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ABSTRACT Conduction characteristics and low frequency noises in ITO-stabilized ZnO thin film tran-
sistors (TFTs) with constant channel width (W=50 μm) and different channel lengths (L=5, 10, 25,
50 and 100 μm) are measured and analysis. Firstly, dependences of threshold voltage and field effect
mobility on channel length are examined. With decreasing channel length, the threshold voltage shifts to
the negative direction which may attribute to carrier diffusion from source/drain to the intrinsic device
channel. In addition, significant degradation of field effect mobility is observed in short channel device
which are induced by the presence of series contact resistance. The value of contact resistance has also
been extracted. Secondly, the drain current noise power spectral densities (SID) are measured at varied
effective gate voltages. The measured noises follow a 1/f γ and γ is about −1.1. Moreover, the normalized
noises (SID/Ids) are dependent linearly on the inverse of channel length and the slope is about −0.75.
Finally, the dominant mechanism of low frequency noise in ITO-stabilized ZnO thin film transistor are
examined. The slope of normalized noise against effective gate voltage are extracted, which are varied
from −1.03 to −1.84 with decreasing channel length and thus it indicates that ITO-stabilized ZnO TFTs
varied from bulk dominated devices to interface dominated devices. By using of �N-�μ model, the
normalized noises are simulated by considering of contact resistance. Several noise parameters (flat-band
voltage noise spectral density, etc) are extracted and analysis.

INDEX TERMS ITO-stabilized ZnO, thin film transistor, low frequency noise, channel length, threshold
voltage, field effect mobility.

I. INTRODUCTION
As switching elements for addressing the pixel circuit [1],
Sn-doped indium-zinc-oxide (IZO) thin-film transistors
(TFTs) exhibit high mobility (even over 50 cm2/Vs) and low
off current (less than 10−13 A) [1], [2], which can meet the
requirements of next generation high vision with a pixel reso-
lution of 8k×4k and a lower charged time per unit frame (less
than 1.2 μs) [3], [4]. The best performance of oxide TFTs

can be obtained at the boundary between the amorphous
and crystalline phases [5]–[7]. Therefore, in these Sn-doped
IZO TFTs, a number of nanocrystals are embedded in
the amorphous matrix and formed hybrid-phase microstruc-
ture to achieve the best performance [3], [7]. Compared
to the pristine polycrystalline ZnO, it is believed that the
microstructure together with the material composition can
result to thin films with lower grain boundary and deep defect

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 8, 2020 435

https://orcid.org/0000-0002-7289-2103
https://orcid.org/0000-0001-5223-6216
https://orcid.org/0000-0002-3428-3120
https://orcid.org/0000-0002-2837-6646
https://orcid.org/0000-0002-7247-8420


LIU et al.: DIMENSION SCALING EFFECTS ON CONDUCTION AND LOW FREQUENCY NOISE CHARACTERISTICS

density inside. Thus, the conduction and noise performance
of hybrid-phase Sn-doped IZO thin film transistors may
be differ to existing amorphous or polycrystalline thin film
transistors.
Low frequency noise (LFN) is a key parameter for analog

and RF applications [8]–[10], and it sets the lower limit of the
signal that can be processed and detected in the subsequent
circuits and modules [11]. Moreover, LFN may up-convert
to high frequencies and then become to a source of phase
noise, which may adversely affect the application of devices
in RF fields [8], [12]. The source and dominant mechanism
of LFNs in metal oxide TFTs have been examined by many
groups [9], [13]–[15]. Due to localized states existed in the
active channel, the noise levels in these devices are always
higher than that in MOSFETs [9], [13].
To integrate more functions on the same substrate, the

channel length of devices should be reduced from typical
values of L=10 μm to L=1-2 μm, or less [12], [16]. Thence,
contact resistance and short channel effects may affect device
performance and there should be controlled for proper oper-
ation of these devices [17]–[20]. Up to now, the effects of
channel length on conduction performance have been exam-
ined [16], [17], [20]. However, the dimension scaling effects
on LFN of Sn-doped IZO TFTs has less been reported. Thus,
it is valuable to study the variation of low frequency noise
with the decrement of channel length.
In this work, dimension scaling effect on conduction and

noise performance of ITO-stabilized ZnO TFTs are inves-
tigated with channel lengths down to 5 μm. Firstly, the
electrical parameters are extracted and the variations in
device conduction performance due to short channel effects
are discussed. Secondly, low frequency noise are measured
in these devices. The source and dominant mechanism of
LFN with varied channel length are examined. Moreover,
the effects of contact resistance on LFN have also been dis-
cussed. Several noise parameters (such as flat-band voltage
noise power spectral density, etc.) are extracted, and then
LFN have been simulated by use of �N-�μ model.

II. DEVICE STRUCTURE AND I-V CHARACTERISTICS
Fig. 1 shows the cross-section view of top gate ITO-stabilized
ZnO TFTs used in this work. Thermally oxidized SiO2 of
500 nm thick was coated on 4-inch circular glass wafers,
followed by the formation of ITO source/drain electrodes.
A active layer (50 nm-thick) was then co-sputtered and
patterned into active islands by wet etching. During deposi-
tion, the oxygen partial pressure ratio (O2/(Ar + O2)) and
DC/RF sputtering power combination adopted were 40%
and 120/150 W, respectively. Subsequently, 150 nm-thick
SiO2 was deposited by PECVD as a gate dielectric layer. A
100 nm-thick ITO layer was then sputtered and patterned as
gate electrodes. The devices were then annealed at 573 K in
air. In the last, the devices were passivated by 300 nm-
thick SiO2 using PECVD, followed by the definition of
contact holes and test pads. The experiment details have
been reported previously [3], [7], [21].

FIGURE 1. Cross-section view of top gate ITO-stabilized ZnO TFTs.

FIGURE 2. Transfer characteristics in top gate ITO-stabilized ZnO TFTs with
varied channel lengths.

By use of Agilent B1500, the transfer curves (Ids − Vgs)
of ITO-stabilized ZnO TFTs (with W=50 μm and differ-
ent channel lengths) are measured, as shown in Fig. 2. The
extracted threshold voltage (Vth), field effect mobility (μeff )
and sub-threshold swing (SS) are given in Table 1. The
threshold voltages were extracted by use of linear extrapo-
lation method, and the field effect mobility were calculated
in the ohmic region when Vgs − Vth = 5V .

As shown in Table 1, when channel length is less than
25 μm, the extracted threshold voltage may decrease with
channel length decreases. This phenomena is also observed
in the short channel amorphous IGZO TFTs [22]. As reported
by Kang DH [22], due to carrier diffusion from source/drain
regions to the active channel, the Fermi level may shift
towards the conduction band with the decrement of channel
length, which leads to the negative shift of Vth [22]. In
addition, SS keeps nearly constant with the decrement of
channel length.
The degradation of field effect mobility in short channel

devices may dominate by the contact resistance [12], [17].
Unlike conventional MOSFETs, ITO-stabilized ZnO TFTs
do not have a stable doped source/drain regions. A weak
ohmic contact may exist caused by the mismatch between the
work functions of the active region and the electrode. Thus,
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TABLE 1. Conduction and noise parameters in the hybrid-phase Microstructural ITO-Stabilized ZnO TFTs with different gate lengths.

FIGURE 3. (a) Calculated total resistance versus channel length, (b)
Extracted contact resistance versus Vgs − Vth in ITO-stabilized ZnO TFTs.

the contacts may play a dominant role in short devices, which
caused mobility decreases with the decrement of channel
lengths [12], [17].
The calculated total resistance versus channel length

are plotted in the Fig. 3(a). Based on transmission line
method [12], [23], the calculated total resistance is close
to the value of contact resistance when the channel length
approximated to 0. Therefore, the value of contact resis-
tance can be extracted by use of linear extrapolation. When
Vds = 0.5 V, the calculated contact resistances in the linear
region at Vgs-Vth = 5 V are about 6.36 M�. Moreover, the
extracted resistance varies with Vgs − Vth which follows an
empirical expression Rsd = Rsd0(Vgs − Vth)−β [12], [19]. In
this paper, Rsd0 is about 3.03 M� and β is about 0.95.

III. LOW FREQUENCY NOISE
The typical drain current noise power spectral densi-
ties (SID) versus frequency (f) are measured at different
gate voltages (Vgs) in the ITO-stabilized ZnO TFTs with
W/L=50 μm/100 μm. As shown in Fig. 4, SID follow a
1/f γ law and γ is about −1.1. It suggests the flicker noise
is the main noise source of LFN which is results by fluctu-
ations of the interfacial trapped charges. The deviation from
1 of γ indicates that the vertical distribution of trap den-
sity is nonuniform in the gate insulator [9], [24]. γ > 1
is occupied when the oxide trap density is lower close to
the SiO2/channel interface than that in the interior of the
gate insulator. In addition, the value of γ is also related to
the localized state density and its energy distribution in the
band-gap (characteristic temperature) [10].
In order to study the effect of variation of channel length

on LFN, the noises have been measured at different drain
current on five devices with W=50 μm and L=100, 50, 25,
10, 5 μm. The dependence of SID on Ids of above devices
are plotted in the Fig. 5. As shown in the Fig. 5, the mea-
sured noise increases with decreasing channel length. The

FIGURE 4. Measured drain current noises (SID) versus frequency in the
ITO-stabilized ZnO TFTs.

FIGURE 5. Measured noises versus drain current in the ITO-stabilized ZnO
TFTs.

measured noise in the smallest device is more than two order
of magnitude higher than that of the largest one.
As shown in Fig. 6, the normalized noise is inversely

proportional to the channel length and the slope in a dual-
log plot is about −0.75. This phenomena further confirms
that the observed low frequency noise in the ITO-stabilized
ZnO TFTs is flicker noise. However, differ to that observed
in the IGZO TFTs [13], the contribution from TFT series
contact resistance cannot be ignored which may results to
the variation of field effect mobility and thus the variation
of normalized noise. Therefore, the slope of noise versus
channel length may deviate from −1.
There are two classic model used for the description of

low frequency noise: carrier number fluctuation (�N) theory
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FIGURE 6. Normalized drain current noise (f=10 Hz) versus channel
length. Dashed line is the best linear fit to the experiment data.

and mobility fluctuation (�μ) theory. In the �N theory,
the drain current fluctuations are caused by the interfa-
cial charges’ fluctuations, which are due to the trapping
and de-trapping processes of free carriers into border traps
and localized states. Based on �N theory, the normalized
current noise (SID/I2ds) in the ohmic region is a function
of 1/(Vgs − Vth)2 [13]. In contrast to �N theory, accord-
ing to Hooge’s �μ theory [25], 1/f noise may originate
from noise in lattice scattering, which in turn results to
random mobility fluctuation. Based on �μ theory, the nor-
malized current noise in the ohmic region is a function of
1/(Vgs − Vth) [13], [25].

To examine the main mechanism of LFN in the above
threshold region, the dependence of SID/I2ds on Vgs−Vth are
extracted at Vds = 0.5 V and f=10 Hz. As plotted in Fig. 7,
the extracted power law coefficients of log(SID/I2ds) versus
log(Vgs − Vth) are in the range of −1.03 and −1.84. Thus,
the long channel devices are dominated by �μ theory and
the short channel devices are dominated by �N theory.
As shown in Fig. 7, the slope of SI/I2d against Vgs − Vth

varied from −1.03 to −1.84, which may due to the vari-
ation of the origin of LFN [26]–[28]. In the long channel
devices, the presence of clusters and localized states may
push the bulk effect noise to be the predominant origin of
the whole noise, and the mobility fluctuation is the main
mechanism. However, with decreasing channel length, the
quality of the interface between insulator/channel is criti-
cal. Thus, the fluctuation induced by trapping/emission of
free carriers near the oxide/channel interface becomes more
important [28]. Therefore, ITO-stabilized ZnO TFTs varied
from bulk dominated devices to interface dominated devices
with the decrement of channel length, and it may result to
the variation of the slope of SI/I2d against Vgs − Vth.

As discussed above, the slopes of SID/I2ds against Vgs−Vth
of our devices are between −1 and −2, thus LFN can be
simulated by using carrier number with correlated mobility
fluctuations (�N-�μ) model [28]–[30]. Based on �N-
�μ model, the interfacial charges fluctuation results to a
supplementary change of the mobility, and then induces

FIGURE 7. Normalized drain current noise versus Vgs − Vth in the
ITO-stabilized ZnO TFTs with different channel lengths (f=10 Hz).

an extra drain current fluctuation. Thus, SID/I2ds can be
calculated by [28]–[30]

SID
I2ds

= (
1 ± αcμeff CoxIds/gm

)(gm
Ids

)2

· Svfb (1)

where αc is a fitting parameter relate to the coulomb scatter-
ing. A low value of αc means less sensitivity of the mobility
to the insulator charge [9], [29]. Svfb is the flat-band voltage
noise power spectral density which can be expressed by [30]

Svfb = q2KTλNt
WLC2

oxf
γ

(2)

where λ is the tunneling attenuation coefficient, which is
about 0.1 nm for SiO2. Nt is the trap density near the
SiO2/channel interface.
As proposed by Ghibaudo et al. and

Boutchacha et al. [29], [31], the gate voltage noise spectral
density (Svg) in the linear region can be expressed by:

Svg = SID
g2
m

= Svfb
[
1 ± αcμeff Cox

(
Vgs − Vth

)]2 (3)

Variations of Svg with Vgs − Vth in ITO-stabilized ZnO
TFTs are plotted in Fig. 8. In the above threshold region,
Svg are varying superlinear with Vgs − Vth. In addition, the
variation slopes of Svg with Vgs − Vth are dependent on
the channel length [29], [31]. Thus, the variation rate may
increase with decreasing channel length. Similar phenomena
are also been observed in MOSFETs [29], [31] and poly-Si
TFTs [12].
In order to find the value of αc and Svfb in the

Eq. (3), follows the extraction method proposed by
Boutchacha et al. [31], the variations of S1/2

vg as a function
of Vgs − Vth are plotted in Fig. 9. In the above thresh-
old region, S1/2

vg changes linearly with Vgs − Vth. Based on
Eq. (3) and Fig. 9, the extracted SVfb are about 1.15 × 10−8

V2/Hz (L=100 μm), 2.2 × 10−8 V2/Hz (L=50 μm), 4.5 ×
10−8 V2/Hz (L=25 μm), 7.5 × 10−8 V2/Hz (L=10 μm),
1.4 × 10−7 V2/Hz (L=5 μm), respectively. The value
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FIGURE 8. Variation of the gate voltage noise (Svg) with Vgs − Vth in
ITO-stabilized ZnO TFTs.

FIGURE 9. Variation of S1/2
Vg with Vgs − Vth in ITO-stabilized ZnO TFTs. The

continuous lines are fit to (1) αc = 1.39 × 106Vs/C (L=100 μm); (2)
αc = 1.67 × 106Vs/C (L=50 μm); (3) αc = 1.74 × 106Vs/C (L=25 μm); (4)
αc = 4.49 × 106Vs/C (L=10 μm); (5) αc = 5.54 × 106Vs/C (L=5 μm).

of Svfb approximately linear increases with the decrement
of channel length, which is similar to the prediction of
Eq. (2). Moreover, based on Eq. (2), the calculated Nt of
our devices are in the range of 2.79 × 1018cm−3eV−1 to
4.58 × 1018cm−3eV−1.
According to Eq. (3), the scattering parameters αc can be

extracted from the slopes of S1/2
vg -Vgs − Vth curves in the

above threshold region, and their values are in the range
of 1.37 × 106 and 5.54 × 106 Vs/C. As discussed above,
the dominant mechanism of noise may vary from mobil-
ity fluctuation to carrier number fluctuation, and αc should
be decreased with decreasing channel length. However, the
extracted values of αc from Fig. 9 are inconsistent with these
predictions which may cause by the effect of contact resis-
tance. At higher current intensities, contact resistance play an
important role both in conduction and noise characteristics,
especially in short channel devices. Therefore, the extracted
αc from Fig. 9 are dependent on contact resistance rather

FIGURE 10. Normalized noises versus current in the ohmic region
(f=10 Hz). (Dots: Measured results, Dash Lines: Without contact resistance,
Solid Lines: With contact resistance.)

than channel resistance. This phenomenon is more signifi-
cant in short channel devices and induce to the increment
of αc with decreasing channel length. A more correct value
of αc should be extracted in lower gate voltages with lower
current intensities. Thence, the value of αc used in following
calculations is assumed to be 0.
The normalized drain current noises versus drain current

in ITO-stabilized ZnO TFTs are shown in Fig. 10. By using
of �N-�μ model, the measured noise can be simulated,
as shown by dash lines in Fig. 10. The simulated results
are in good agreements with the measured noise under low
drain current intensities. However, under higher drain current
intensities, discrepancies occur between measured results and
simulated results, which may cause by the contact resistance
noise.
The channel and contact are both contribute to LFN.

Thus, the total noises include channel noise and contact
noise [12], [23], [32]. As reported [12], [23], [32], the mea-
sured noises are dominated by the channel under low current
intensities and dominated by the contact under high current
intensities. By consider of contact resistance, the noise can
be expressed by [12], [23], [32]

SID,R

I2ds
= SID

I2ds
+

(
Ids
Vds

)2 SRsd
R2
sd

R2
sd (4)

here SRsd/R2
sd is the normalized noise of contact resistance.

By using of Eq. (4), the measured noise can be well approx-
imated under high currents, as shown by solid lines in
Fig. 10.
As shown in Fig. 10, the total resistance and related

noise are determined by the contact resistance under high
current intensities, therefore the total resistance can be
approximated by:

SID,R

I2ds
≈ SRsd

R2
sd

∝ (
Vgs − Vth

)0 (5)
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Based on Eq. (5), under high current and high gate volt-
ages, the normalized noise is unsensitive to the gate voltages,
therefore the slope of normalized noise versus gate voltages
is nearly zero, as shown in Fig. 7.
Moreover, the contact noise can be simulated by an

empirical model [23], [29]

SRsd/R
2
sd = αH/WLfN ∝ 1/Ids ∝ L (6)

Based on Eq. (6), SRsd/R2
sd may decrease with the

decrement of channel length, which is consistent with the
extraction results in the long channel devices (L>10 μm),
as shown in Table 1. Similar results have also been observed
in OTFTs [23] and Poly-Si TFTs [12].

IV. CONCLUSION
Dimension scaling effects on I-V and low frequency noise in
ITO-stabilized ZnO TFTs are investigated. The dependence
of threshold voltage and field effect mobility on channel
length are studied. The carrier diffusion from source/drain
to the channel may induce to the negative shift of threshold
voltage, and the presence of series contact resistance may
result to the degradation of field effect mobility. Moreover,
measured noises follow a 1/f γ type spectrum. The measured
noises indicate that LFN are well interpreted by carrier num-
ber with correlated mobility fluctuations model added with
access resistance fluctuation at higher current intensities.
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