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ABSTRACT In this work, the high-performance junctionless-mode (JL) and low-power inversion-
mode (IM) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with nanosheet channels (less than
10-nm in thickness) are vertically integrated in monolithic three-dimensional integrated circuit (3D-IC)
structure. Both JL and IM TFTs can exhibit high on/off current ratio over 107 to demonstrate their
performance. The JL TFT has much higher on-state current ∼ 24 times than it of the IM TFT. And
the IM-TFT has much lower SS ∼ 0.104 V/decade and off-current ∼ 0.04 times than them of the JL
TFT. However, the fabrication of the top-devices (JL TFTs) would degrade the performance of underlying-
devices (IM TFTs), resulting in the threshold voltage shift of the IM TFTs from 0.61 to 2.17 V, SS increase
from 0.104 to 0.218 V/decade and on-state current degradation from 16 to 3 mA. In order to further under-
stand the reasons, the IM TFT with top-device removal process is also fabricated, which exhibits a partial
recovery in performance. The results indicate the presence and fabrication process of the top-device
would lead to the defect generation in the underlying-device. The results provide a new consideration for
monolithic 3D-IC manufacturing technology.

INDEX TERMS Monolithic 3D-IC, nanosheet channel, low power, thin-film transistor.

I. INTRODUCTION
Polycrystalline-Silicon (poly-Si) thin-film transistors (TFTs)
have been extensively studied for driving circuit of dis-
play panel, static random access memory (SRAM), dynamic
random access memory, non-volatile memory, and three-
dimensional integrated circuit (3D-IC) [1]–[7]. For the
requirements of system-on-chip, high-performance devices
and low-power devices need to be integrated in the same
chip [8]–[10]. High-performance devices require high on-
state driving current, although the off-state leakage current
is also high. And low-power devices require low off-state
leakage current, although the on-state current would also be
lower. As for the high-performance characteristics of poly-
Si TFT, junctionless-mode (JL) TFT is a good candidate
because it can provide higher driving current due to the
heavily doped poly-Si channel [11]–[15]. The JL TFT is

an accumulation mode operated device, and its channel and
source/drain are the same type of highly doped semicon-
ductor, so there is no p-n junction. The conventional TFT
needs to be induced the inversion layer by gate voltage for
the carrier transport, so it is an inversion mode (IM) oper-
ated device. As for the low-power characteristics of poly-Si
TFT, channel thickness thinning of conventional IM TFT
is an effective manner to suppress the short-channel effect
and leakage current [16]. Therefore, the nanosheet channel
film of IM TFT is a suitable choice to realize the demand
of low power characteristics. The electrical characteristics
of both JL and IM TFTs are strongly related to the chan-
nel film thickness that thinner channel film thickness leads
to lower subthreshold swing (SS), off-state leakage current
and on-state driving current [15], [16]. Therefore, the JL
TFT for high-performance applications and the IM TFT for
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FIGURE 1. (a) The fabrication process sequences of the vertically stacked JL and IM poly-Si TFTs in monolithic 3D-IC structure. Cross-sectional structure
of vertically stacked JL and IM poly-Si TFTs after the fabrication sequence of (b) step 12, (c) step 13, (d) step 19, (e) step 22, (f) step 23 and (g) step 26. The
single-layer IM TFT is fabricated by skipping process steps 13 ∼ 22 of Fig. 1(a) as shown in Fig. 1(h) and 1(i) to show the structure of IM-TFT after the
fabrication process steps 23 and 26, respectively. (j) The schematic layouts of the vertically stacked JL and IM poly-Si TFTs.

low-power applications would have different channel thick-
ness options. In addition, high-density build-up of electronic
devices is another development trend to reduce chip area and

provide more functional circuit. Monolithic 3D-IC structure
has been proposed to increase the device density in the same
chip area by integrating devices vertically [5], [17]. It is
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TABLE 1. Comparison of key parameters for IM poly-Si TFTs.

ideal for use in memory circuits that require high device
density stacking. In this work, the JL and IM TFTs are ver-
tically integrated in monolithic 3D-IC structure. Moreover,
the impacts of top-device (JL TFT) fabrication process on the
performance of underlying-device (IM TFT) are also inves-
tigated. The comparison of electrical characteristics of the
IM TFT between single-layer and dual-layer fabrication pro-
cess would be important for the development of monolithic
3D-IC technology.

II. EXPERIMENTAL PROCEDURE
The fabrication process sequences of vertically integrated JL
and IM TFTs are shown in Fig. 1(a). The 6-inch silicon wafer
was initially oxidized to grow a 300-nm wet oxide layer as
the buried oxide. The insitu doped N+ amorphous-Si (α-
Si) 50-nm and SiO2 18-nm were deposited by low-pressure
chemical vapor deposition (LPCVD) system as the bottom
gate (Gate-1) and bottom gate oxide (OX-1). Then, a 50-nm
N+ α-Si was deposited by LPCVD and patterned to form the
raised source/drain (RS/D) by lithography and etch process.
A 20-nm undoped a-Si was deposited by LPCVD and etched
back to 4-nm by NH4OH + H2O2 + H2O (1:4:20) solution
at 50◦C and diluted-HF at room temperature. Then, solid
phase crystallization (SPC) process was executed at 600◦C
in N2 ambient for 24 hours. After active region patterning
by lithography and etch process, a 14-nm SiO2 and 50-nm
N+ α-Si were deposited by LPCVD and patterned as the top
gate stack (OX-2 and Gate-2) to form the nanosheet IM TFT
(underlying-device) and shown in Fig. 1(b). A 18-nm SiO2
was deposited by LPCVD as the interlayer oxide (OX-3) as
shown in Fig. 1(c), and a 50-nm N+ α-Si was deposited
by LPCVD and patterned to form the RS/D of top-device.
A 20-nm N+ α-Si was deposited by LPCVD and etched
back to 8-nm with the same etching back process as the
underlying-device. After the SPC and active region pattering
process as shown in Fig. 1(d), a 14-nm SiO2 and 50-nm N+
α-Si were deposited by LPCVD and patterned as the top
gate stack (OX-4 and Gate-5) to form the JL TFT (top-
device) as shown in Fig. 1(e). A 300-nm passivation layer
SiO2 was deposited as shown in Fig. 1(f), and the contact
holes were patterned. A 500-nm AlSiCu was deposited by
sputter and patterned to form the probe pads. The vertically
stacked JL and IM TFTs are completed in the monolithic

FIGURE 2. The transmission electron microscope image of (a) full
structure and (b) channel region of the vertically stacked JL poly-Si TFTs
and IM poly-Si TFTs with channel thickness tSi = 4-nm.

3D-IC structure as shown in Fig. 1(g). In order to study the
impacts of top-device fabrication process on the performance
of underlying-device, single-layer IM TFT is fabricated by
skipping process steps 13 ∼ 22 of Fig. 1(a) as shown in
Fig. 1(h) and 1(i). The IM TFT with top-device removal
process is also fabricated by skipping the lithography process
in steps 15, 19 and 22 of Fig. 1(a) to remove the poly-Si layer
of top-device after the deposition of each silicon film. The
IM TFT in the top-device removal process can correspond
to the case where the underlying-device and the top-device
do not overlap at all in the 3D-IC process as shown in
the right device of Fig. 1(b) to 1(g), which has the same
thermal budget as it with dual-layer structure. The schematic
layouts of the vertically stacked JL and IM poly-Si TFTs
are shown in Fig. 1(j). The electrical measurement of drain
current (ID), gate voltage (VG) and drain voltage (VD) of
devices with channel width/length (W/L) 100 µm/10 µm
and 100 µm/1 µm are measured by the Keysight B1500A.

III. RESULTS AND DISCUSSION
Figure 2 shows the transmission electron microscope images
of vertically stacked JL and IM TFTs with nanosheet chan-
nel thickness tSi = 8-nm and 4-nm respectively. The transfer
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FIGURE 3. The ID − VG curves of JL poly-Si TFT with double-gate operation.

FIGURE 4. The ID − VG curves of IM poly-Si TFT with single-layer process
and double-gate operation.

characteristics (ID − VG curves) of JL TFT with double-
gate operation are shown in Fig. 3. The JL TFT shows
small threshold voltage (VTH) ∼ −1.58 V, low SS ∼
0.341 V/decade and high on/off state current ratio (Ion/Imin)
∼ 2.13 × 107. The VTH of JL TFT is defined as VG at
ID = 10 nA x W/L, and the Ion and Imin are the maximum
and minimum ID at VD = 1 V in Fig. 3. The transfer charac-
teristics of IM TFT with single-layer process and double-gate
operation are shown in Fig. 4. It exhibits small VTH ∼ 0.61 V,
low SS ∼ 0.104 V/decade and high Ion/Imin ∼ 2.23 × 107.
The VTH of IM TFT is defined as VG at ID = 10 nA x
W/L due to the thinner channel film and lower Ion. Both
JL and IM TFTs exhibit high Ion/Imin > 107 to demon-
strate their performance. The JL TFT has much higher Ion
∼ 400 mA than it of the IM TFT ∼ 16 µA due to the heavily
doped poly-Si channel and thicker channel thickness, which
is suitable as the high-performance devices. And the IM-TFT
has much lower SS ∼ 0.104 V/decade and Imin ∼ 0.7 pA than
them of the JL TFT ∼ 0.341 V/decade and 18.8 pA due to

FIGURE 5. The ID − VG curves of IM poly-Si TFT (underlying-device) with
different fabrication process.

FIGURE 6. The ID − VD curves of IM poly-Si TFT (underlying-device) with
different fabrication process.

the undoped poly-Si channel and thinner channel thickness,
which is suitable as the low-power devices.
In this work, the JL and IM poly-Si TFTs are vertically

integrated to form the monolithic 3D-IC structure, and the
impacts of top-device (JL TFTs) fabrication process on the
electrical characteristics of underlying-device (IM TFTs) are
studied. The transfer characteristics of IM TFTs with dif-
ferent fabrication process are shown in Fig. 5, and some
important parameters of IM-TFTs are listed in Table 1. All
IM TFTs exhibit very low minimum leakage current Imin
< 1 pA, which is attributed to the nanosheet channel. For
the IM TFT with single-layer process, it shows good SS =
0.104 V/decade, low VTH = 0.61 V and high Ion/Imin ratio ∼
2.23 × 107. However, the fabrication process of top-device
degrades the performance of IM TFT. The degradation of
transfer characteristics at VD = 1.0 V of IM TFT with
dual-layer process shows VTH shift from 0.61 to 2.17 V, SS
increase from 0.104 to 0.218 V/decade and Ion degradation
from 16 to 3 µA. Figure 6 shows the output characteristics
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FIGURE 7. Plots of ln[ID/(VGS − VFB)] versus 1/(VGS − VFB)2 curves of IM
poly-Si TFT (underlying-device) with different fabrication process for the
NGB extraction. The flat-band voltage VFB is defined as the gate voltage
that yields the minimum drain current from the ID − VG curves.

(ID −VD curves) of IM TFTs with different fabrication pro-
cess, and the driving current (IDsat) at VG−VTH = VD = 4 V
of IM-TFTs with dual layer process also exhibits signifi-
cant degradation from 32.8 to 13 µA compared to it with
single-layer process. It indicates the fabrication process of
top-device damages the underlying-device. In order to fur-
ther understand the reasons, the IM TFT with top-device
removal process is also fabricated, which has the same ther-
mal budget as it with dual-layer structure. Figures 5 and 6
also show that the IM TFT with top-device removal pro-
cess exhibits a partial recovery in performance compared
to the presence of top-device that the VTH, SS, Ion and
IDsat are improved to 1.50 V, 0.169 mV/decade, 6 µA and
16.6 µA, respectively, but its performance still poor than it
with the single-layer process. The SS increase of IM TFT
with top-device fabrication process indicates the generation
of interface trap state density (Nit) [18]–[20]. The Nit and
grain boundary trap state density (NGB) of the IM TFTs can
be extracted from the SS and on-state current of the trans-
fer characteristics in Fig. 5 [20]–[22], which are shown in
Fig. 7 and also listed in Table 1. The results indicate the
presence and fabrication process of top-device would lead
to the trap state generation in the underlying-device that the
Nit is increased from 1.15 x 1012 to 4.08 x 1012 cm−2 and
the NGB is increased from 2.73 x 1012 to 3.57 x 1012 cm−2.
It may be due to the film stress of several deposition of sil-
icon film during the fabrication of top-device. Because the
crystallization of a-Si would increase the atomic density and
shrinkage the film thickness, it would provide a compres-
sive strain to the underlying-device. Stress film technology
has been widely used in the fabrication of advanced tran-
sistor. When a stress film is covered on a transistor using
a single crystal channel material, the atomic spacing in the
channel changes due to tensile or compressive stress, thereby
changing the carrier mobility [23], [24]. However, the poly-
Si channel films have many grain boundaries, and the grain
boundary can be acted as a point of stress release to relieve

FIGURE 8. The EB − VG curves of IM poly-Si TFT (underlying-device) with
different fabrication process.

stress, which causes many defects to occur and results in
the generation of Nit and NGB. In order to verify that the
performance degradation is attributed to the generation of
trap state density, the energy barrier height (EB) of poly-Si
channel of IM TFTs with different fabrication process are
extracted and shown in Fig. 8. The EB increase after the
top-device fabrication process indicates the increase of trap
state density of poly-Si channel film because the increase
of trap state density would trap more charges, resulting in
the higher energy barrier height [21], [25]. The removal of
top-device can release the stress to decrease the Nit and
NGB from 4.08 x 1012 and 3.57 x 1012 cm−2 to 2.81 x
1012 and 3.14 x 1012 cm−2, respectively, resulting in the
reduction of EB. The transfer and output characteristics of
underlying IM TFT with shorter channel length 1 mm is
also measured and shown in Fig. 9. The electrical degrada-
tion behaviors are still observed to show the VTH shift from
0.90 to 1.78 V, the SS increase from 0.120 to 0.192 V/decade,
and Ion degradation from 136 to 45 µA. The IDsat would
also be degraded from 0.36 to 0.16 µA by the top-device
fabrication process. The performance recovery behaviors of
underlying IM TFT with top-device removal process are also
exhibited that the VTH, SS, Ion and IDsat are improved to
1.54 V, 0.177 mV/decade, 67 µA and 0.21 µA, respectively.
It indicates that the performance degradation effect of under-
lying IM TFT with shorter channel length by the top-device
fabrication process could be expected.
The underlying IM TFT with top-device removal process

can correspond to the case where the locations of underlying-
device and top-device have a large offset distance and do not
overlap at all in the 3D-IC structure as shown in Fig. 1(g).
This points out that the electrical characteristics of devices in
different layers are not the same, even if the devices have the
same dimension. The inconsistent electrical characteristics
of devices in different layer of 3D-IC structure would cause
serious performance degradation effects in circuit applica-
tions. Compared with the SRAM with a single-layer device
architecture, if the SRAM with a vertically stacked 3D-IC
structure uses the underlying device as the n-channel transis-
tor, the static noise margin (SNW) in the butterfly curve of
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FIGURE 9. (a) The ID − VG and (b) ID − VD curves of IM poly-Si TFT
(underlying-device) with W/L = 100 µm/1 µm and different fabrication
process.

the SRAM becomes smaller. If the SRAM made of top-layer
devices are used in part and the underlying-layer devices
are used in part, the SNW in the butterfly curve will not
only be decreased but also be asymmetric [26]. In order
to reduce the top-device fabrication effect, the inter-layer
dielectric (ILD) between top and underlying devices should
be thicker to release the stress originating from process steps
of top-device [27], [28]. A thicker ILD can relieve the effect
of the stress layer on the upper layer to reduce the deteriora-
tion of the underlying devices. In addition, the use of thinner
poly-Si channel and gate oxide layer of TFT is more suitable
for 3D-IC fabrication. This is because the thinner channel
thickness has less stress on the underlying-device, result-
ing in lower degradation effect. Thanks to the higher gate
capacitance, the poly-Si TFT with thinner gate oxide would
have stronger immunity against the variation of trap state
density caused by the top-device fabrication process, allevi-
ating degradation of VTH and SS [29]. The effect of trapped
charges due to the increased defects on the gate electrostatic
control of the device can be reduced by increasing the gate
capacitance [30]. It would provide a new consideration for
monolithic 3D-IC manufacturing technology.

IV. CONCLUSION
High-performance JL TFTs and low-power IM TFTs
with nanosheet channel have been demonstrated and ver-
tically integrated to form the monolithic 3D-IC struc-
ture. The impacts of the fabrication process of top-device on
the performance of underlying-device are also analyzed. The
performance degradation of the underlying-device with dual-
layer structure is attributed to the defect generation during the
top-device fabrication. The performance of the underlying-
device with dual-layer fabrication process can be partially
recovered when the top-device is removed. The results indi-
cate the presence and fabrication process of top-device would
result in the trap state generation in the underlying-device.
The defect generation may due to the film stress of silicon
film during the fabrication of top-device.
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