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ABSTRACT We propose a designing of multi-layer neural networks using 2D NAND flash memory cell
as a high-density and reliable synaptic device. Our operation scheme eliminates the waste of NAND
flash cells and allows analogue input values. A 3-layer perceptron network with 40,545 synapses is
trained on a MNIST database set using an adaptive weight update method for hardware-based multi-layer
neural networks. The conductance response of NAND flash cells is measured and it is shown that the
unidirectional conductance response is suitable for implementing multi-layer neural networks using NAND
flash memory cells as synaptic devices. Using an online-learning, we obtained higher learning accuracy
with NAND synaptic devices compared to that with a memristor-based synapse regardless of weight update
methods. Using an adaptive weight update method based on a unidirectional conductance response, we
obtained a 94.19% learning accuracy with NAND synaptic devices. This accuracy is comparable to 94.69%
obtained by synapses based on the ideal perfect linear device. Therefore, NAND flash memory which
is mature technology and has great advantage in cell density can be a promising synaptic device for
implementing high-density multi-layer neural networks.
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I. INTRODUCTION

The neuromorphic computing that mimics neuro-biological
architectures present in the nervous system has been emerged
as an attractive field of research because of its power
efficiency [1]. Until now, spike-timing-dependent plastic-
ity (STDP) algorithm [2], [3] motivated by learning process
of real brains has actively been researched. However, STDP
learning algorithm is still improving but not yet mature,
resulting in poor performance compared to backpropagation
algorithm [4].

Unlike STDP, backpropagation is a widely used, well-
studied method in training deep neural networks (DNNs),
offering outstanding performance on datasets such as hand-
written digits (MNIST) [5]. Multi-layer neural networks

based on synaptic devices can reduce power consump-
tion greatly by replacing the vector-by-matrix mul-
tiplication with a dense crossbar array of analog
devices such as PCM, RRAM [6], and NOR flash
memory [7], [8].

However, several problems need to be addressed before
memristive crossbar arrays can be widely adopted, such as
high device variability, absence of precise device models and
stochastic behavior of devices [9].

In order to evade above problems, we can use Si-
based devices such as NOR flash memory and SRAM [10].
However, these memories have limitation of density because
of bit lines and word lines contact in each cell device. On
the other hand, NAND flash memory reduces ground wires
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and bit lines considerably, which allows a denser layout and
greater storage capacity per chip than those devices [11].

In the meantime, most of the works have been studied
about synaptic devices using PCM, RRAM [6] and NOR
flash memory [7], [8]. Another group used the measured
characteristics of a single device to implement vector matrix
multiplication in the NAND flash memory architecture [12].
However, all cells in NAND flash memory cannot be fully
used as synaptic devices because the size of all synapse
layers is determined by the number of word lines and the
number of bit lines [12]. In addition, in the scheme of
applying input voltages to word-lines [12], it is very dif-
ficult to allow analogue input values because of nonlinearity
of Igr, — VwL characteristics. In this work, we propose
a new operation scheme for implementing multi-layer neural
networks using 2-D NAND flash memory cells as high-
density, reliable synaptic devices. NAND flash memory is
a mature technology and has great advantages in cell density
and large storage capacity per chip because the cell string
in the array can be fabricated vertically (vertical NAND
flash) [13] and each cell string has many cells connected in
series between the bit line and the source line. Unlike [12],
we apply input values (voltage) into bit-line to allow ana-
logue input value satisfying weighted sum output equation.
In addition, the operation scheme in this work eliminates the
waste of NAND flash cells. Negative synaptic weight can
be represented using the difference in conductance (synaptic
weight, W;; = G;]'.’ - Gi;) between a pair of adjacent cells.
In our operation scheme, the current subtractor subtracting
the current from two adjacent synaptic strings can be reused
for all synapses in the synapse string, which reduces the
burden of circuits. We measured floating-gate 2-D (planar)
NAND flash cell strings fabricated with 26 nm technol-
ogy. We also investigated the device variation by measuring
NAND flash cells and checked the reliability of NAND flash
cells by measuring endurance and retention characteristics.
Using a matched computer simulation, a 3-layer perceptron
network with 40,545 synapses is trained using the weight
update method in [14] appropriate for our device and the
MNIST data set.

Il. OPERATION SCHEME OF MULTI-LAYER NEURAL
NETWORKS

To implement multi-layer neural networks using a synap-
tic device array, adaptive learning rule for hardware-based
multi-layer neural networks different from software-based
algorithm is needed as shown in Table 1. The input signal
(al(l_l) for the i neuron in the /—1 layer) and the weight
(Wj; for the weight of the synapse between the i" neuron in
I—1 layer and the j™ neuron in / layer) can be represented by
voltage (V;/~1D) and the conductance difference of a pair of
synaptic devices (Gl'.; — Gi;), respectively. In forward eval-
uation of a multi-layer perceptron, each layer’s inputs (V;)
drive the next layer’s neurons through weights W;; and activa-
tion function f. For backward propagation, each layer‘s error
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TABLE 1. Learning rule of software-based and hardware-based neural
networks.
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FIGURE 1. 3-layer perceptron in which synapse can be implemented using
NAND flash memory. Synaptic weight is encoded by the conductance
difference between a pair of adjacent NAND cells.

values (V) drive the preceding layer’s error value using gra-
dient descent method. By using sign of AW;;, we can update
the conductance of synaptic devices. Weight (W;;) of synap-
tic device can be modified by one step (|AG;|, —|AG?J.'|)
at each iteration according to sign of AW;; to reduce the
burden of periphery circuit [14].

As shown in Fig. 1, to use NAND flash memory cells as
synaptic devices, we apply input values (voltages) to the bit-
lines for the following reasons. The scheme which applies
input to the bit-lines allows analogue input values satisfy-
ing weighted sum output equation, I = > (GT — G7)V,
because output current is zero when the bit-line voltage is
zero and bit-line current increases linearly with increasing
bit-line bias in linear region. However, in the scheme of
applying input voltage to the word-lines [12], it is very dif-
ficult to allow analog input values because output current
may not be zero when the word-line voltage is zero and bit-
line current increases exponentially with increasing word-line
bias. In addition, as shown in Fig. 1, by using conductance
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difference between a pair of adjacent cells to represent synap-
tic weight (Wj; = G; — Gi;), negative synaptic weight can
be represented [4]. Note two cells in the same position in
two adjacent cell strings have nearly identical device char-
acteristics, so we can minimize the mismatch between two
cells that represent one synapse.

Forward propagation simply subtracts read current
between a pair of bit lines and sums the total currents through
electronic devices such as capacitor as shown in Fig. 2 (a).
Fig. 2 (a) represents 785 x 51 x 2 synapse array between
the I-1" neuron layer and the /™ neuron layer. The output
currents for all neurons in /M layer are produced sequen-
tially when the read pulse sequentially enters the word line
as shown in Fig. 2 (b). When the k™ pulse is applied to the
k™ word-line, the output current flows for the k™ neuron in
the /™ layer. During this process pass bias is applied to the
unselected word-lines to read the k™ cell current as shown
in Fig. 2 (c) and (d). Since the resistance of the selected cell
is always much greater than that of the unselected cells with
large pass bias applied, the output current primarily depends
on the threshold voltage of the k" word-line cell. Then,
the overall current for the k™ row is summed as shown in
Fig. 2 (c). When the overall output current for all neurons in
IM layer is sequentially produced, the output current stored
in computing system is passed to / layer neurons.

Another research group has proposed an operation scheme
to implement vector matrix multiplication (VMM) in the
NAND flash memory architecture [12]. In [12], the size of
all synapse layers is determined by the number of word-
lines and the number of bit-lines, so that NAND flash cells
cannot be fully used as synaptic devices. On the other hand,
there is no waste of NAND flash cells in our scheme. In
addition, using this scheme, the current subtractor subtracting
the synaptic string can be reused for all synapse in synapse
string as shown in Fig. 2 (a), which reduces the burden
of circuits. In addition, program inhibition by boosting the
channel potential is used to program only one cell in a row
by applying a high bias to the unselected bit-lines and a low
bias to the selected bit-line [15].

For an M x N synapse array, the time complexity
of VMM using NAND flash memory is O(N) and it is
larger than O (1) which is the time complexity of VMM
using memristor array. However, recent state-of-the-art DNN
algorithms typically require enormous parameter size. As
a way to accommodate this, NAND flash memory which
has great advantages in cell density can be a promising
candidate for synaptic device. Because NAND flash architec-
ture reduces ground wires and bit-lines considerably, which
allows a denser layout and greater storage capacity per
chip than other memory devices. In addition, it can be
fabricated vertically, which allows great density [16]-[18].
Furthermore, by using sequential reading method, the cur-
rent subtractor subtracting the current of synaptic string
which consists of two adjacent cell strings can be reused
for all synapses in the synapse string, which significantly
reduces the burden of circuits. In addition, 3-D NAND flash
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FIGURE 2. (a) Schematic of forward propagation of multi-layer neural
networks using NAND flash memory. (b) Pulse-timing diagraph which is
applied to word-lines. (c) Schematic of Forward propagation for producing
the output current for kth neuron in /th layer. (d) Pulse-timing diagraph for
producing the output current for each neuron in /th layer.

memory has been demonstrated as technologically mature
and cost-competitive technology among the various non-
volatile memory technologies [16]-[18]. Therefore, NAND
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FIGURE 3. (a), (b) Weight update method when G~ reaches its minimum
value.

flash can be a promising synaptic device for implementing
high-density multi-layer neural networks.

As the synaptic device has discrete and finite conduc-
tance, we need adaptive weight update method. Conductance
of synaptic device can be modified by one step at each
iteration according to sign of error value to reduce the bur-
den of periphery circuit which updates the conductance of
synaptic devices by applying programming/erasing pulses.
In software-based multi-layer neural networks, weight can
be modified to exact target value according to the calcu-
lated error values. However, in hardware-based multi-layer
neural networks, as the synaptic weight has discrete values,
the weight can be modified to approximate target values. If
multiple pulses are required for updating synaptic weight to
approximate target value, we need to check the current con-
ductance of the device and calculate the number of pulses
required to reach the target conductance. It imposes big bur-
den to periphery circuit. Therefore, updating the synaptic
weight value by one step at each iteration reduces burden
of external circuit.

As two synaptic devices are required to represent negative
weight value (W;; = G;; — Gl.;), there are several ways to
update synaptic weight. In other words, both increasing G*
and/or decreasing G~ result in increasing the weight. As
NAND flash memory has higher learning accuracy when
the conductance response is unidirectional as shown in
Fig. 4(c) than when the conductance response is bidirec-
tional, we can only decrease the G~ to increase the weight
value (W;). However, as devices have finite conductance
response, there is a case when weight needs to be increased
(AW;; >0) but G~ reaches its minimum conductance value
(Gmin), and G~ can no longer be decreased. In this case, there
are two ways to update weight values. First, it is possible to
initialize both G and G~, with a subsequent decrease in G~
as shown in Fig. 3 (a) [19]. Second, GT should be reset to
Guax and decreased to the target value by applying a series
of program pulses sequentially as shown in Fig. 3 (b) [14].

11l. EXPERIMENTAL MEASUREMENT

In this work, we used floating gate 2D (planar) NAND flash
cell strings fabricated with the 26 nm technology. One cell
string consists of 64 cells, two dummy cells, a drain select
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FIGURE 4. (a) Measured /g, -V, curves when selected cell is programmed
30 times. (b) Bidirectional conductance response when selected cell is
programmed 30 times and erased 30 times. (c) Unidirectional conductance
response for 3 cycles when selected cell is programmed 30 times and
erased at once.

line (DSL) transistor, and a source select line (SSL) tran-
sistor. The channel length and width are 26 and 20 nm,
respectively [20].

Fig. 4 (a) shows the decreasing bit-line current (/pr)
curves when selected cell is programmed 30 times in a VgL
range of 0 V 1 V at a pass bias of 6.5 V. As device has
higher accuracy when it has large dynamic range [21], we
used voltage pulse of 14 V which is minimum voltage for
programming for a given program time of 100 us. Electrons
are emitted from channel and injected into floating gate by
applying programming pulse, which increase the threshold
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voltage and decrease the bit-line current (/gr). Using iden-
tical programming pulse (14 V, 100 us) reduces the burden
of periphery circuit, because different pulse size accord-
ing to present conductance state needs enormous amount
of calculation.

Fig. 4 (b) and (c) show measured bidirectional con-
ductance response and unidirectional conductance response
of selected cell, respectively. Conductance is measured as
Ip1./VeL at VgL of 0.2 V. The selected cell is programmed
(14 V, 100 ws) 30 times and erased (—9 V, 100 wus) 30 times
to represent bidirectional conductance response. On the other
hand, selected cell is programmed (14 V, 100 us) 30 times
and erased (—10 V, 100 us) once to represent unidirectional
conductance response as shown in Fig. 4 (c).

For comparing our synaptic device with other devices
reported up to date, we use the behavior model for NAND
flash cell, ideal perfect linear device, and memristive device.
Fig. 5 shows normalized conductance versus the number
of pulses in three devices, using behavior model [22] in
equations (1) and (2)

G- Gmin )
8G, = a,exp| -y ——F— (1)
b r P< b Gmax — Gmin
Gmax — G
8Gq = agex (—ﬂa—) (2)
P Gmax — Gmin

where ay, is a fitting parameter and B, is a nonlinearity factor
of the potentiation characteristic, similarly oq and Bq for the
depression characteristic. In addition, G is the conductance of
electronic synapse devices. Gmax and G, are the maximum
and minimum conductance, respectively.

Equation (1) can be expressed as follows

Gin+1) -G _ AG

3Gy = 1 An
G(n) — Gmin
= - 3
“ exp( '3 Gmax - Gmin) ( )

where, n is the number of pulse, & and 8 represent ap, and S,
respectively. We can approximate above equation as follows
to be transformed into the derivative form

dG G(n) — Gmin)
— =aexp|l ——7— ). 4)
dn p( ,3 Gmax — Gmin

Integrating the above equation yields the following equation

Gmax — Gmi
Grrp(n) = Giip + 22— ln( “p )

ﬂ Gmax - Gmin
Gmax — Gmin In (}’l 1+ Gmax — Gmin).
B op

()

Therefore, the conductance logarithmically increases as
the number of pulses increases in the behavior model.

In memory devices, the amount of the stored charge
increases logarithmically as the number of potentiation
pulses increases [23], because the previously stored charge
reduces the amount of charge stored by the additional
pulses by the Coulomb repulsion. The charge stored in the
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FIGURE 5. (a) Bidirectional conductance responses of NAND flash, ideal
perfect linear device, and memristor [26]. (b) Unidirectional conductance
responses of NAND flash, ideal perfect linear device, and memristor [26].

floating-gate below the gate acts as a gate bias to induce
carriers (electrons or holes) in the channel. Thus, the effec-
tive gate bias increases logarithmically as the number of
potentiation pulses increases. Furthermore, previous works
using physical modeling have shown that the threshold volt-
age logarithmically increases as the time of program pulse
increases [24], [25]. An increase in the program time corre-
sponds to an increase in the number of pulses. In addition,
we measured the conductance in the linear region. In the
linear region, the current linearly decreases with increasing
threshold voltage. Consequently, the current logarithmically
increases as the number of erase pulses increases, and log-
arithmically decreases as the number of program pulses
increases.

Since both the physical modeling of floating gate device
and the behavior model in [22] mean that the conductance
logarithmically increases as the number of erase pulses
increases, we used the behavior model to fit the conductance
behavior of NAND flash memory cells.

Because the maximum value of conductance for real
devices is limited, the dynamic range of conductance is
important for learning performance. In this case, we assumed
that the conductance of each device reaches minimum con-
ductance from the maximum conductance after 30 pulses.
Fig. 5 (a) and (b) show bidirectional and unidirectional
conductance response of devices, respectively.

IV. SIMULATION PATTERN
RECOGNITION

We designed a 3-layer perceptron networks using NAND
flash as synaptic devices and evaluated classification accu-
racy for MNIST hand written digit sets using matched
computer simulation. Fig. 6 shows full learning procedure
for designed neural networks. We adopt the online learn-
ing updating the weight of synaptic device at each training
sample to reduce the burden of synapse array and periph-
eral circuits. In addition, weight (W) of synaptic device
can be modified by one step (|AGZ.;|, —|AG;7|) at each
iteration according to sign of AW to reduce the burden of
periphery circuit. In this simulation work, the conductance
response data from Fig. 5 are used for multi-layer percep-
tron. Fig. 7 represents activation function. Black and red line
indicates hard-sigmoid function and differential value of it,

RESULT OF MNIST
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respectively. 60000 sets of MNIST are used for training
and 10000 sets are used for testing accuracy. Input neu-
rons are driven by pixels transformed to gray scale digital
pulse (0 to 1 V). After forward propagation and computing
error values, weight can be changed by one step at each
iteration using identical pulse. The sign of weight (AWj) is
used to determine whether the weight should be increased
or decreased.

Fig. 8 shows simulated classification accuracy using con-
ductance response in Fig. 5. Using bidirectional conductance
response in Fig. 5 (a), the simulated accuracies for NAND
flash, perfect linear, and memristor devices are 87.92%,
94.14% and 85.99% respectively as shown in Fig. 8 (a).
In Fig. 5 (a), the NAND flash has more linear conductance
response than memristor during programming, but has more
nonlinear conductance during erasing. Therefore, in bidirec-
tional conductance case, accuracy obtained by using NAND
flash is similar to accuracy obtained with a memristor-based
synapse.

On the other hand, using unidirectional conductance
response in Fig. 5 (b) and weight update method in Fig. 3 (a),
the simulated accuracies for NAND flash, perfect linear,
and memristor devices are 86.14%, 93.89% and 72.58%
respectively as shown in Fig. 8 (b).
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FIGURE 8. (a) Simulated classification accuracy obtained by using the
bidirectional conductance response in Fig. 5 (a). (b) Simulated
classification accuracy obtained by using the unidirectional conductance
response in Fig. 5 (b) and weight update method in Fig. 3 (a). (c) Simulated
classification accuracy obtained by using the unidirectional conductance
response in Fig. 5 (b) and weight update method in Fig. 3 (b).

Even if the weight update method changes, the ideal
synapse with a linear conductance response has almost the
same accuracy. However, when the weight update method
shown in Fig. 3 (a) is applied, a network composed of
synapses with a large nonlinearity is greatly degraded in
accuracy. Since the NAND synapse device has a more
linear conductance response than the memristor device as
shown in Fig. 5 (b), a network composed of NAND synapse
devices has higher accuracy than that composed of memristor
devices.

Fig. 8 (c) shows accuracy obtained by using unidirectional
conductance response in Fig. 5 (b) and weight update method
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FIGURE 9. Conductance responses of 30 NAND flash cells for 30 states.

in Fig. 3 (b). The simulated accuracies for NAND flash, per-
fect linear, and memristor devices are 94.19%, 94.69% and
93.53% respectively. The learning accuracy obtained by the
unidirectional conductance response and the weight update
method in Fig. 3 (b) is higher than that obtained by the bidi-
rectional conductance response. This is because the weight
update method in Fig. 3 (b) reduces the asymmetry between
weight increase and weight decrease, which is an important
factor for high learning accuracy [14]. Therefore, when the
weight update method in Fig. 3 (b) is applied, the accuracy
obtained using NAND flash cells is similar to that obtained
with ideal perfect linear devices. Thus, the unidirectional
conductance response is suitable to implement multi-layer
neural networks using NAND flash cells as synaptic devices.

NAND flash cells were measured for 30 conductance
states to investigate the device variation as shown in Fig. 9. In
addition, drain current has a linear relationship with threshold
voltage in linear region and threshold voltage in NAND flash
follows Gaussian distribution [27]. Therefore, we assumed
the conductance distribution of NAND flash memory cells
follows a Gaussian distribution, X ~ N (1.25, 0.04). Learning
accuracy with respect to device-to-device variation and cycle-
to-cycle variation is investigated to check the effect of device
variation on learning accuracy. Fig. 10 (a) shows the effect
of device-to-device variation on learning accuracy when the
weights are updated on off-chip and the weights are updated
on synaptic devices. We assumed the distribution of the
conductance of synaptic devices follows the Gaussian distri-
bution X(1, o) and the standard deviation varies from O to 1.
Learning accuracy is degraded from 94.3% to 13.11% when
the weights are updated on off-chip. However, learning accu-
racy is negligibly degraded from 94.19% to 93.12% when the
weights are updated on synaptic devices as the standard devi-
ation increases from O to 1. In other words, neural network
is robust to device-to-device variation when the weights are
updated on synaptic devices. Fig. 10 (b) shows the effect of
cycle-to-cycle variation on learning accuracy. As shown in
Fig. 10 (b), the learning accuracy is degraded from 94.3%
to 10.11% as the standard deviation increases from O to 1.
Therefore, the cycle-to-cycle variation has a more detrimen-
tal effect on the learning accuracy than the device-to-device
variation.
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FIGURE 10. Simulated classification accuracy with respect
to (a) device-to-device variation and (b) cycle-to-cycle variation. The
variation is assumed to have a Gaussian distribution.
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FIGURE 11. Retention characteristics of conductance states. NAND flash
memory cells fabricated with 26 nm technology are measured.
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FIGURE 12. Conductance response of fresh, 100 and 1k cycled cell.

To check the reliability of NAND flash cells, endurance
and retention properties are measured. Fig. 11 shows
the retention characteristics of conductance states at
25°C. Compared to conventional NAND flash memory,
a smaller program bias is used and the amount of electrons
stored in the floating-gate is relatively smaller. Therefore,
synaptic devices using NAND flash cells have excellent
retention characteristics as shown in Fig. 11. We also inves-
tigated the cycle-to-cycle variation of NAND flash memory
cells. As shown in Fig. 12, we can observe the conduc-
tance of the cell is almost the same up to lk cycles. In
one cycle, the cell is programmed 30 times by applying
30 pulses with a width of 100 us and a voltage of 14 V
and erased by applying 1 pulse with a width of 100 us and
a voltage of —10 V. The cycle-to-cycle variation is expressed
as a percentage of the entire weight range. The calculated
cycle-to-cycle variation is 1.7%. Fig. 13 illustrates the pass
bias disturbance. One program pulse reduces conductance
by 130 nS, while conductance is reduced by 4nS, after 10
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FIGURE 13. Conductance change after applying 105 pass bias pulses.
When one pulse is applied for the program, the conductance changes
significantly, whereas the pass bias pulses of 105 have a negligible effect
on the conductance.
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FIGURE 14. Learning accuracy with the dynamic range of synaptic device.

pass bias pulses are applied. Therefore, pass disturbance has
a negligible effect on the conductance of synaptic devices.

We investigate the effect of dynamic range on learn-
ing accuracy. Fig. 14 shows the learning accuracy over the
dynamic range of synaptic devices.When the dynamic range
is above 32, the learning accuracy remains above 94% and
the accuracy drops significantly when the dynamic range
is less than about 30. When learning MNIST data, it can
be said that 30 levels of dynamic range are sufficient. It is
expected that higher dynamic range is required for learning
more complex images.

V. CONCLUSION

In this paper, we have proposed an operation scheme of
multi-layer neural networks using 2D NAND flash memory
cell as a high-density and reliable synaptic device. Our
scheme eliminates the waste of NAND flash cells and
allows analogue input values satisfying weighted sum out-
put equation. The conductance response of NAND flash
cell is compared with those of memristor and perfect lin-
ear device. By using the conductance response and suitable
weight update methods for hardware-based multi-layer neu-
ral networks, we implemented a 3-layer perceptron networks.
A 3-layer perceptron network with 40545 synapses was
trained on a MNIST database set. By comparing bidirec-
tional with unidirectional conductance responses in terms of
classification accuracy, it has been shown that unidirectional
conductance response is suitable to implement multi-layer
neural networks using NAND flash cells as synaptic devices
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with adaptive weight update method. Simulated classifica-
tion accuracy using NAND flash cells is comparable to
that obtained by perfect linear device. Finally, NAND flash
memory which is cost-competitive, mature technology and
has great advantage in cell density and large storage capac-
ity can be a promising synaptic device for implementing
multi-layer neural networks.
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