOS (Ref. DUT).

FIGURE 2. 3D Cross-sectional view of the HV pure nLDMOS (Ref. DUT).

and Rdrift are the parasitic resistances of the source-to-bulk
and drift regions, respectively.

B. AN NLDMOS WITH SUPER-JUNCTION (SJ)
STRUCTURES
Figs. 3 and 4 show that an nLDMOS was constructed
in a parallel SJ structure below the shallow-trench-
isolation (STI) region at the drain end (denoted as nLDMOS-
SJ). It is found that it is a complex architecture. Beneath
the drain-side STI region, some H60PW layers were inserted
into the H60NW layer and permuted to form a similar SJ
structure. A 4-µm STI gap was present between the paral-
lel SJ endings and the drain-side with high doses (> 1019

cm−3) of OD. When the H60PW and H60NW widths for the
nLDMOS-SJ devices varied, the pillar widths of these two
layers were always kept equal (Wn = Wp = W), and there
were four classifications of 6-, 9-, 18-, and 27-µm widths.
The heights of the SJ pillar (H60NW and H60PW layers)
were denoted by h.

C. AN NLDMOS-SJ WITH EMBEDDED SCR STRUCTURES
Figs. 5–8 show the schematic layout diagrams and 3D cross-
sectional views of an nLDMOS-SJ with a drain-side p-n-p-
and n-p-n-arranged SCR. These doped-zone arrangements
are named from the left side to the right side of the drain
electrode. In this study, the total drain-side areas of the nLD-
MOS, nLDMOS-SJ, and nLDMOS-SJ-SCR devices were
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FIGURE 3. Layout-view diagram of an HV nLDMOS-SJ device.

FIGURE 4. 3D Cross-sectional view of an HV nLDMOS-SJ device.

set to be equal. For a simplified and symmetrical device,
the N+/P+ area ratio in the drain region was set to a unit
value for the p-n-p- and n-p-n-arranged stripe SCR DUTs.
According to this cross-sectional view, the nLDMOS with
SJs (as in the previous section) was divided into three zones
in the drain-end OD area. Next, the P+ doses were then
implanted into the first and third regions (central region)
to form two (one) parasitic SCR devices, which was called
the nLDMOS-SJ-SCR p-n-p- (n-p-n-) arranged structures.
Furthermore, these embedded SCR current paths are denoted
as SCR1 and SCR2 (SCR3) for the nLDMOS-SJ-SCR p-
n-p- (n-p-n-) arranged types, respectively. Therefore, from
Section II-A∼II-C, there are thirteen kinds of experimental
group shown in Table 1. Eventually, we will determine the
extent to which these layout designs at the drain end affect
device reliability.

III. EQUIVALENT-CIRCUIT MODELS OF NLDMOS-SJ AND
NLDMOS-SJ-SCRS
Adding an SJ structure into the nLDMOS will change the
distribution of the depletion region in the drift region. This
SJ structure can suppress the maximum peak electric field
in the horizontal direction of the device. Of course, it
can also change the electrical behavior of this new com-
ponent. Therefore, from the device structure of Fig. 4,
Fig. 9 shows an equivalent circuit of an nLDMOS with
a super junction (SJ) structure, where the R′

drift variable

TABLE 1. Devices list of different testing sample types.

FIGURE 5. Layout-view diagram of an nLDMOS-SJ-SCR (p-n-p-arranged).

FIGURE 6. 3D Cross-sectional view of an nLDMOS-SJ-SCR
(p-n-p-arranged).

resistance is a parasitic resistance in the drift region includ-
ing the SJ modulation effect. Furthermore, it is assumed
that the ON-resistance (Ron) of an nLDMOS can be approx-
imately determined by the resistance of the lightly-doped
drift region. Then, according to [29], the ON-resistance of
the nLDMOS-SJ device can therefore be expressed as

Ron ∼= R′
drift = K · L2

d
W

h
(2)

where K is a proportional constant, W and h are the width
and height of SJ pillars, respectively.
For simplifying, the conduction weighting of two embed-

ded SCRs in Fig. 6 (nLDMOS-SJ-SCR (p-n-p)) can be taken
as dominated by the short path SCR1. Based on the device
structures, the equivalent circuits of nLDMOS-SJ-SCRs with
p-n-p- and n-p-n-arranged structures are shown in Figs. 10(a)
and 10(b), respectively. The main discrepancy between these
two circuits is the location of the P+implants of an SCR
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FIGURE 7. Layout-view diagram of an nLDMOS-SJ-SCR (n-p-n-arranged).

FIGURE 8. 3D Cross-sectional view of an nLDMOS-SJ-SCR
(n-p-n-arranged).

FIGURE 9. The equivalent circuit of an HV nLDMOS-SJ device.

anode. Due to the light doping in the drift region (the SJ
structure effect included) and the considerable drain-side lat-
eral spacing, the parasitic resistances of the drift region
(R′

drift) (this impedance value is related to the SJ struc-
ture and changes accordingly) and the SCR-to-nLDMOS at
the drain end (Rdrain) are sufficiently high. Therefore, none
of them can be neglected. Moreover, when the position of
the P+ anode region of the embedded SCR is adjusted,
the equivalent circuits of the nLDMOS–SJ-SCR p-n-p and
nLDMOS–SJ-SCR n-p-n arranged types change (Figs. 10(a)
and 10(b)). Here, the red dashed lines indicate the more
prone triggered conduction-on current path. The different
P+ anode changes will result in the two types to reveal
dissimilar snapback characteristics.

FIGURE 10. Equivalent circuits of the (a) nLDMOS-SJ-SCR (p-n-p-arranged
type), and (b) nLDMOS-SJ-SCR (n-p-n-arranged type).

From Fig. 10(a), in the conduction-on holding situation
of nLDMOS-SJ-SCR (p-n-p-arranged type), the Q1 and
Q2 BJTs of the embedded SCR1 are in a saturated condi-
tion. The voltage drop between anode-to-cathode electrodes
(SCR1 path) can be regarded as the (Vh)p−n−p (holding volt-
age of the p-n-p-arranged type). Then, the (Vh)p−n−p can be
denoted as:

(Vh)p−n−p ∼= (VEB)Q2 + (
VCE,sat

)
Q1

= IA × R′
drift +

(
VCE,sat

)
Q1, (3)

where IA is the anode current (shown by the red dashed
line) flowed through the right-hand branch during a triggered
conduction-on condition.
For the nLDMOS-SJ-SCR n-p-n-arranged type, since the

conduction path of the LDMOS is in front of the para-
sitic SCR (as shown in the path- 1 on the right side of
Fig. 10(b)), the parasitic Q1 BJT of the nLDMOS will
be turned on first. Eventually, the embedded SCR3 will be
turned on successively, and the conduction current will pass
through the right-branch path of the SCR3 (as indicated in the
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path- 2 ). Therefore, the (Vh)n−p−n of the nLDMOS-SJ-SCR
(n-p-n-arranged type) can be described as:

(Vh)n−p−n ∼= (IA × Rdrain) + (IA + ID) × R′
drift

+ (
VCE,sat

)
Q1, (4)

where ID is the initial drain current of an nLDMOS flowed
through the R’drift branch (shown in Fig. 10(b)) during
a triggered conduction-on condition.

IV. EXPERIMENTAL TESTING SYSTEM
A transmission-line-pulse (TLP) system with the human-
body-model (HBM) like characteristic will be used to
evaluate the snapback key parameters of these nLDMOS,
nLDMOS-SJ and nLDMOS-SJ-SCR DUTs. This TLP tester
is operated and fulfilled a convenient measurement by
the LabVIEW interface, which controlled the electronic
facilities of subsystem such as an ESD pulse generator,
a multi-channel voltage supplier and a high-frequency dig-
ital oscilloscope. A TLP tester can provide a continuous
step-high square pulse (100-ns pulse width) to a sample,
and quickly rising/falling time (< 10-ns) of the continuous
square wave can also follow the transient noise of an ESD
incident. And, during the TLP leakage test after each TLP
zapping, the reversed leakage-biased voltage (VLB) was set
to be 5 V.

V. EXPERIMENTAL DATA, DISCUSSIONS AND
VERIFICATIONS
A. AN NLDMOS WITH SUPER-JUNCTION (SJ)
STRUCTURES
By using a TLP tester, the leakage and snapback current–
voltage (I–V) curves of power nLDMOS and nLDMOS-SJ
samples with various W types are presented in Fig. 11. In
addition, the Vt1, Vh, and It2 data behaviors are listed and
shown in Table 2 and Fig. 12. The It2 value is not favorable
(only 1.632 A) for the nLDMOS reference device. Because
of the influence of series SJs of an nLDMOS in the drain side
(resulting in the R’drift impedance change shown in Fig. 9),
it was found that the nLDMOS-SJs have higher It2, Vh, and
FOM values. The layout of SJs in the drain side has positive
effects on ESD and LU capabilities. Compared with the pure
nLDMOS DUT used as a reference, the nLDMOS-SJ DUT
with Wn = Wp = W = 9µm has the highest It2 value.
The It2 (Vh) values of such an arrangement are favorable
for the ESD and LU immunities (enhanced reaching 46.3%
(13.3%)) compared to the reference DUT.

B. AN NLDMOS-SJ WITH EMBEDDED SCR STRUCTURES
The leakage and snapback I–V curves of power nLDMOS-SJ
DUTs with different p-n-p- and n-p-n-arranged SCRs in the
drain side are presented in Figs. 13(a) and 13(b). In addition,
the Vt1, Vh, and It2 testing data are indicated in Table 3.
Compared with the n-p-n-arranged SCR in this structure,
the parasitic SCR of p-n-p-arranged type had a lower Vt1
value, which was due to a shortest conduction path.

FIGURE 11. Leakage and snapback I-V curves of nLDMOS-SJ DUTs.

TABLE 2. Snapback key parameters of nLDMOS and nLDMOS-SJ DUTs.

FIGURE 12. Vt1 & Vh values charts of nLDMOS-SJ DUTs.

Because of the influences of p-n-p- and n-p-n-arranged
SCR structures of nLDMOS-SJ in the drain side,
the nLDMOS-SJ-SCR p-n-p- (n-p-n-) type DUTs have
higher (lower) It2 values than the corresponding nLDMOS-
SJ samples. The highest FOM value of the p-n-p type
SCR is favorable for ESD and LU reliabilities, which
upgraded reaching 13.72% compared to the nLDMOS-SJ
(Wn = Wp = W = 27µm) DUT. Conversely, the highest
FOM value of the n-p-n type SCR is disadvantageous for
the ESD and LU immunities (downgraded reaching 18%)
compared to the nLDMOS-SJ (Wn = Wp = W = 27µm)
sample.
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FIGURE 13. Leakage and snapback I-V curves of nLDMOS-SJ-SCR DUTs
with the (a) p-n-p- and (b) n-p-n-arranged manner.

TABLE 3. Snapback key parameters of nLDMOS and nLDMOS-SJ-SCR DUTs.

C. VERIFICATIONS BY EQUIVALENT-CIRCUIT MODELS OF
NLDMOS-SJS AND NLDMOS-SJ-SCRS
Since the holding voltage (Vh) of a transistor device is pro-
portional to the ON-resistance (Ron) of the device, it can be

FIGURE 14. Vt1 & Vh values charts of Ref. DUT, nLDMOS-SJ and
nLDMOS-SJ-SCR DUTs.

FIGURE 15. It2 values charts of Ref. DUT, nLDMOS-SJ and
nLDMOS-SJ-SCR DUTs.

clearly found from Equation (2) that with the addition of SJ
structures in the drain side, the Vh values of nLDMOS-SJs
and nLDMOS-SJ-SCR devices do have a certain proportional
relationship with the SJ width (W). This is consistent with
the experimental data in Tables 2 and 3. However, for the
nLDMOS-SJ sample with SJ W = 6µm, the width may be
too small, so the corresponding Vh value does not increase
significantly in Table 2. More importantly, after adding this
SJ structure to nLDMOS devices, both the Vhand It2 values
will increase, which is helpful to strengthen the ESD and
LU (& FOM) reliability capabilities of nLDMOS devices.
In order to let the nLDMOS-SJ-SCRs behaviors of the Vt1,

Vh, and It2 data more clearer, the measured data in Table 3
are re-plotted again as shown in Figs. 14 and 15. Compared
with Tables 2-3 and Figs. 14-15, as a result of lower trigger
voltage and conduction-on resistance of SCR contribution
in the nLDMOS-SJ-SCR compound devices, the snapback
parameters of Vt1 or Vh value for the p-n-p- or n-p-n-type of
an nLDMOS-SJ-SCR compound device will be lower than
that of the corresponding nLDMOS-SJ sample. The decrease
of holding voltage (Vh) will weaken the ability of power
components or circuits to prevent LU. In addition, due to
the series-resistance Rdrain influence, a trigger current for the
p-n-p- (n-p-n-) type flowed through the SCR1 (SCR3) anode
conduction-on current path, as shown in Fig. 10(a) (10(b)).
The Vt1 value of the nLDMOS-SJ-SCR n-p-n type is higher
than that of the corresponding p-n-p type. Similarly, from

VOLUME 8, 2020 869



CHEN et al.: ESD IMPROVEMENTS ON POWER N-CHANNEL LDMOS DEVICES BY COMPOSITE STRUCTURE

FIGURE 16. 3D diagram of FOM impacts as the W varied in Ref. DUT,
nLDMOS-SJ and nLDMOS-SJ-SCRs DUTs.

Equations (3) and (4), the Vh value of the n-p-n type is greater
than that of the p-n-p type in the nLDMOS-SJ embedded
SCR structures.
At the same time, without going into detailed, the It2 val-

ues (ESD ability) of the nLDMOS-SJ-SCR p-n-p-arranged
type are higher than those of the corresponding samples of
the nLDMOS-SJ-SCR n-p-n-arranged type for smaller series
resistance of the SCR. In other words, in the ESD strength-
ening consideration, a best arrangement of embedded SCR
in the nLDMOS drain-side is the p-n-p-arranged type. But
from the standpoint of LU reliability, the n-p-n-arranged
type is better. Finally, in terms of ESD and LU reliability
trade-offs, that is the FOM consideration shown in Fig. 16,
the disadvantage of the p-n-p-arranged type in LU can be
compensated by adding SJ in the drift region. Obviously, in
the nLDMOS-SJ-SCR devices, whether it is a p-n-p- or an
n-p-n-arranged type, the best FOM device should have the
best It2 and Vh performances. From Equations (1)-(4) and
Table 3, it is clear that an nLDMOS-SJ-SCR p-n-p-arranged
device with SJ structure and W = 27µm is the most reliable
ESD/LU best choice (it has the highest It2 and Vh values).
Therefore, it can be concluded that the nLDMOS-SJ-SCR
could be a good drain architecture for the ESD/LU robust-
ness, especially for the p-n-p-arranged type as compared
with the pure nLDMOS (Ref. DUT).

VI. CONCLUSION
This study combines two effective techniques and with dif-
ferent layout architectures in the drain side to improve the
ESD and LU reliabilities of HV nLDMOS transistors. One
of the techniques is to use the SJ structure in the drain
side of an nLDMOS, which can be effectively used to
strengthen the It2 and Vh values of the device. Therefore,
the ESD and LU capabilities of the nLDMOS-SJ device are
increased. Furthermore, compared with the corresponding
nLDMOS-SJ samples, if the drain side of the nLDMOS-SJ-
SCR compound devices are embedded with a p-n-p- (n-p-n-)
arranged type SCR, the It2 data will be upgraded (degraded).
Subsequently, their corresponding ESD capabilities were

enhanced (decreased). However, in both of these scenar-
ios, Vt1 and Vh values are reduced compared with the
corresponding nLDMOS-SJ samples. Therefore, it can be
concluded that a drain side with a parallel SJ structure is
favorable for ESD and LU reliabilities. However, the drain
side p-n-p- (n-p-n-) arranged type SCR is favorable (unfa-
vorable) for the ESD current conduction. In summary, for
the considerations of ESD and LU reliability (i.e., FOM), the
parallel SJ integrated with an SCR p-n-p-arranged type at
the drain end of the power nLDMOS is an optimal strategy.
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