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ABSTRACT Fast and stable switching between states is one of the key factors for the success resistive
random access memory (RRAM) development. In an array, wide reset efficiency variation in RRAM
cells is found to link to the characteristics of its low frequency noise (LFN) in bit-cell current. Through
Monte Carlo simulation on randomly placing conductive filaments (CF), LFN characteristics correspond
to the densities of the CF in the RRAM film. Further correlations between LFN features and the reset
efficiency are found. In addition, CF topography are found to change after long term cycling tests. A trim-
ming process is proposed to minimize the impacts of stochastic CF generation, leading to increase reset
speed.

INDEX TERMS Variability, resistive random access memory, low frequency noise, Monte Carlo simulation,
conductive filament.

I. INTRODUCTION
In recent years, resistive random access memory (RRAM)
has been regarded as a promising solution with very
competitive features for meeting the needed to expanding
embedded nonvolatile storage demands [1]–[3]. With advan-
tages such as its simple structure, superior scalability and
high compatibility to CMOS processes, RRAM becomes
very competitive for various embedded non-volatile memory
applications [4]–[6]. However, variabilities from device-to-
device and between cycles have become one of the most
critical challenges in the development of RRAM as a reliable
storage medium [7]–[10].
The generation/recombination of oxygen vacancies (Vo)

occurred during set/reset operation, corresponding to the
construction/rupture conductive paths, are believed to respon-
sible for resistive switching characteristics in RRAM
film [11]–[13]. Oxygen vacancies based RRAM can be
categorized into two types based its operational model,
namely, bipolar mode and unipolar cells [14]–[16]. For
bipolar devices, positive and negative biases are applied
respectively for set and reset. It enables drift force to be
applied in opposite directions, pushing oxygen ion from and
to its source electrode [17], [18]. For unipolar RRAM, set

operations are identical with that in bipolar devices, trig-
gered by high electric field, while its reset mechanism is
believed that is attributed to Joule heating assisted diffu-
sion of oxygen ion [19]. Raised temperature as a result
of local heating enhances the diffusion of oxygen ion
and the recombination with Vo, increasing the resistance
levels [20], [21].
Stochastic process in the generation/recombination of oxy-

gen vacancies during set/reset operation, resulting in random
changes in its conductive paths, has been found as one
of root causes of RRAM variability [22]–[24]. To directly
monitor the change in CF properties in transition metal
oxide (TMO) layer, imaging tools, such as transmission elec-
tron microscopy (TEM) and atomic force microscope (AFM),
were used for detail physical analysis [25]–[28]. In addi-
tion, monitoring random telegraph noise (RTN) and LFNs
of RRAM have also been proposed as a pathway for prob-
ing the miniscule changes in the shape and distribution
of CFs [29]–[32]. In these proposed studies, properties of
defects and CFs in dielectric film are characterized by this
unique charge trapping/detrapping behavior. Numerical mod-
els to correlate noise characteristics with CF diameters has
been reported for more detail understanding of the underline
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FIGURE 1. (a) Process flow of BCRRAM in a CMOS logic process platform. (b) Composition mapping of the TMO layer, TiN/TiON/SiO2 stacks sandwiched
between tungsten plug and n+ diffusion region. (c) Bit map of read current in pristine state of 16 × 16 NOR type BCRRAM memory array.

sources of the change in device characteristics [30]. On
the other hand, the dependence of capture/emission time
constants on bias voltage was studied to investigate trap
location in dielectric film [31]. Models including multiple
time constants were reported to further track the shifts in
trap-sites at different stress stages [32]. Aside from anal-
ysis of properties of defects and traps in the TMO film,
RTN was also regarded as an index to examine endurance
of cells. Chai et al. provided a RTN-based technique to
monitor the spatial and energy profile of filament, which
further links set failure with trap locations and energy
level [29]. These studies have shown that RTN signals in
RRAM cells become windows for researchers to probe the
properties of CF and Vo, providing new links for in-depth
analysis.
In this study, the connections between the topographies of

CF and LFN signals are first established by Monte Carlo sim-
ulation [30]. Next, cells with different distinctive LFN signals
are categorized into several groups for analyzing the prob-
able correlations between CF topographies and reset speed.
Large variations in the reset speed from device-to-device
are addressed by a newly proposed trimming operation for
tightening the distribution. Finally, the progress of CF during
repeated set/reset cycles are investigated, giving insights into
the failure modes during cycling and methods to improve
cells’ endurance levels.

II. DEVICE STRUCTURE
High density contact resistive random access
memory (CRRAM) arrays with full-compatibility to
CMOS logic processes successfully fabricated by high-k
metal gate technologies was reported [33]. In sizable
arrays, these cells subject to limitations on etching control,
therefore, are showing large variation on TMO film
thickness and quality [34], [35]. A new backfilled resistive
random access memory (BCRRAM) cell was proposed
to enhance TMO thickness control. Its added processing
step to standard CMOS logic process platform is outlined
in Figure 1(a). [36], [37] As illustrated, after transistor
fabrication and resist protection oxide (RPO) layer depo-
sition, inter layer dielectric (ILD) deposition and contact
hole etching steps follow subsequently. Instead of keeping
a remaining oxide layer in CRRAM process, complete
removal of RPO film is expected on the specifically defined
regions for BCRRAMs. Next, SiO2 film is backfilled into
contact holes by PECVD. After removal of the backfilled
oxide on regular contacts, barrier layer, TiN, and tungsten
plug are formed following standard contact processing steps.
The cross-sectional TEM image with resolution 0.2 nm
and energy dispersive X-ray (EDX) based composition
maps with resolution 2 nm of BCRRAM in Figure 1(b) are
carried out by JEOL JEM-2800 transmission electron
microscopic with energy 200 keV. As can be seen, EDX

466 VOLUME 8, 2020



KAO et al.: RESET VARIABILITY IN BACKFILLED RESISTIVE RANDOM ACCESS MEMORY

FIGURE 2. (a) DC characteristics of forming/set/reset operations of
2 BCRRAM memory devices. (b) 10 × stable read current window by DC
set/reset sweeps under read conditions of VBL = 0.5 V and VWL = 0.8 V.

TABLE 1. Operation conditions of forming/set/reset/LFN analysis of unipo-

lar BCRRAM devices.

analysis demonstrates that 5 nm TiN barrier layer and 5 nm
SiO2 dielectric film consist of a 10 nm TMO layer in the
TiN/TiON/SiO2 stacks, sandwiched between a tungsten
electrode and the silicon diffusion region.
After physical analysis, electrical characterization, includ-

ing DC sweeps, current sampling tests and set/reset by AC
pulsing, are completed on a probe station through a semi-
conductor parameter analyzer and a pulse generator. With
precise control of the backfilled process, see Figure 1(c),
low initial current less than 1 nA under read conditions,
arranged in Table 1, across a 256-bit array can be achieved.
The DC sweep characteristics of forming/set/reset opera-
tion with conditions, outlined in Table 1, are depicted in
Figure 2(a). n+ silicon serves as the bottom electrode with
resistivity of 0.1(�-cm). BCRRAM is an unipolar device,
which high and low resistance state are set to 1 M� and
100 K�, respectively. During LFN measurement, the bias
conditions is VSL = 0.2 V, VWL = 0.8 V at a 200 Hz sample
rate. The common p-type Si substrate for all the devices is
electrical grounded during all operations. In forming opera-
tion, lower voltage 0.6 V is applied on word line (WL) to
pass 0 V of bit line (BL) to n+ diffusion region below storage
node. When resistance switching triggered by high source
line (SL) voltage, current level is limited by the select transis-
tor in series. BCRRAM cells can repeatedly switch between
low resistance states (LRS) and high resistance states (HRS)
for 100 times by applying set/reset voltage to control the
generation/rupture of CFs, as shown in Figure 2(b).

III. RESET SPEED VARIATION IN BCRRAM ARRAY
To ensure stable switching between LRS/HRS, a high form-
ing voltage for creating conductive paths in TMO layer is
required. Meanwhile, high forming voltage is found to cause

FIGURE 3. Distribution of set/reset time under different bias conditions
for cells in an array. Shorter and tighter set time is achievable while larger
device-to-device variation is found in its reset time, suggesting that the
resistance states dominate the resistance switching time.

larger variations on the resistive states [38]. The impact
of strong forming stress on cells requires careful investi-
gation to best optimize the operation procedures for a cell
array. Switching speed is one of the key performance aspects
in embedded memory applications. Time to set/reset are
obtained by adding the overall pulses that a device expe-
rienced before a switch between states occurs, where the
pulse width incrementally increases from 30 ns to 100 μs.
Figure 3 comparing the distributions of the set/reset speed
from cells in an array, reveals shorter and tighter set time, on
the other hand, slower and wider reset-time spread, while SL
voltage shows little effect. Cells require exceptionally long
reset can be problematic in embedded memory application
which favor fast random access write and low power oper-
ation. In this study, we aim at finding the physical causes
for these slow cells and come up with methods to improve
their speed.
As mentioned, LFNs/RTNs are helpful techniques indi-

cating the state of Vo and CF in a TMO layer. The causes
of LFNs are different in LRS from that in HRS. In LRS,
LFN signals are generally attributed to electron trapping/de-
trapping at a defect close to the main CF. The trapped
electron create a shielding region along the conductive path,
leading to a small decrease in its read current [30], [39].
In HRS, the LFN signal is governed by one or a few elec-
trons captured by Vo in the tunneling path, resulting in the
fluctuations on its trap-assisted tunneling current [40]–[42].
Here, to clarify the variation source in reset operations, LFN
signals after forming operation and its corresponding trend
of power spectrums are compared in a series of plots in
Figure 4.
Measured LFNs in Figure 4(a) and the respective noise

spectrums in Figure 4(b) reveal that types of LFN can
be roughly categorized into Type A/Type B/Type C. As
depicted in Figure 5, devices in Type A with single
trap near the one dominant CF exhibit bi-level current
fluctuations in Figure 4(a) and two discrete current pop-
ulations in Figure 4(c), showing slope ∼ −2 in its power
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FIGURE 4. Different LFN signals found in BCRRAM cells after forming
operation. (a) Read current of samples showing different kinds of LFN
signals and the corresponding (b) noise spectrums of the three type of
cells. (c) 2N current states found in three types of LFNs.

spectrum [43]–[45]. The same sample also shows sudden
reset current transition in Figure 6 [46]–[48]. Type B devices
with conductive paths affected by the multiple trapping/de-
trapping processes, hence, multiple current populations in
Figure 4(c), which also corresponds to a noise power spec-
trum’s slope of −1 [43]–[45]. Fast and anomalous switch
between current states have been investigated in previous
studies. Puglisi et al. claim that existence of metastable
states of Vo contribute to anomalous random telegraph noise
(A-RTN) [49]. A-RTN found in their study is constituted
by fast and slow RTN. More distinct current levels are
obtained rather than a generally superposition of two-level
fluctuations. On the other hand, A-RTN with dynamic time
constant result from 2 stables state and 2 metastable states
was found by Guo et al.[50]. Anomalous current fluctuations
are believed to result from multiple traps [49]–[51]. However,
no switch in time constants and 2N current states of Type
C, shown in Figure 4(a) and (c), contradict with findings in
presented studies. Data in Figure 6 show that gradual reset
transitions in Type B and Type C can be fully explained by
existence of multiple CFs instead of multiple traps [46]–[48].
Type C cell is believed that includes multiple CFs with
interactive processes between the trap states, where Vo can
capture/emission electron from/to more than one conductive
path, leading to irregular LFNs.
Decreasing trends in noise spectrum are attribute to

larger number of CFs, which has been reported in previous

FIGURE 5. Illustrations of the filaments and trap states in the TMO layer
of the cells in (a) Type A (b) Type B (c) Type C.

FIGURE 6. Observation of DC sweep characteristics of 30 BCRRAM
devices. Sharp current drop probably found in Type A with one dominant
CF, but slowly reset transitions in Type B/Type C are attributed to multiple
CFs elimination process in DC reset sweeping.

TABLE 2. Types of devices are systematically classified by slopes in its noise

spectrum to correlate to their CF status.

studies [43]. Noise spectrum has been used as an indica-
tor for the shapes and forms of CFs and traps in a TMO
layer [43], [44]. Further discussion of types of samples,
devices are categorized into three groups by its corresponding
LF noise spectrums, as outlined in Table 2.
To further confirm the correlation between cells with types

of LFNs and its CF topographies, a Monte Carlo simulation
for describing random trapping/de-trapping processes is con-
structed, as explained by the flow chart in Figure 7(a) [30].
The corresponding parameters used in the simulation are
listed in Table 3. As illustrated in Figure 7(b), shapes of
CF and Vo in this model are approximated as cuboid in
this simulation, but electron capture cross-sections of traps
are set to be circles with radius of Debye lengths. See in
Figure 7(b), given a device area of 50 × 50 nm2, different
size and numbers of CFs in parallel are first distributed by fit-
ting the measured I-V characteristics from BCRRAM cells.
Subsequently, oxygen vacancies with energies and screen-
ing length of capture cross-section within a given range
−0.2 eV to 0.2 eV and 5 nm to 10 nm, [29], [52] are
placed randomly within the region of interest. Once the
main parameters for CFs and Vo are defined, the proba-
bilities of trapped/detrapped are determined by Eq. (1) to
Eq. (3) [30], [53]. Here, carrier concentration in each CFs, n,
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TABLE 3. Corresponding physical parameters of low frequency noise model

and joule heating simulation.

and thermal velocity, vth, and degeneracy factor, g, are
assumed to be constants. As shown in Equation (1), (2)
and Figure 7(b), Vo can capture/emission electron from/to
more than one CF. Cells with several closely placed CFs may
experience interferences between them during these random
trapping events, leading to higher capture/emission proba-
bilities. If portion of CF is shielded, see in Figure 7(c), an
increase in resistance can be described in Eq. (4) [42].

Pc = 1

τc
= NCFnvthσ (1)

Pe = 1

τe
= gNCFnvthσ

exp
[
(EF − ET)/kBT

] (2)

{
Pc > NR (electron trapping)
Pe > NR (electron detrapping)

(3)

R = ρCF(tCF − λS)

l2CF
+ ρCFλS

l2CF − (λS − d)2
(4)

Finally, total resistance levels of 2000 sampling time
points can be obtained by putting CFs in parallel. As com-
pared in Figure 8(a), measured LFNs can be predicted by
simulation results with good agreements on different types of
cells. Correlation between number of CFs inside the RRAM
regions and types of LFN signals can be further revealed by
the simulated results summarized in Figure 9. Among cells
with single CF, higher portion of them will exhibit Type A.
On the other hand, a larger fraction of cells with more CFs
placed in TMO layer showing Type C characteristic.
With the linkage between types of LFN noises and number

of conductive paths, we try to correlate the reset efficiency
of BCRRAM cells to its LFN signals and further down to
its CF topographies. Figure 10(a) shows that cells exhibiting
Type A leads to faster reset, resulting from single conduc-
tive path. While longer reset time is found in BCRRAM

FIGURE 7. (a) Simulation flow of effect of trapping/detrapping behavior in
TMO layer, by putting density and size of filaments as variables to meet
measured resistance within range 33K� to 100K�. (b) Illustrations of
trapping/detrapping process. Oxygen vacancy can capture/emission
electron from/to more than one CFs within its capture cross-section.
(c) Oxygen vacancies occupied by electrons screen out part of CF, resulting
in an increase in its resistance.

FIGURE 8. (a) Measured and (b)simulated read current fluctuations in
three different types of cells. Different LFN signals can be predicted by
changes the density of CFs in TMO layer, affecting both the number of
current levels in the LFNs and capture and emission times.

cells with Type C, which may be caused by the tiny CFs
in TMO layer. It is believed that the reset process in an
unipolar RRAM device is triggered by high localized heat-
ing inside conductive paths. The temperature profiles of
TMO layers with different CF densities are compared in
Figure 10(b) [56], [57]. Cells with single dominant CF leads
to higher localized temperature, hence, enabling more effi-
cient reset. On the contrary, less focus heating during reset
process in structures with multiple CFs, is expect to cause
slow reset in cells with either Type B and Type C.

IV. RESET TRIMMING SCHEME
Based on previous discussion, unnecessary CFs in BCRRAM
cells generated during stochastic forming/set process must
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FIGURE 9. Correlation between the number of CFs within 50×50 nm2,
used in the simulations, and the probability of its cell type.

FIGURE 10. (a) Reset time of cells categorized by its LFN signals.
(b) Internal temperature profiles of one dominant CF and multiple
conductive paths, where location of CFs are labelled by the white dash
lines.

be reduced for improving reset speed. In presented stud-
ies [58]–[60], stochastic Vo generation has also been found
as a critical problem to reliability and variability. Many
studies have shown the control of Vo generation to fur-
ther obtain single CF for resolving reliability and variability
issue. In reference 59, Au-tip is coated on top electrode to
concentrated electric field [59]. To confine CF growth, Pt
nanocrystal is also embedded with TiO2 thin film for the
same purpose of local enhancement of electric filed [58].
Concentrated electric field at a local region for confining
Vo generations can drastically relieved variability problems.
Therefore, a new electrical treatment, named as reset trim-
ming operation, proposed in this study is necessary for
embedded BCRRAM cells to minimize multiple CFs inside
TMO layers. To eliminate redundant CFs, a new reset trim-
ming treatment with conditions, outlined in Figure 11(a), is
implemented in pristine cells after forming process to recover
them to lower read current levels, as shown in Figure 11(b).

FIGURE 11. (a) Timing and conditions of the trimming process for
minimizing unnecessary CF is completed by applying a few short reset
pulses at a slightly higher SL voltage. (b) Read current distribution of cells
at initial, after forming and trimming, respectively.

FIGURE 12. (a) Schematic of conductive paths under (a) reset trimming
operation and (b) set operation. (c) Simulated internal temperature under
2 V reset trimming voltage. (d) Local enhanced electric field at shortest gap
between top electrode and CF for controlling CF generations.

The change of CFs during reset trimming and the fol-
lowing set operation are illustrated in Figure 12(a) and (b),
respectively. During trimming reset, the temperature profile
derived by joule heating model is shown in Figure 12(c), oxy-
gen ions stored in the top electrode can diffuse back to anneal
out a few conductive paths at one time [20], [56], [57]. In the
subsequent set operation, based on the reported study in [59],
the electric field can be locally enhanced at the narrowest
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FIGURE 13. (a) Probability distributions of the three types of cells before
and after trimmed process. Higher probability of cells in an array exhibits
Type A as a result of reduced unnecessary CFs. (b) Sudden current drops
on trimmed cells, while gradual resistance transitions are found on
untrimmed cells (c) Comparison of reset time of untrimmed/trimmed cells
under VSL = 1.7V.

FIGURE 14. (a) The dependency of measured and simulated LFN signal
characteristics of cells and reset efficiency of first cycle on LRS level. Reset
efficiency are also found to be inverse proportional to the LRS level.
(b) High probability to obtain LFN of Type A in both lower LRS and HRS as
a result of fewer conductive paths inside TMO layer.

gap region, as shown in Figure 12(d), which confines Vo
generations at one location, leading to the formation of
a single conductive filament.
To investigate effectiveness of the proposed trimming

operation, number of cells with different LFNs and reset
characteristics before and after such operation are com-
pared in Figure 13(a). As result of reducing redundant CFs
inside TMO layer, larger portion of trimmed cells are show-
ing Type A, evidence to less CFs. Besides, as shown in
Figure 13(b), sharply current drops during reset process are
also obtained in trimmed cells after minimizing redundant
tiny paths [46]–[48]. As further demonstrated timing required
of first reset operations in Figure 13(c), faster reset speed is
obtained after the reset trimming treatment.
In addition to correlate to cells’ LFN characteristics, reset

operation is found to be closely linked to its LRS resistance

FIGURE 15. (a) 10K ISPP cycling characteristics of BCRRAM. BCRRAM can
keep 10× on/off ratio for 1K cycles, but stuck at LRS after several
thousands of cycles. (b) Shift in cells with different LFN signals are found
during ISPP cycling tests, which provides a guideline to address endurance
failure.

state. The dependency of portion of type A device and
the cell’s reset efficiency on LRS level are summarized
in Figure 14(a). Reset efficiency are found to be inversely
proportional to its LRS level, which further support the con-
clusions that less numbers of CF improve reset performance.
While maintaining the same 10× read ratio, by targeting
a low LRS current level, more cells are expected to have
only one dominant CF, this can also help promote the reset
speed among a group of cells. On the other hand, prob-
abilities of types of LFNs of LRS in 5 μA and HRS
0.5 μA are compared in Figure 14(b). In similar scenario
with LRS, devices in HRS with only one trap with short-
est distance to electrode have higher probabilities of exhibit
Type A LFNs [44].
After obtaining suitable LRS/HRS levels with short

pulse, cycling endurance of BCRRAM is examined
through an optimized incremental step pulse programming
scheme (ISPP) [61]. Cell arrays during cycling test are mon-
itored for investigating the change in the CF topographies.
BCRRAM cells can keeps 10× read window for 1K ISPP
cycling test, as shown in Fig. 15(a). However, BCRRAM lose
their cyclabilities after several thousands of cycles. Data in
Figure 15(b), suggests that additional CFs are generated by
the set/reset stress, which leads to ultimate reset failure over
time and limits its cycling endurance. Endurance of cells,
categorized by their types of LFN after trimming, are shown
in Figure 16. Keep most of the cells with single main CFs
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FIGURE 16. Correlation between CF topologies, as categorized by their
LFN after trimming, and its maximum cycles are found in a BCRRAM array.

(Type A) during cycling operation can further enhance the
overall cyclability of the BCRRAM arrays.

V. CONCLUSION
In this study, cells in a BCRRAM array with large reset
efficiency variation are categorized into three groups by its
LFN features. These LFN features are found to be directly
correlated to the number of CFs in a TMO layer area by
Monte Carlo simulation and different kinds of reset char-
acteristics. Cells with slow resets are caused by multiple
unnecessary conductive paths generation during forming/set
operation, leading to less effective heating of CFs. Here,
a trimming operation is proposed for eliminating redundant
CFs. Finally, monitoring the stochastic Vo generation during
cycling is expected to give raise to new operational schemes
in extended cell’s cycling lifetime.

ACKNOWLEDGMENT
The authors would like to thank the support from the
Ministry of Science and Technology (MOST), Taiwan.

REFERENCES
[1] C. Chou et al., “An N40 256K × 44 embedded RRAM macro with

SL-precharge SA and low-voltage current limiter to improve read
and write performance,” in Proc. IEEE Int. Solid-State Circuits Conf.
(ISSCC), San Francisco, CA, USA, 2018, pp. 478–480.

[2] H. W. Pan et al., “1Kbit FinFET dielectric (FIND) RRAM in pure
16nm FinFET CMOS logic process,” in Proc. IEEE Int. Electron
Devices Meeting (IEDM), Washington, DC, USA, 2015, pp. 1–4.

[3] C. Y. Mei et al., “28-nm 2T high-K metal gate embedded RRAM
with fully compatible CMOS logic processes,” IEEE Electron Device
Lett., vol. 34, no. 10, pp. 1253–1255, Oct. 2013.

[4] Y. Huang et al., “A TaOx based threshold switching selector for the
RRAM crossbar array memory,” in Proc. 12th Annu. Non Volatile
Memory Technol. Symp., Singapore, 2012, pp. 85–87.

[5] G. Sassine et al., “Sub-pJ consumption and short latency time
in RRAM arrays for high endurance applications,” in Proc.
IEEE Int. Rel. Phys. Symp. (IRPS), Burlingame, CA, USA, 2018,
pp. P-MY.2-1–P-MY.2-5.

[6] Y. Pan et al., “Material engineering technique for SiOX-based embed-
ded RRAM with CMOS compatible process,” in Proc. 12th Annu.
NonVolatile Memory Technol. Symp., Singapore, 2012, pp. 91–93.

[7] S. Balatti, S. Ambrogio, D. Ielmini, and D. C. Gilmer, “Variability
and failure of set process in HfO2 RRAM,” in Proc. 5th IEEE Int.
Memory Workshop, Monterey, CA, USA, 2013, pp. 38–41.

[8] A. Rubio, M. Escudero, and P. Pouyan, “Reliability issues in RRAM
ternary memories affected by variability and aging mechanisms,”
in Proc. IEEE 23rd Int. Symp. OnLine Testing Robust Syst. Design
(IOLTS), Thessaloniki, Greece, 2017, pp. 90–92.

[9] M. B. Gonzalez, J. M. Rafí, O. Beldarrain, M. Zabala, and
F. Campabadal, “Analysis of the switching variability in Ni/HfO2-
based RRAM devices,” IEEE Trans. Device Mater. Rel., vol. 14, no. 2,
pp. 769–771, Jun. 2014.

[10] E. Pérez, A. Grossi, C. Zambelli, P. Olivo, R. Roelofs, and C. Wenger,
“Reduction of the cell-to-cell variability in Hf1−xAlxOy based RRAM
arrays by using program algorithms,” IEEE Electron Device Lett.,
vol. 38, no. 2, pp. 175–178, Feb. 2017.

[11] N. Raghavan, K. L. Pey, W. Liu, X. Wu, X. Li, and M. Bosman,
“Evidence for compliance controlled oxygen vacancy and metal fila-
ment based resistive switching mechanisms in RRAM,” Microelectron.
Eng., vol. 88, no. 7, pp. 1124–1128, 2011.

[12] D. Kumar, R. Aluguri, U. Chand, and T. Y. Tseng, “Metal oxide
resistive switching memory: Materials, properties and switching
mechanisms,” Ceram. Int., vol. 43, pp. S547–S556, Aug. 2017.

[13] S. Yu, “Overview of resistive switching memory (RRAM) switching
mechanism and device modeling,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), Melbourne, VIC, Australia, 2014, pp. 2017–2020.

[14] D. Ielmini, F. Nardi, and C. Cagli, “Universal reset characteristics
of unipolar and bipolar metal-oxide RRAM,” IEEE Trans. Electron
Devices, vol. 58, no. 10, pp. 3246–3253, Oct. 2011.

[15] Y. S. Zhi et al., “Reversible transition between bipolar and unipolar
resistive switching in Cu2O/Ga2O3 binary oxide stacked layer,” AIP
Adv., vol. 6, no. 1, 2016, Art. no. 015215.

[16] L. Zhu, J. Zhou, Z. Guo, and Z. Sun, “An overview of materials
issues in resistive random access memory,” J. Materiomics, vol. 1,
no. 4, pp. 285–295, 2015.

[17] B. Gao et al., “Oxide-based RRAM switching mechanism: A new ion-
transport-recombination model,” in Proc. IEEE Int. Electron Devices
Meeting, San Francisco, CA, USA, 2008, pp. 1–4.

[18] F. Nardi, S. Larentis, S. Balatti, D. C. Gilmer, and D. Ielmini,
“Resistive switching by voltage-driven ion migration in bipolar
RRAM—Part I: Experimental study,” IEEE Trans. Electron Devices,
vol. 59, no. 9, pp. 2461–2467, Sep. 2012.

[19] S. Yu, Y. Wu, and H. S. P. Wong, “Investigating the switching
dynamics and multilevel capability of bipolar metal oxide resis-
tive switching memory,” Appl. Phys. Lett., vol. 98, no. 10, 2011,
Art. no. 103514.

[20] S. Yu and H. P. Wong, “A phenomenological model for the reset mech-
anism of metal oxide RRAM,” IEEE Electron Device Lett., vol. 31,
no. 12, pp. 1455–1457, Dec. 2010.

[21] M.-J. Lee et al., “Electrical manipulation of nanofilaments in
transition-metal oxides for resistance-based memory,” Nano Lett.,
vol. 9, no. 4, pp. 1476–1481, 2009.

[22] S. Balatti, S. Ambrogio, D. C. Gilmer, and D. Ielmini, “Set vari-
ability and failure induced by complementary switching in bipolar
RRAM,” IEEE Electron Device Lett., vol. 34, no. 7, pp. 861–863,
Jul. 2013.

[23] X. Guan, S. Yu, and H. P. Wong, “On the switching parameter
variation of metal-oxide RRAM—Part I: Physical modeling and sim-
ulation methodology,” IEEE Trans. Electron Devices, vol. 59, no. 4,
pp. 1172–1182, Apr. 2012.

[24] A. Chen and M. Lin, “Variability of resistive switching memories and
its impact on crossbar array performance,” in Proc. Int. Rel. Phys.
Symp., Monterey, CA, USA, 2011, pp. MY.7.1–MY.7.4.

[25] Y. Yang and W. Lu, “Nanoscale resistive switching devices:
Mechanisms and modeling,” Nanoscale, vol. 5, no. 21,
pp. 10076–10092, 2013, doi: 10.1039/C3NR03472K.

[26] K. L. Pey, R. Thamankar, M. Sen, M. Bosman, N. Raghavan, and
K. Shubhakar, “Understanding the switching mechanism in RRAM
using in-situ TEM,” in Proc. IEEE Silicon Nanoelectron. Workshop
(SNW), Honolulu, HI, USA, 2016, pp. 36–37.

[27] G. Bersuker et al., “Metal oxide RRAM switching mechanism based
on conductive filament microscopic properties,” in Proc. Int. Electron
Devices Meeting, San Francisco, CA, USA, 2010, pp. 1–4.

[28] G. Niu et al., “Geometric conductive filament confinement by nan-
otips for resistive switching of HfO2-RRAM devices with high
performance,” Sci. Rep., vol. 6, May 2016, Art. no. 25757.

[29] Z. Chai et al., “RTN-based defect tracking technique: Experimentally
probing the spatial and energy profile of the critical filament region
and its correlation with HfO2RRAM switching operation and failure
mechanism,” in Proc. IEEE Symp. VLSI Technol., Honolulu, HI, USA,
2016, pp. 1–2.

472 VOLUME 8, 2020

http://dx.doi.org/10.1039/C3NR03472K


KAO et al.: RESET VARIABILITY IN BACKFILLED RESISTIVE RANDOM ACCESS MEMORY

[30] S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy,
and D. Ielmini, “Statistical fluctuations in HfOx resistive-switching
memory: Part II—Random telegraph noise,” IEEE Trans. Electron
Devices, vol. 61, no. 8, pp. 2920–2927, Aug. 2014.

[31] H. Shin and O. Byoungchan, “Characterization of oxide traps by
RTN measurement in MOSFETs and memory devices,” in Proc. 17th
IEEE Int. Symp. Phys. Fail. Anal. Integr. Circuits, Singapore, 2010,
pp. 1–5.

[32] E. R. Hsieh et al., “The RTN measurement technique on leakage path
finding in advanced high-k metal gate CMOS devices,” in Proc. IEEE
22nd Int. Symp. Phys. Fail. Anal. Integr. Circuits, Hsinchu, Taiwan,
2015, pp. 154–457.

[33] W. C. Shen et al., “High-K metal gate contact RRAM (CRRAM)
in pure 28nm CMOS logic process,” in Proc. Int. Electron Devices
Meeting, San Francisco, CA, USA, 2012, pp. 1–4.

[34] Y.-F. Kao, W. C. Zhuang, C.-J. Lin, and Y.-C. King, “A study of
the variability in contact resistive random access memory by stochas-
tic vacancy model,” Nanoscale Res. Lett., vol. 13, no. 1, p. 213,
2018.

[35] Y. F. Kao, W. T. Hsieh, C. C. Chen, Y.-C. King, and C. J. Lin,
“Statistical analysis of the correlations between cell performance and
its initial states in contact resistive random access memory cells,” Jpn.
J. Appl. Phys., vol. 56, no. 4S, 2017, Art. no. 04CE08.

[36] H. Chen, H. Chen, Y. Kao, P. Chen, Y. King, and C. J. Lin, “A
new manufacturing method of CMOS logic compatible 1T-CRRAM,”
in Proc. Int. Symp. VLSI Technol. Syst. Appl. (VLSI-TSA), Hsinchu,
Taiwan, 2016, pp. 1–2.

[37] H. Chen, H. H. Chen, Y. King, and C. J. Lin, “Investigation
of set/reset operations in CMOS-logic-compatible contact backfilled
RRAMs,” IEEE Trans. Device Mater. Rel., vol. 16, no. 3, pp. 370–375,
Sep. 2016.

[38] B. Butcher et al., “Hot forming to improve memory window and
uniformity of low-power HfOx-based RRAMs,” in Proc. 4th IEEE
Int. Memory Workshop, Milan, Italy, 2012, pp. 1–4.

[39] C. Wang, H. Wu, B. Gao, T. Zhang, Y. Yang, and H. Qian, “Conduction
mechanisms, dynamics and stability in ReRAMs,” Microelectron.
Eng., vols. 187–188, pp. 121–133, Feb. 2018.

[40] F. M. Puglisi and P. Pavan, “An investigation on the role of current
compliance in HfO2-based RRAM in HRS using RTN and I-V data,”
in Proc. 15th Int. Conf. Ultimate Integr. Silicon (ULIS), Stockholm,
Sweden, 2014, pp. 129–132.

[41] D. Dong et al., “The impact of RTN signal on array level resistance
fluctuation of resistive random access memory,” IEEE Electron Device
Lett., vol. 39, no. 5, pp. 676–679, May 2018.

[42] F. M. Puglisi, N. Zagni, L. Larcher, and P. Pavan, “Random telegraph
noise in resistive random access memories: Compact modeling and
advanced circuit design,” IEEE Trans. Electron Devices, vol. 65, no. 7,
pp. 2964–2972, Jul. 2018.

[43] W. Feng, H. Shima, K. Ohmori, and H. Akinaga, “Investigation of
switching mechanism in HfOx-ReRAM under low power and conven-
tional operation modes,” Sci. Rep., vol. 6, Dec. 2016, Art. no. 39510.

[44] S. Yu, R. Jeyasingh, W. Yi, and H. P. Wong, “Understanding the
conduction and switching mechanism of metal oxide RRAM through
low frequency noise and AC conductance measurement and analysis,”
in Proc. Int. Electron Devices Meeting, Washington, DC, USA, 2011,
pp. 1–4.

[45] Y. H. Tseng, S. Wen Chao, H. Chia-En, L. Chrong Jung, and
K. Ya-Chin, “Electron trapping effect on the switching behavior of
contact RRAM devices through random telegraph noise analysis,” in
Proc. Int. Electron Devices Meeting, San Francisco, CA, USA, 2010,
pp. 1–4.

[46] B. Gao et al., “Identification and application of current
compliance failure phenomenon in RRAM device,” in Proc.
Int. Symp. VLSI Technol. Syst. Appl., Hsinchu, Taiwan, 2010,
pp. 144–145.

[47] B. Gao et al., “Unified physical model of bipolar oxide-based resis-
tive switching memory,” IEEE Electron Device Lett., vol. 30, no. 12,
pp. 1326–1328, Dec. 2009.

[48] P. R. Mickel, A. J. Lohn, and M. J. Marinella, “Detection and char-
acterization of multi-filament evolution during resistive switching,”
Appl. Phys. Lett., vol. 105, no. 5, 2014, Art. no. 053503.

[49] F. M. Puglisi, L. Larcher, A. Padovani, and P. Pavan, “Anomalous
random telegraph noise and temporary phenomena in resistive ran-
dom access memory,” Solid-State Electron., vol. 125, pp. 204–213,
Nov. 2016.

[50] S. Guo, R. Wang, D. Mao, Y. Wang, and R. Huang, “Anomalous
random telegraph noise in nanoscale transistors as direct evidence of
two metastable states of oxide traps,” Sci. Rep., vol. 7, no. 1, p. 6239,
2017.

[51] R. Thamankar et al., “Single vacancy defect spectroscopy on
HfO2 using random telegraph noise signals from scanning tun-
neling microscopy,” J. Appl. Phys., vol. 119, no. 8, 2016,
Art. no. 084304.

[52] J. T. Ryan, A. Matsuda, J. P. Campbell, and K. P. Cheung, “Interface-
state capture cross section—Why does it vary so much?” Appl. Phys.
Lett., vol. 106, no. 16, 2015, Art. no. 163503.

[53] S. S. Chung and C. M. Chang, “The investigation of capture/emission
mechanism in high-k gate dielectric soft breakdown by gate current
random telegraph noise approach,” Appl. Phys. Lett., vol. 93, no. 21,
2008, Art. no. 213502.

[54] R. Chaudhary, R. Mukhiya, G. S. Patel, P. R. Mudimela, and
R. Sharma, “Simulation of MOSFET with different dielectric films,” in
Proc. Int. Conf. Intell. Circuits Syst. (ICICS), Phagwara, India, 2018,
pp. 173–176.

[55] M. B. Kleiner, S. A. Kuhn, and W. Weber, “Thermal conduc-
tivity measurements of thin silicon dioxide films in integrated
circuits,” IEEE Trans. Electron Devices, vol. 43, no. 9, pp. 1602–1609,
Sep. 1996.

[56] U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, “Self-accelerated
thermal dissolution model for reset programming in unipolar resistive-
switching memory (RRAM) devices,” IEEE Trans. Electron Devices,
vol. 56, no. 2, pp. 193–200, Feb. 2009.

[57] U. Russo et al., “Conductive-filament switching analysis and self-
accelerated thermal dissolution model for reset in NiO-based RRAM,”
in Proc. IEEE Int. Electron Devices Meeting, Washington, DC, USA,
2007, pp. 775–778.

[58] W.-Y. Chang et al., “Improvement of resistive switching characteristics
in TiO2 thin films with embedded Pt nanocrystals,” Appl. Phys. Lett.,
vol. 95, no. 4, 2009, Art. no. 042104.

[59] V. R. Nallagatla, J. Jo, S. K. Acharya, M. Kim, and C. U. Jung,
“Confining vertical conducting filament for reliable resistive switching
by using a Au-probe tip as the top electrode for epitaxial brownmil-
lerite oxide memristive device,” Sci. Rep., vol. 9, no. 1, p. 1188,
2019.

[60] A. Prakash, J. Park, J. Song, J. Woo, E. Cha, and H. Hwang,
“Demonstration of low power 3-bit multilevel cell characteristics in
a TaOx-based RRAM by stack engineering,” IEEE Electron Device
Lett., vol. 36, no. 1, pp. 32–34, Jan. 2015.

[61] Y. Kao, C. J. Lin, and Y. King, “Stochastic filament formation
on the cycling endurance of backfilled contact resistive random
access memory cells,” in Proc. Int. Symp. VLSI Technol. Syst. Appl.
(VLSI-TSA), Hsinchu, Taiwan, 2019, pp. 1–2.

VOLUME 8, 2020 473



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


