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ABSTRACT With a large-area field electron emitter (LAFE), it is desirable to choose the spacings of
individual emitters in such a way that the LAFE-average emission current density and total current are
maximised, when the effects of electrostatic depolarization (mutual screening) are taken into account.
This paper uses simulations based on a finite element method to investigate how to do this for a LAFE
with randomly distributed emitters. The approach is based on finding the apex field enhancement factor
and the specific emission current for an emitter, as a function of the average nearest neighbor spacing
between emitters. Using electrostatic simulations based on the finite element method, the influence of
neighboring emitters on a reference emitter being placed at the LAFE centre is investigated. Arrays with 25
ideal (identical) conical emitters with rounded tops are studied for different emitter densities and applied
macroscopic fields. A theoretical average spacing is derived from the Poisson Point Process Theory. An
optimum average spacing, and hence optimum emitter density, can be predicted for each macroscopic
field.

INDEX TERMS Field electron emission, large area field emitters, micro-nano-integration, modelling,

simulation.

I. INTRODUCTION

Field electron emitters are important for vacuum electron
sources and already find applications, e.g., as cathodes in
vacuum gauges [1]-[3] or X-Ray sources [4], [5]. For high
current applications, large-area field emitters (LAFEs) are
commonly used.

Detailed field electron emission (FE) measurements of
cathodes with in-situ deposited gold nanocones have been
presented recently [6]. These LAFEs are fabricated using
asymmetric etching of low-cost, ion-track polymer mem-
branes and subsequent electro-deposition. Due to the fabri-
cation process of the membranes, the ion tracks are randomly
distributed on the foil, leading to nanocones with the same
distribution, as shown in Fig. 1. It is planned that these
cathodes will be used in an ionization vacuum gauge, which

needs a stable total emission current in the order of some
hundred microamperes [2]. There are two main options to
increase and thus optimize the total emission current of the
LAFE: decreasing the emitter apex radii to obtain higher
field enhancement, or alternatively optimizing the emitter
density and therefore the electrostatic interactions between
the emitters. Decreasing the emitter apex radii is tech-
nologically not easy due to the fabrication process. Thus
attention here is concentrated on optimizing the emitter
density.

A parameter of particular interest is an emitter’s apex
field enhancement factor (FEF) y. In the context of a
model in which an emitter stands on one of a pair of ade-
quately separated parallel planar plates, the emitter’s apex
field enhancement factor (FEF), y, is defined as the quotient
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FIGURE 1. SEM image of randomly distributed gold nanocones (with a
mean density of 1 x 106 cones/cm2) fabricated using asymmetrically
etched, low-cost polymer membranes as templates and filling the pores
via electrodeposition.

Fa/F\m of its apex field F, to the mean (or “macroscopic”)
field F\ between the plates.

Complete simulations of LAFEs are time-consuming due
to the necessary multi-scale modelling and meshing of small
emitting structures in the presence of larger electrodes.
Hence, normal practice is to consider separately (a) the
emission from a single isolated emitter, and (b) interactions
between emitters due to electrostatic depolarization effects
(usually described as “screening” or “shielding”).

Single-emitter models analysed include the “hemisphere-
on-cylindrical-post” model, the “hemi-ellipsoid” model, and
the “parabolic tip” model (e.g., [7]-[9]). Interactions between
emitter pairs, and in regular emitter arrays, have been investi-
gated (e.g., [10], [11]). Recently, line-charge models (LCMs)
have been used to describe both single emitters and emit-
ter arrays [12]-[15]. Further, in an attempt to represent
fabrication inhomogeneities, emission from LAFEs with a
Gaussian distribution of apex field enhancement factors has
been modelled [16].

However, there is also a need for models that treat elec-
trostatic depolarization effects in arrays where the emitters
are randomly distributed. In particular, there is a need to
predict the optimum emitter density, i.e., the mean number
of emitters per unit area, in order to be able to maximize
the total emission current and hence the efficiency (in appli-
cations) of a randomly distributed LAFE. So far, there are
very few such models that do this.

Very recently, Biswas and Rudra [17] published an analyt-
ical model for the emission of randomly distributed emitters
based on a LCM.

In older works, Read and Bowring [18] investigated the
distribution of field enhancement factors for both ordered
and randomly distributed CNT arrays, using simulations
based on a finite element method (FEM). However, to
evaluate and optimize the performance of arrays with dif-
ferent emitter densities, it is necessary to investigate the
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behaviour of the macroscopic (“LAFE average”) emission
current density (ECD).

Il. PHYSICAL BACKGROUND

The aim of this work is to determine the optimum emitter
surface density for a very large (effectively infinite) ran-
dom emitter array. However, currently it is computationally
impracticable to carry out FEM simulations for very large
arrays, and one needs to work instead with a random array
(or “cluster”) of finite size, say N emitters. In our case,
this is taken as an array of N = 25 emitters, assumed to be
drawn from a population with average emitter surface density
o. Thus, the average area per emitter (“emitter footprint”)
is 1/o.

One of these emitters (designated the reference emitter) is
regarded as an emitter that is typical of emitters in an infinite
array, and is placed at the center of a so-called footprint circle
of area N/o, and hence of footprint radius rgor = (N/ JTO')%.
Numerical simulations on this central reference emitter, when
treated as an isolated single emitter, lead to a value y; for
its apex FEF. The presence of other emitters in the very
large random array will cause depolarization effects, usually
called “mutual shielding” or “screening” [10], [11], [19],
and hence a reduction in the apex FEF. The total depolar-
ization effect can be considered as the result of effects of
three kinds.

1) Depolarization effects associated with a finite regular
array of N emitters all with emitter footprints of 1/o.

2) Changes (normally an increase) in depolarization

effects due to randomisation of the array of N emitters.

3) Depolarization effects due to the remaining emitters in

the very large array; these are called here the distant

emitters.
The reason why randomization normally leads to an increase
in depolarization effects in comparison to regular arrays is
as follows. Except at very small emitter separations (which
are not of significant interest in the present context), the
strength of the depolarizing effect depends on the emitter
separation d as d~" where 1 < n < 3, (n becomes equal
to 3 in the limit of large separations [11], [20]). Hence, an
emitter in the regular array that is moved “inwards” (towards
the central emitter) by a small distance & strengthens the
depolarization by an amount that is greater than the amount
by which the depolarization is weakened if an equivalent
emitter is moved outwards by a small distance §. Hence, on
average, the overall effect of randomization is to expected
to strengthen depolarization.

It is relatively easy to investigate effects (1) and (2) by
using electrostatic simulations based on FEM. But this leaves
open the question of how to deal with effect (3). Our view is
that, at present, it is not clearly known how best to deal with
depolarization effects due to the distant emitters, and that
detailed research into this issue is required. The present paper
aims to be an exploratory paper that make a preliminary
investigation of the combined influence of effects (1) and
(2) above, leaving exploration of effect (3) to future work.
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TABLE 1. Geometrical parameters used in the FEM simulation.
Geometrical parameter Symbol | Value
Emitter base radius Thase 1.75 pm
Emitter apex radius Ttip 25.0 nm
Emitter height 24.0 pm
Cathode-anode-distance dca 120.0 pm
Emitter surface density o variable
Av. NN separation d dep. on o
Av. spacing s d/h
Footprint circle area A N/o
Footprint circle radius Tfoot \/N/mo
Applied potential difference variable
Simulation box radius Tsim 500 pm

TABLE 2. List of used quantities and constants.

Quantity or constant Symbol | Value and/or unit, ref.

Reference emitter cur- | I7 A

rent

Emitter density o 1/em?

FEF ¥

FN-constants apN 1.54-1076 A-eV /v2 [25]
bEN 6.83 - 109 V/(eVz -m), [25]

Local electric field F V/m

Macro. appl. elec. field | Fiu V/m

Geometry factor g

Local ECD JL A/m?

Macro. ECD Jm A/m?

SN-barrier functions tg see [25]
VE see [25]

work function (Au) Dw 4.82 eV [26]

The procedure will be applied to LAFEs fabricated
using conically shaped emitters with hemispherical tips, as
described earlier. However, it also can be used for any
geometry of field electron emitters.

IIl. MODELLING
This section uses the parameters shown in Tables 1 and 2.
Its structure is as follows.

First, we describe the general geometrical and statistical
arrangements, and give information about the finite element
methods (FEM) used in the electrostatic simulations.

Next, we discuss the modelling of a single isolated emitter,
determine a value for the related apex FEF y; and derive
a formula for the related emission current I; as a func-
tion of the apex field F,. The situation in an array is then
considered.

After this, statistical/electrostatic simulations and analysis
are carried out, in order to make empirical determinations of
the average nearest-neighbour (NN) distance dnn between
(the symmetry axes of) the central reference emitter and the
nearest emitter, and of the corresponding average apex FEF
y for the central reference emitter. These distances dnN are
used to define dimensionless average NN “spacings” 5 by
the formula 5 = dnN /h. The simulations are carried out for
a set of five emitter surface densities, and for two values
of Fy. In each case, at least 14 different random emitter
placements are used in order to determine the average values
s and y.

In addition, thereby demonstrating consistency, these aver-
age NN distances can be compared with a theoretical
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FIGURE 2. lllustration in cross-sectional view of the geometrical
parameters used to simulate the FEF and the emission current of an
emitter within an array of randomly distributed emitters. The boundary
conditions used are also shown. The emitter surfaces as well as the
bottom surface of the cathode are grounded. The electrostatic potential U
is applied to the lower surface of the anode. The footprint and therefore
the array size are characterized by the radius rgyq;. The maximum rgyq¢
used in the simulation is 282 xm, corresponding to an emitter density of
104 emitters/cm?. The radius rg;,,, of the simulation box is kept constant at
500 pm. The green dashed lines illustrate the borders of the simulation
box at which the electrostatic field is tangential to the sides (or
perpendicular to the normal vector of the sides).
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FIGURE 3. Top view on a regular square array and an array with randomly
distributed emitters. The FEF and the emission current of the emitter at the
array center - marked with an arrow - are observed.

prediction of Poisson Point Process Theory (PPPT), that
holds for sufficiently large emitter arrays as it describes
infinitely large distributions without a border.

The results are then used in a regression analysis that
derives a formula for y as a function of 5. For each
given macroscopic field, this formula is then used to derive
information about how the macroscopic (“LAFE average”)
emission current density is predicted to vary with average
NN spacing 5 (and hence with emitter surface density). From
this, a predicted maximum current density for field F, and
a related optimum average emitter surface density, can be
derived.

The following sections discuss these results.

A. SIMULATION ARRANGEMENTS

The geometrical parameters for each identical rounded con-
ical emitter used in the simulation are given in Table 1 and
are based on the actual parameters of the fabricated emitters,
as shown in Fig. 1. We consider an array of 25 emitters being
placed on one of a pair of parallel, circular planar plates, as
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shown in cross-sectional view in Fig. 2. The reference emit-
ter is placed at the plate center. The axes of symmetry of the
other 24 emitters are placed randomly (as described below)
within a “footprint circle” of area A = 25/0, where o is
the selected emitter surface density. The circle has a radius
Ffoot = ~/A/m. Fig. 3 b) illustrates one such placement.

The studied densities are 10%, 5 x 104, 10°, 5 x 10° and
10° emitters per cm? with corresponding values of rgot
lying between 28.2 um and 282 um. The radius rsm of
the cylindrical simulation box is kept constant at 500 pm.
The cathode-to-anode plate separation dca is chosen to
be 120 pum, which is equal to five times the total height
h of each emitter. This ratio should be large enough for
anode-proximity effects to be disregarded [21], [22].

Depending on the precise placements of nearby emitters,
the apex FEF of the central reference emitter and hence its
specific emission current /7 will change between different
placements. As discussed in Section II, there is an issue as
to how many emitters need to be considered in order to get
a reliable result for the average apex FEF and the specific
emission current.

For a regular square array, Harris et al. consider that sixth
and higher-order nearest neighbours do not contribute signif-
icantly to depolarization effects at the central emitter [23].
This statement implies that, for square-shaped arrays, con-
sidering arrays of 25 emitters delivers representative results,
compare Fig. 3 a). The assumption has been made here that
taking 25 as the number of simulated emitters is sufficient
in all cases (also for random arrays, see discussion later.)
This number is kept fixed for all simulations. There is also
an issue as to how many placements, for given values of
o and chosen macroscopic field Fy;, are needed to make
a valid estimate for the reference emitter’s apex FEF. As
indicated above, we have used at least 14 different emitter
arrangements in each case.

Simulations are carried out using MATLAB and CST EM
Studio.

To obtain a homogeneous distribution of emitters per
area on a circular area, a random generator implemented in
MATLAB is used, delivering random numbers p, € [0, 1],
and polar coordinates (r,¢) of the emitters are defined
by [24]

ri = /Pi,1 * Ffoot (D
@i =27 - pip. 2

As already noted, the reference emitter is always located
at the array center, but for each of the other 24 emitters a
pair of coordinates is created by this procedure. Based on
this list of coordinates, emitters are positioned in the parallel
plate configuration in CST-Studio via a VBA-interface from
MATLAB, compare Fig. 3 and Table 1. An exemplary array
is shown in Fig. 4 a).

The electrostatic solver of CST EM Studio is con-
trolled via a VBA interface from MATLAB and uses
FEM to simulate the electrostatic potential distribution for
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FIGURE 4. a) An exemplary simulated emitter array containing 25 conical
emitters with spherical tips is shown. In this example, the emitter density
is 106 emitters/cm2. For each of the 5 simulated emitter densities, at least
14 different emitter distributions are simulated and analysed, especially
the electrostatic field at the reference emitter tip located at the array
center. b) To avoid self-intersections of the meshes of the spherical tip and
the conical body of the emitter, the space around the tips is fine-meshed
to a radius of 3 times the tip radius (i.e., 75 nm). c) Detailed view of the
surface mesh of a single tip with a radius ry;, = 25 nm. The electrostatic
field is mapped around the reference emitter tip at a distance from 0.1 nm
to the emitter surface.

this configuration. The anode-to-cathode potential differ-
ences used are 800 V (Fy ~ 6.66 MV/m) and 1000 V
(Fm =~ 8.34 MV/m).

To analyze the electrostatic field later on, a pointlist of
coordinates on a hemisphere around the emitter tips at a
distance of 0.1 nm from the emitter surface is created and
transferred to CST EM Studio. As it is usual in simulations
of this kind, the emitter is (for simplicity) modelled as a
perfect classical conductor with a work function that is the
same at all points on the conductor surface. This allows us
to assume that the electrostatic potential is the same at all
points immediately outside the model surface.

Meshing of the setup has to be done carefully, as the
whole setup has geometries interacting at up to 2 orders of
magnitude: the emitter tips have a radius of 25 nm and the
diameter of the simulated array is in the order of micrometer.
Therefore, the space around the emitter tips at a radius of
up to 75 nm is particularly fine-meshed, compare Fig. 4 b).
In Fig. 4 an exemplary simulated emitter array is shown, as
well as detailed views of the mesh around the emitter tips
and on the emitter surface.
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After meshing and solving, CST EM Studio returns the
values of the electrostatic field at the pointlist coordinates
to MATLAB.

B. ELECTROSTATIC INTERACTION BETWEEN EMITTERS

To model the field emission characteristics of the reference
emitter (namely its field enhancement factor y and specific
emission current /1) as a function of the emitter distribu-
tion and the applied electrostatic field, the situation at the
reference emitter apex will be discussed. First, the situation
for an isolated single emitter is outlined. Based on this, the
situation of the reference emitter in an array is considered.

For a given value of macroscopic field Fy, FEM simu-
lation gives local electric field (F)) values on the surface of
an isolated single emitter, and hence the values of its apex
local field Fy = y1Fwm and apex FEF yj. For our emitters
y1 is found to be 475.9.

A formula for the current /1 from this emitter can be
obtained by integrating the local emission current density
(LECD) JL(F) over the surface of the emitter and writing
the result in the form

L =An-Ja 3)

where J; [:= JpL(Fa)] is the apex LECD and A, is
the emitter’s notional emission area, which is defined by
this equation. For the LECD, Murphy and Good’s zero-
temperature FE equation (MG FE equation) from 1956 is
used [27]. It reads

3
aFN~F2 [oX

JL(F) = - -exp| —brx - VE - —+ )
WtF F

with the Fowler-Nordheim constants apy and bpn as given
in Table 2, tp and vg as appropriate particular values of the
Schottky-Nordheim barrier functions [25], [28], [29] and F
as the local barrier field at the emitter surface. In this case,
a work function ®w = 4.82 eV for gold was used to fit the
model to the fabricated emitters [26]. Strictly, equation (4) is
only applicable for metallic emitters. For example, carbon-
based emitters, the MG FE equation should (in principle) be
modified as suggested in [29].

In the present work, instead of A, it is more convenient
to use a “geometry factor” g (also called a “notional ratio
factor” [30], or a “notional apex efficiency”) defined by

An Il

g = 5 et
27rrtip Ja 2w

) ®)
i
where ryp is the apex radius of curvature. The parameter
g is a function both of the apex field F, (= ya Fm) and of
the emitter shape [30]. For some tip geometries, for exam-
ple hemispherical and hemi-ellipsoidal protrusions, analytical
expressions exist for g(F,) [30]. However, Jensen suggests
that the geometry factor can be approximated with a linear
function for other geometries as well [30]. This assumption
is adopted at this point, although the form of the underlying
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function for g is an issue of current research. However, the
linear approximation seems to be a valid first estimation.
Using the isolated-emitter simulation results for two dif-
ferent values of Fy (namely 6.66 V/um and 8.33V/um),
and carrying out surface integrations to derive values for
I, yields the results g = 0.21 £0.02 for Fy = y1 - Fm =
3.17V/nm and g = 0.25+£0.02 for F, = 3.96 V/nm. These
results enable the following formula to be derived for g(F,),
for emitters of the shape we are using, as an approximation

nm
g(Fy) = 0.065 v F,. (6)

For regular emitter arrays, it is common to use the
dimensionless parameter s (called here the “emitter spac-
ing”, or briefly “spacing”), which equals the distance
between emitter axes, normalized by the height & of the
emitters [11], [12], [20].

Recent publications have shown that for spacings s > 1.5
the reduction of the apex FEF follows a s_3—decay [11], [20],
which has also been derived from physical laws. But so far
a suitable, physically derived fit-function y (s) for spacings
below 1.5 is missing. Due to the lack of a fit-function for
this technologically interesting regime, commonly the apex
FEF is fitted using a phenomenological function y (s). A fit
function previously used by Harris et al. [12] is

y(s) =y - (1 - exp(a . s")). 7

Here, y; is the apex FEF for an isolated single emitter,
and y(s) is the apex FEF as reduced by the depolarization
effects that occur when the emitter is part of an array with
spacing s. The parameters a and c are fitting constants. For a
regular square array, a has been estimated as around —2.31
by Jo et al. [31], but Harris et al. [23] using LCMs find a
value of —1.45. Harris et al. also interpret ¢ as providing a
further degree of freedom for the fit.

The current task is now to find a suitable fit-function which
holds for random arrays and describes the average apex FEF
y of the reference emitter appropriately. At this point, we
assume that equation (7) can be taken as a fit function to
describe the reduction of an average apex FEF yp(s) as a
function of the average spacing s to the NN emitter instead.
But, one main aspect that has to be considered is that the
spacing s of an ordered array is not equal to the spacing
of NN emitters in randomly distributed arrays. Therefore, a
detailed look will be taken on the average NN spacing s.

C. EVALUATION OF NEAREST-NEIGHBOR SPACINGS
What the statistically based simulations directly provide, for
the five values of emitter surface density used, are aver-
age values of NN spacings and the corresponding values of
average apex FEF for the reference emitter.

Our five calculated values of 5 are shown in Fig. 5.
The error limits shown represent the standard errors of the
average NN spacing s.

These empirical results can be compared with theoreti-
cal mean NN spacings Smean derived from Poisson Point
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FIGURE 5. Comparison of average NN spacings of LAFEs obtained
theoretically and by FEM simulation for emitter surface densities between
104 and 10° emitters/cm?2.

Process Theory (PPPT). This theory neglects border effects
and therefore holds only for sufficiently large cathodes [32].
Qualitatively, it is to be expected that border effects, although
important for very-small radius LAFEs, will decrease in
relative importance as LAFE size increases.

According to PPPT theory, the probability distribution
function for NN separation, fyzy, 1S

fixy(0.d) =210 - d - 707 8)

In general, the predicted mean spacing can be derived via

1 o0
Smean = n /0 d - fay (0, d) dd. )
This results in

(10)

= Smean =

The surface-density dependence of the parameter Smean, as
found by eq. (10), is also shown in Fig. 5.

An important result from Fig. 5 is that our empirical aver-
age NN spacing values s lie almost exactly on the theoretical
mean-spacing curve. This gives us confidence that the use of
14 placements for each surface density o has been sufficient
and also gives us confidence to continue with the discussion
here.

Equation (10) can be compared with the equivalent for-
mula for a square array of the same surface density o,
namely

1
h-Jo
This shows that, for the random array, the typical NN spacing
is predicted to be half of the square array.

(1)

Ssq.ar. =

D. DETERMINATION OF THE AVERAGE FEF AS A
FUNCTION OF THE AVERAGE SPACING

As described in Section III-B, equation (7) will be used to
describe the average apex FEF y for the central reference
emitter as a function of the average NN spacing 5. Therefore,
the fitting parameters a and ¢ have to be determined using the
average apex FEF y (5) of the reference emitter obtained from
the FEM simulations. The given formulas are transformed
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so that linear regression is applicable. This allows a better
determination of the values for a and c.
First a “fractional reduction in apex FEF” p is defined
and given by
—76)

pG) =1 — exp(a - 5°). (12)
Y1

p is positive and less than unity (compare, e.g., [11]); hence
In p is negative. Thus, this leads to
In(p) =a-5¢

= In(—1In(p)) = In(—a) + ¢ - In(3).

13)
(14)

Defining y = In(—1In(p)) and x = In(s), the fitting param-
eters a and ¢ are then simply derived from the intercept
and the slope of the fitted straight line. For both cases
this fitting procedure worked well in a range of spacings
between 0.25 and 4, which is the region of interest here.
For spacings beyond this range a different fit function is
necessary, because the error between the data and the fit is
increasing [20]. In Figure 6 a) one can see the fitting for
the obtained simulation data. We found a = (—2.41 £ 0.07)
and ¢ = (0.74 £ 0.03). Figure 6 b) shows how the resulting
mean FEF y varies as a function of the average spacing s,
with the five simulation values superimposed.

E. DEPENDENCE OF MACROSCOPIC CURRENT DENSITY
ON NN SPACING

Now that we have a formula for y(5), and hence for F,(5),
equation (5) earlier can be used to model the average specific
emission current 17 (Fy, 5) as a function of macroscopic field
Fyv o and of NN spacing 5 (and hence of emitter surface
density o). We make the reasonable assumption that, for the
average NN spacings of interest in this paper, the formula
given in equation (6) can used for all average NN spacings,
using only the values of average apex FEF y (and hence
F,) determined from the simulations as a function of 5. One
then uses

L5, Fy) = 27, - Ja(Fa) - g(Fa). (15)

This yields the continuous curve shown in Fig. 6 c). Also
shown in Fig. 6 c) are some individual average-current values
for the central reference emitter, calculated as part of the
main set of simulations, rather than via (15). These are close
to, but lie slightly above, the continuous curve. This shows
that our procedures are basically consistent, but that some
very small numerical discrepancies remains. Given that this
is intended as a basic exploratory paper, we think these small
discrepancies not worth investigating here.

The resulting dependence on s is presented in Fig. 6 c) for
an applied voltage of U = 1000 V, with the five simulation
results superimposed.

The macroscopic (“LAFE average”) current density Jym
will also be a function of Fy; and of 5 (and hence of o)
and is given by the product of the average specific emission

current /; and the emitter density o:
IMG, Fy) = o - L5, Fw). (16)
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FIGURE 6. a) Ordinary linear regression of In(s) and In(—In(p)) to
determine the fitting parameters a and ¢, compare equations (12) to (14).
b) Results for the mean FEF 7 as a function of the average NN spacing s to
the second emitter. The fit function is derived from equation (7).

71 = 475.9 was found by simulations on a single isolated emitter. The
shown error bars represent the standard errors of the mean values.

¢) Results for the average specific emission current I; as a function of
average NN spacing s. The model function is given in equation (15).

Fig. 7 a) shows, for an electrostatic potential difference
of 1000 V (corresponding to Fy &~ 8.34 MV/m), how Jym
varies with 5. Equation (15) has been used to yield values
for JM. As with large regular arrays, this diagram exhibits
a maximum in Jpf, in our case at about s = 1.5.

The formulas for g(F,) and I (F,) derived earlier, together
with formula (16) above, can be used to show that the posi-
tion of the maximum of Jy(Fm, s) depends on the value
of F\, as shown in Fig. 7 b). This is also in qualitative
agreement with results found for ordered arrays [23].

The optimum average spacing for the simulated type of
emitter is in the range between 1.4 and 1.9, depending on
the applied electric field. Following this and considering the
statistical fluctuations, the optimum emitter density is in the
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FIGURE 7. a) Macroscopic ECD Jy; as a function of average spacing s for
U = 1000 V, predicted by the presented model based on PPPT. b) Shift of
the optimum average spacing given by the maximum of the ECD for
increasing applied electric fields Fy.

range of 1 x 10* to 2 x 10* emitters/cm® for the given
geometry.

IV. DISCUSSION

As indicated in the introduction, this paper is intended as
an exploratory paper relating to the effects of emitter ran-
domization. Our emitters have a different shape from those
considered in the earlier papers of Read and Bowring [18]
and have a specific shape rather than the general consid-
erations investigated by Biswas and Rudra [17]. However,
our results relating to emitter depolarization are qualitatively
similar to all the earlier work on random arrays.

Our results show that, as with regular arrays, there is
an optimum average NN spacing (or separation) for which
the macroscopic current density is a maximum. Biswas and
Rudra also found this. However, for a given average emitter
surface density this occurs at slightly different NN spacings
in regular and random arrays.

For a given average emitter surface density, we can com-
pare the apex FEFs of the central reference emitter for the
cases of a random array of 25 emitters and a regular square
array of 25 emitters. For the latter case, we used FEM meth-
ods similar to those used for the random array. The spacing
of the array was varied and the electrostatic field at the
apex of the center-placed reference emitter analyzed. The
FEF y was fitted as a function of the spacing s using equa-
tion (7). For the given geometry, we found the fit parameters
a= (1.5940.06) and ¢ = (0.93 & 0.04). These values are
broadly comparable with those found in previous work on
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TABLE 3. Comparison of the reference apex FEF in a square array and in a
random array as a function of the (average) emitter surface density.

a Yrnd Ysq A'Y
1x 10T | 468 | 474 6
5x 10% | 427 | 447 20
1x10° | 394 | 414 | 20
5x 105 | 296 | 295 1
1x 108 | 252 | 240 12

regular arrays (e.g., [12]), but differ in detail because the sit-
uations considered are not strictly comparable. The results
are shown in Table 3. It can be seen that the effect of the
randomization is always to increase the amount of depolar-
ization, but that the additional depolarisation seems to be
relatively small (in comparison with the depolarization that
exists in the regular array).

As far as we can judge, the present exploratory paper
yields qualitatively correct and useful results concerning the
effects of emitter randomization. However, as far as the
prediction of physically and numerically exact results is con-
cerned, a weakness is that there are un-investigated issues
relating to the influence of depolarization on the calcula-
tion of currents from individual emitters, and hence on the
predicted average macroscopic current density. These issues
fall into three main kinds.

First, there are effects related to the finite size of the
25-emitter array, when considered as part of a very large
random array. Based on the Harris et al. statement [23], we
have initially assumed that 25 emitters should be sufficient
to assess depolarization effects on the central reference emit-
ter, due to other emitters in a large random array. However,
as a result of remarks by one of the reviewers, and addi-
tional unpublished informal calculations by one of us, we
now think that distant emitters in a large array (outside the
footprint circle for the 25-emitter array) probably produce
significant additional depolarization effects on the central
reference emitter. (Though these should be appreciably less
than the effects due to the 25 emitters in the footprint circle,
when these are considered part of a large random array.) The
theory needed for dealing accurately with the influence of
these distant emitters looks to be far from straightforward,
and our plan is to investigate related issues in future work.
However, it is clear that the effect of not considering the
distant emitters is to underestimate the amount of reference-
emitter depolarization that occurs at the centre of a large
random array.

Second, there is an issue of what radius the simulation
cylinder needs to be, in order to avoid complications due to
the images of the 25-emitter array in the cylinder walls. For
a single emitter on the symmetry axis of a cuboid simulation
box, this has been a topic of recent research by de Assis
and Dall’ Agnol [33]. They found that the walls of the simu-
lation box should ideally be at a distance of about 10 times
the emitter height, slightly depending on the height of the
simulation box. We have taken this into account and ensured
that the radius of the simulation cylinder is always greater
than the radius of the footprint circle by more than 10 times
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the emitter height. Nevertheless, it not yet clear whether they
may be additional restrictions that apply to the situation of
a finite array inside a simulation cylinder. We also point out
that, strictly, existing theory applies to cuboid simulation
boxes, rather than cylinders.

Third, given that our simulations apply to a finite array
that is relatively small, in the sense that the footprint radius
is only 2.8 times the NN separation in the related regular
square array, there is the influence of “electrostatic edge
effects”. These arise because, in addition to any effects due
to emitter randomization, there will an underlying systematic
increase in emitter apex-FEF values as one moves away from
the centre of the finite array. For small regular finite arrays,
this effect is well known, for example [10], [34].

Both the second and third effects will tend to increase
the depolarization acting on the central reference emitter, as
compared to the situation that would exist if the 25 emitters
were part of a much larger random array. Thus, they tend
to offset (but not exactly) the depolarization deficit resulting
from the absence of the distant emitters. However, we have
no reason to think that the results for a correctly analysed
large random array would be qualitatively different from
those found in the present numerical work on the 25-emitter
random array.

A further depolarization-related effect might result from
a statistical production fluctuation that causes a small area
of a large array to have anomalously low emitter density,
and thus anomalously high current density, thereby creating
a “local hot spot”. Such effects are not covered by our form
of theory, which is based on statistically average behaviour,
and is aimed at generating the optimum emitter density in
production contexts. A separate form of statistical “hot spot
theory” would be useful, in order to assess the likely inci-
dence of such behaviour. To some extent, this has already
been developed by Read and Bowring [35]. However, the
technological solution to hot-spot problems of this kind, if
they are found important, is (as with ordinary integrated
circuits) development of efficient forms of post-production
testing, with rejection of “out-of-specification” LAFEs.

V. SUMMARY
In summary, in this work a model for LAFEs with randomly
distributed emitters has been presented. This model combines
a fitting function for FEFs (already used with regular ordered
field emitter arrays) with information about average emitter
spacing obtained from the distribution of nearest-neighbor
separations. It is well known that for regular emitter arrays,
the optimum lattice spacing (to obtain maximum LAFE-
average current density) depends on the value of the applied
macroscopic electric field. We have shown, by means of
simulations and modelling, that a similar effect applies to
random emitter arrays.

This is a exploratory paper that does not take into account
various additional electrostatic depolarization effects. The
possible influences of these effects have been qualitatively
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discussed. We have found no reason to think that the qualita-
tive conclusions of the present paper will be disturbed when
quantitative treatments of these effects become available for
emitters with the rounded-cone shape considered here.
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