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ABSTRACT Normally-off p-GaN gated AlGaN/GaN high electron mobility transistors (HEMTs) were
developed. Oxygen plasma treatment converted a low-resistive p-GaN layer in the access region to
a high-resistive GaN (HR-GaN); that oxygen plasma treatment used an AlN layer as an oxygen diffusion
barrier layer to prevent further oxidizing of the underlying AlGaN barrier layer, and to ensure that the
low-resistive p-GaN layer in the access region was fully oxidized. Relative to conventional p-GaN gated
AlGaN/GaN HEMTs, these AlGaN/GaN HEMTs with HR-GaN layers achieved a lower drain leakage
current of 4.4 × 10−7 mA/mm, a higher drain current on/off ratio of 3.9 × 109, a lower on-state resistance
of 17.1 �·mm, and less current collapse.

INDEX TERMS p-GaN gate HEMT, normally-off, high-resistivity GaN.

I. INTRODUCTION
GaN-based high electron mobility transistors (HEMTs)
a are emerging as promising candidates for next-generation
power switching applications, due to their high mobil-
ity and large band gap. However, typical conventional
AlGaN/GaN HEMTs are normally-on, featuring a neg-
ative threshold voltage, a high electron mobility, and
a high-density two-dimensional electron gas (2DEG) [1]–[4].
However, normally-off devices operating at a positive
threshold voltage are more desirable for power switch-
ing devices because of their simplified gate-drive topology
and fail-safe operation [5]. Various approaches have been
explored for making a normally-off device, such as F-based
plasma treatment [6], [7], a p-GaN gate [8]–[12], and
a recessed gate structure [13], [14]. Normally-off devices
fabricated with p-GaN gate technology offer low on-state
resistance and large positive threshold voltage, and such
devices have drawn increasing attention for applications

in power switching. However, to uniformly etch away the
p-GaN in the non-gated access region and to overcome
the plasma-induced damage during the p-GaN removal are
extremely challenging tasks. Reactive Cl2-based ion etch-
ing is typically used to remove the p-GaN layer. If such
etching is not meticulously optimized, it may result in
a rough surface due to plasma ionic bombardment and in
surface defects or damage; these may cause gate lag [15].
To precisely control the etching depth, the chipmaker can
insert an AlN etching stop layer between the p-GaN and
barrier layers to achieve highly selective etching for better
etching uniformity, lower gate leakage, and lower dynamic
on-resistance [16]. However, the p-GaN in the access region
becomes de-activated by hydrogen plasma treatment, which,
instead of etching it away, converts low-resistivity p-GaN
into high-resistivity GaN (HR-GaN) [17]. HR-GaN can help
to realize AlGaN/GaN HEMTs with high breakdown voltage
and low current collapse.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

VOLUME 8, 2020 229

https://orcid.org/0000-0003-1068-5798
https://orcid.org/0000-0001-9448-9908


Liu et al.: NORMALLY-OFF p-GaN GATED AlGaN/GaN HEMTs USING PLASMA OXIDATION TECHNIQUE IN ACCESS REGION

The alloying process is challenging, in part because H–Mg
bonds are easily broken at high temperatures; the long-term
stability of deactivated p-GaN made by forming a H–Mg
complex under high temperature (>200◦C) warrants greater
scholarly attention. Recently, oxygen plasma treatment has
also been used to oxidize the p-GaN layer and form HR-
GaN in the access region, but manufacturers do not yet
have precise control over the depth of oxidation in the p-
GaN layer [18]. In this study, an AlN layer, serving as an
oxygen diffusion barrier layer, was introduced to prevent oxi-
dation of the underlying AlGaN barrier layer in the access
region during oxygen plasma treatment. High performance
normally-off p-GaN gated AlGaN/GaN HEMTs were real-
ized; in such HEMTs, the low-resistive p-GaN layers were
fully oxidized and converted into HR-GaN.

FIGURE 1. Device structure for (a) standard AlGaN/GaN HEMTs
and (b) AlGaN/GaN HEMTs with HR-GaN layer after oxygen
plasma treatment.

II. DEVICE STRUCTURE AND FABRICATION
The p-GaN/AlGaN/GaN HEMTs in this study were grown
on 6-inch Si (111) substrates through metal organic chemical
vapor deposition (MOCVD), shown in Fig. 1 (a) and (b).
In each device, a 300-nm-thick undoped GaN channel was
grown on top of a 4-µm-thick undoped GaN buffer transi-
tion layer. Subsequently, a 12-nm-thick Al0.17Ga0.83N layer,
2-nm-thick AlN layer, and 70-nm-thick p-type GaN top layer
were deposited. The Mg concentration was 3 × 1019cm−3;
the device was thermally annealed within an MOCVD cham-
ber at 720◦C for 10 min in N2 ambience, and the active
Mg concentration was 1 × 1018 cm−3 according to the
Hall measurement. For device fabrication, the mesa region
was first formed with Cl2-based reactive ion etching (RIE).
High-density oxygen plasma treatment on the devices was
produced by induced coupling plasma (ICP) for 20 min with
an RF power of 300 W and a dc power of 100 W, dur-
ing which the p-GaN layer was oxidized, converting the
low-resistivity p-GaN into high-resistivity (HR) GaN, thus
making the p/n junction invalid. Detailed X-ray photoelec-
tron spectroscopy (XPS) results are analyzed in the next
section. To fully oxidize the p-GaN in the access region,
various O2 treatment times were explored. To measure the
oxidation depth, the oxidized p-GaN layer was etched by
buffered oxide etch (BOE) and the oxidized depth was sub-
sequently characterized by atomic force microscopy (AFM).
Fig. 2 (a) presents oxidized depth as a function of O2

FIGURE 2. (a) oxidized depth as a function of O2 plasma treatment;
(b) Simulated band diagram of the access region with and without oxygen
plasma treatment; (c) SIMS depth profiles of Ga, O, and Al of the access
region with oxygen plasma treatment.

plasma treatment. After the selective removal of HR-
GaN cap layer in source/drain region by RIE, Ti/Al/Ni/Au
(25/120/25/150 nm) were deposited to form the source and
drain metal electrodes, after which the device was annealed
at 875◦C for 35 s in N2 ambience. Subsequently, Ti/Au
(25/120 nm) were deposited as the gate electrode on top of p-
GaN. Consequently, the conduction band in the channel was
pulled down under the Fermi level, causing 2-dimensional
electron gas (2DEG) to be formed in the channel, as illus-
trated in Fig. 2 (b). For a comparison, standard AlGaN/GaN
HEMTs with RIE-etched p-GaN in the access region were
also fabricated. Eventually, the Si3N4layers of two types
of devices were passivated with plasma-enhanced chemi-
cal vapor deposition (PECVD). Both types of devices had
a gate width of 100 µm, a gate length of 2 µm, a source-gate
distance of 3 µm, and a gate–drain distance of 6 µm.

III. DEVICE RESULTS AND DISCUSSION
Fig. 2 (c) presents the SIMS profiles of Ga, Al, and O ele-
ments for p-GaN/AlN/AlGaN/GaN layers after 20 mins of
oxygen plasma treatment. The signal of the elemental O that
could be attributed to the oxygen plasma declined dramati-
cally upon reaching the AlN/AlGaNepi layer, indicating that
AlN is an effective diffusion barrier for O. The p-GaN layer
was completely oxidized. During all oxygen plasma treat-
ments, it can be assumed that the O concentration NS at
the surface of the p-GaN layer is always constant. The O
concentration profile N(x, t) within the p-GaN layer can be
expressed using Fick’s Law in one dimension:

N(x, t) = NSerfc

(
x

2
√
Dt

)
, (1)

where x is the depth from the p-GaN surface, erfc is the
complementary error function, t is the diffusion time, and
D is O diffusivity in GaN. The function D depends on
temperature (T):

D(T) = DOexp(−Ea/kT), (2)

where DO is the diffusivity (4.5 × 10−12 cm−2s−1) at infinite
T, Ea is the activation energy (0.23 eV) [19]. As suggested
by Equation (2), the characteristic O diffusion length in p-
GaN is 2

√
Dt, approximately equal to 87 nm (larger than
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FIGURE 3. (a) XPS spectra of O1s and (b) XPS spectra of Ga 2p3/2
core-level of HR-GaN surface after O2 plasma treatment.

FIGURE 4. (a) Transfer characteristics (IDS–VGS) and (b) output
characteristics (IDS–VDS) of AlGaN/GaN HEMTs with HR-GaN layer
(HR-HEMTs) and standard AlGaN/GaN HEMTs (ST-HEMTs).

the thickness of p-GaN), if the temperature is assumed to be
473 K at the p-GaN surface. In the proposed device, the AlN
layer serves as an oxygen diffusion barrier preventing further
O diffusion into the underlying layers. Because the AlN
layer protects the lower layers, a large process window of
oxygen plasma treatment can be used for device fabrication.
In addition, the material compositions of HR-GaN layers
were analyzed by XPS, as shown in Fig. 3 (a) and (b). The
green block is the experiment line, and the black dotted
line is the fitting line. Fig. 3 (a) indicates that the O1s
peaks comprise two components corresponding to Ga–O and
Mg–O bonds; Fig. 3 (b) indicates that the Ga 2p2/3 peaks
comprise three components corresponding to Ga–O, Ga–N,
and Ga–Ga bonds. The XPS data indicate that the Mg–O
and G–O signals for the oxidized p-GaN layer were clearly
visible in the O1 peaks, which suggests that the p-GaN layer
had been converted into a resistive layer, and no longer
functioned as a p-type layer. Aside from the fact that Mg
combined with O, the Ga–Ga signal was detected in the
Ga 2p3/2 peaks; this demonstrates that the bonds had been
interrupted [18].

FIGURE 5. (a) LFN spectra characteristics for AlGaN/GaN HEMTs with and
without HR-GaN layer; (b) SID/I2DS as a function of gate voltage overdrive
for AlGaN/GaN HEMTs with and without HR-GaN layer.

Fig. 4 (a) and (b) depict the transfer (IDS–VGS) and
output (IDS–VDS) characteristics of AlGaN/GaN HEMTs
with HR-GaN layer (HR-HEMTs) and standard AlGaN/GaN
HEMTs (ST-HEMTs). As shown in Fig. 4 (a), the off-
state drain current values for the HR-HEMT and ST-HEMT
were 4.4 × 10−7 and 1.03 × 10−6 mA/mm, respectively,
at VGS = 0 V and VD = 10 V. This result implies that
O2 plasma does not introduce extra plasma damage to the
devices. By contrast, non-optimized conventional etching of
p-GaN with corrosive Cl2-based gases may result in many
defects and dangling bonds [15]. These defects are traps;
they block electrons’ paths from the drain to source by
hopping conduction.
In the present study, the threshold voltage (VTH) value was

1.3 V in both types of devices. The drain ON/OFF current
ratio (ION /IOFF) values of the HR-HEMT and ST-HEMT
devices were 3.9 × 109 and 1.8 × 107, respectively, and the
subthreshold swing improved from 118 to 104 mV/decade
in the HR-HEMT case. Fig. 4 (b) graphs the IDS–VDSoutput
characteristic of the AlGaN/GaN HEMTs with and without
HR-GaN. The maximum output current density Imax was
88 mA/mm at a gate bias of 6 V, and the on-resistance Ron
was 31.8 �·mm for the ST-HEMTs. By contrast, Imax and
Ron were 159 mA/mm and 17.1 �·mm, respectively, for the
HR-GaN HEMTs. The higher output current performance
of the HR-HEMTs may have been provided by the AlN
stop layer that protected the AlGaN barrier layer. Compared
with devices fabricated with a conventional etching process,
HR-HEMTs have a favorable current density and low leak-
age current. The measured sheet resistances were 704 and
539 � per square for the control and the oxidized HR layer,
respectively.
To analyze the trapping/de-trapping for HR-HEMTs

and ST-HEMTs, low frequency noise (LFN) spectra were
taken under five bias conditions from 10 to 1000 Hz.
Fig. 5 (a) presents the drain current power spectral den-
sity SID normalized by the square of the drain current IDS2

versus the measurement frequency for both types of devices.
Overall, the noise level of HR-HEMTs was lower than that
for ST-HEMT by approximately one order of magnitude.
The spectral fluctuation mechanism can be analyzed from
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FIGURE 6. (a) Gate lag and (b) drain lag for AlGaN/GaN HEMTs with and
without HR-GaN layer. The quiescent drain bias (VD,Q) is 0 V during the
gate lag measurement, and the quiescent gate bias (VG,Q) is 0 V during the
drain lag measurement.

FIGURE 7. High-voltage breakdown characteristics of AlGaN/GaN HEMTs
with and without HR-GaN layer.

the slope of SID/IDS2 versus gate overdrive VG-VTH . The
mobility fluctuation model is dominant if the value of the
slope is close to 1; the carrier number fluctuation model is
dominant if the slope is close to 2 [18]. In this case, the
values of the slope for SID/IDS2 versus VG-VTH plot shown
in Fig. 5 (b) were −1.52 and −1.73 for HR-HEMTs and ST-
HEMTs, respectively, indicating that for ST-HEMTs, carrier
number fluctuation plays a more central role in noise.
Fig. 6 (a) and (b) graphs the dynamic on-state resistance

over static on-state resistance ratio (RDynamic,on: RStatic,on)
versus different quiescent gate or drain voltages. The pulse
width and period time were 2 µs and 200 µs, respectively.
The quiescent gate bias (VG,Q) was swept from 0 V to
−15 V with a step of −5 V and quiescent drain bias (VD,Q)
of 0 V. Obviously, the ST-HEMTs suffer from a larger cur-
rent collapse due to the surface defects that result from the
plasma etching process. Future studies should consider that
the AlN layer may have a passivation effect for both types
of devices. The drain lag measurement in Fig. 6 (b) exhibits
the same trend. A component with an HR-GaN layer pro-
vided by oxygen plasma treatment can be integrated into
AlGaN/GaN HEMTs; such devices will suffer less current
collapse, owing to the AlN diffusion barrier design and low
plasma damage. Overall, in the present study, the devices

FIGURE 8. IDS–VGS characteristics at a drain voltage of 10 V of AlGaN/GaN
HEMTs with and without HR-GaN layer under high temperature.

with AlN oxidation stop layers exhibited higher breakdown
voltage and low current collapse. Fig. 7 presents the high
voltage breakdown characteristics for both types of devices.
In a device that had an HR-GaN layer provided by oxy-
gen plasma treatment, the breakdown voltage VBR increased
from 360 to 545 V. Generally, the enhancement of VBR is
due to the reduction of peak electrical field near the gate
edge at the drain side by the negative polarization charge at
the interface of HR-GaN/AlGaN [21], [22]. When the tem-
perature increased, the IDS–VGS curve of HR-HEMTs had
a positive shift of approximately 0.47 V at a drain current
of 1 mA/mm, which was smaller than the 0.87 V positive
shift for ST-HEMTs. Furthermore, the current reduction at
a gate voltage of 6 V for HR-HEMTs was less than that of
ST-HEMTs. The thermal stability for the HR-HEMTs was
superior because they experienced relatively minor surface
damage.

IV. CONCLUSION
In this study, p-GaN gated AlGaN/GaN HEMTs with
a HR-GaN layer have been fabricated using oxygen
plasma treatment. Relative to standard p-GaN gated HEMTs,
these HR-HEMTs had a lower drain leakage current of
4.4 × 10−7mA/mm, a higher current on/off ratio of
3.9 × 109, and a higher output current of 159 mA/mm.
Due to the minor process damage inflicted by oxygen
plasma treatment, these HR-HEMTs had low on-state
resistance (17.1 �·mm), high off-state breakdown voltage
(530 V), and small current collapse. The technology of
using oxygen plasma treatment to produce HR-GaN layers
is a promising option for E-mode p-GaN gated AlGaN/GaN
HEMTs in power electronics.
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