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ABSTRACT Aluminum doping during 4H-SiC chemical-vapor-deposition (CVD) trench filling was numer-
ically modeled toward precise design of high-voltage superjunction devices. As a first-order approximation,
growth-rate- and surface-normal-scaling functions were determined based on the reported experimental
results. Simulated isoconcentration contours of aluminum were confirmed to qualitatively agree with the
reported imaging of doping in SiC by scanning spreading resistance microscopy. Improvement of the
proposed models based on additional experiments should contribute to reducing the development time for
4H-SiC superjunction devices fabricated using CVD trench filling.

INDEX TERMS Aluminum, power semiconductor devices, silicon compounds, simulation.

I. INTRODUCTION
Superjunction (SJ) devices, in which alternating p- and
n-type columns are located in a drift layer [1], [2],
have been developed to improve the tradeoff relationship
between breakdown voltage (BV) and specific on-resistance
in unipolar devices. In the case of 4H-SiC SJ devices, ion
implantation has been used to demonstrate BV of 0.8 to
2.4 kV [3]–[9]; however, chemical-vapor-deposition (CVD)
trench filling, whose growth window was empirically
obtained [10], should become the key technique for higher-
BV 4H-SiC SJ devices. Although development time for such
trench-filling SJ devices is expected to be reduced by using
technology computer-aided design (TCAD), topography sim-
ulation [11], [12], a part of TCAD, has not been widely used
due to its inability to simulate a distribution of acceptor
concentration (NA) in filled trenches. Instead, only device
simulation was carried out by assuming a fixed NA in the
filled trenches [13]–[19] or two different values of NA in
the regions close to the trench sidewalls and in the rest of
the filled trenches [20].
In-situ p-type doping in 4H-SiC CVD is usually carried out

by the addition of trimethylaluminum. The efficiency of alu-
minum incorporation into solid SiC needs to be represented

in topography simulation by a scaling function k, which is,
in general, influenced by the strain [21] and surface orien-
tation effects [22]. The radius of an aluminum ion having
the coordination number of four (i.e., 0.039 nm [23]) is
about twice as large as the average of the radii of sili-
con and carbon ions having the coordination number of
four {i.e., (0.026 + 0.015)/2 = 0.021 nm [23]}. An alu-
minum atom once incorporated into the solid thus tends to
be pushed out into vapor; however, when the growth rate
normal to the growing surface (Rg) is too high, it does not
have enough time to escape from the solid (i.e., k = 1). In
contrast, NA decreases to its equilibrium value when Rg is
close to zero [24]. Such Rg-dependent NA was experimen-
tally observed by Forsberg et al. with respect to growth on
4H-SiC (0001) substrates [25]. Negoro et al., on the other
hand, reported an influence of {1100} faces (whose nor-
mal vector has an angle θ of 90◦ from the [0001] direction)
on NA [26]. Although the trenches were filled with Al-
doped SiC, the regions close to {1100} trench sidewalls
became n-type when the carbon-to-silicon ratio in the input
gas (C/Si) was unity. Since the regions became p-type in the
case C/Si ≥ 2 [26], the surface orientation dependence of k
is considered to be a function of θ and C/Si.
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Judging from these reports [25], [26], we must set our
final goal to determine k(Rg, θ , C/Si) contours for practical
topography simulation. Because of the limited experimental
results, however, only a growth-rate-scaling function k(Rg)
or a surface-normal-scaling function k(θ ) was used in this
paper as a first order approximation.

II. SIMULATION MODELS
The surface reactions during 4H-SiC CVD based on SiH4
and C3H8 [(a) and (a’) in Fig. 1] are known to be so fast [27]
that trench filling is limited by either vapor-phase diffusion
(in the case of growth on a rough surface) [(b) in Fig. 1]
or surface diffusion (in the case of growth on a step-and-
terrace surface) [(c) in Fig. 1] of growing species. As an
example of the former case, a scanning spreading resis-
tance microscopy (SSRM) image of doping in a 7-µm-deep
trench [20] is shown in Fig. 2. There seem to be no facets
appeared on the grown surface, indicating the trench was
filled in the growth mode on a rough surface. High resistiv-
ity (namely, low NA) regions exist along the trench sidewalls,
and the resultant boundaries between the low NA regions and
the center region with high NA are almost vertical.

(a)

(b)

(a’)

(b’)

(c)

FIGURE 1. Flow chart of epitaxial growth processes. (a)(a’) Surface
reactions. (b)(b’) Vapor-phase diffusion. (c) Surface diffusion.

As shown schematically in Fig. 3, on the other hand,
Malhan et al. reported that the low NA regions (B1 and B2)
are sandwiched between the high NA regions (A/C1 and
A/C2, respectively) and that the boundaries between the
low and high NA regions are inclined from the vertical
direction [28]. Since faces with θ of about 45◦ [i.e., {110n}
(n∼4)] are known as facets [29], the low NA regions
(B1 and B2) in Fig. 3 are considered to be the tracks of
such facets on which growing species diffused [21]. Since
surface diffusion was difficult to be included in the commer-
cial topography simulator used (Victory Process 2D [30]),
this study covers growth on a rough surface (Fig. 2) only.

A. MODEL FOR A GROWTH-RATE-SCALING FUNCTION
The solid circles in Fig. 4 show the reported aluminum
concentration in 4H-SiC grown on (0001) substrates at
surface temperature T of 1873 K [25]. With respect to sur-
face roughness during CVD trench filling of 4H-SiC, the
present authors experimentally showed that the surface on

FIGURE 2. Cross-sectional SSRM image of 7-µm-deep filled trench, as
seen as the [1120] direction, reported in [20].

FIGURE 3. Schematic cross-sectional SSRM image of 3.5-µm-deep filled
trench, as seen as the [1120] direction, reported in [28]. Due to the
difficulty in clearly reproducing the reported SSRM image, we just traced
the boundaries that were drawn in [28].

FIGURE 4. Measured aluminum concentration (shown in the right-hand
vertical axis) as a function of Rg [25] and modeled growth-rate-scaling
function (shown in the left-hand vertical axis).

the mesa top was rough in the case T ≥ 1843 K, while
it was smooth in the case T ≤ 1823 K [31]. We therefore
considered the experimental data in Fig. 4 represent NA in
4H-SiC grown on a rough surface and modeled k(Rg) by
vertically displacing the data, as shown by the solid line.
In reference to the Burton-Prim-Slichter theory, which was
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FIGURE 5. Modeled surface-normal-scaling function. Definition of θ is
shown in the inset.

successfully applied to k in silicon gown from the melt [32],
k(Rg) was fitted as

k
(
Rg

) = ke/
[
ke + (

1 − ke
)
exp

(
−1.1 × 1010/Rg

)]
and

(1a)

ke = 1.3 × 10−5, (1b)

where ke represents k(Rg = 0) under the equilibrium
condition.

B. MODEL FOR A SURFACE-NORMAL-SCALING
FUNCTION
The ratio of the low NA to the high NA in Fig. 2 was
reported to be 0.25, although the values of NA were not
measured [20]. Since the C/Si was less than unity [20], the
effect of incorporation of nitrogen donors [26] seemed to
affect the measured k(θ = 90◦) of 0.25. According to the
experiments by Forsberg et al., k(θ = 180◦) was also con-
sidered to be small [25]. k(θ ) was therefore fitted simply
as

k(θ) = 1 − 0.75(θ/θ0)
(
0◦ ≤ θ ≤ θ0

)
and (2a)

0.25(θ0 ≤ θ ≤ 180◦). (2b)

Eqs. (2a) and (2b) are shown in Fig. 5 in the cases θ0 = 20◦,
30◦, and 40◦.

III. SIMULATION
Based on the result in Fig. 2, a 7-µm-deep trench having
0.5-µm-deep subtrenches (Fig. 6) was numerically investi-
gated. Since the conditions for the trench-filling growth were
not described in detail [20], the following conditions for the
boundary-layer model in topography simulation [11] were
tentatively assumed:

Ce(∞) = 8.775 × 10−9kmol/m3, (3a)

C0 = 8.952 × 10−9kmol/m3, (3b)

LL = 1.5 mm, (3c)

T = 1923 K, and (3d)

γ = 0.1 J/m2, (3e)

FIGURE 6. Initial structure used for topography simulation. The trench is
7 μm deep and the subtrenches are 0.5 µm deep.

where Ce(∞) and C0 are vapor-phase concentrations of
growing species in the vicinity of an infinite plane and at the
top of the boundary layer, respectively, LL is the thickness
of the boundary layer, and γ is the surface free energy of
4H-SiC during growth [11]. The effective vapor-phase dif-
fusivity of growing species (Deff) was determined from the
growth rate on an infinite plane (R0), which was chosen as
an input parameter.
Rg was determined from the following equations: [11]

∂ϕ/∂t + Rg(∂ϕ/∂x+ ∂ϕ/∂y) = 0, (4)

Rg =
[
−Deff

(
C

∣
∣
growing surface − Ce(r)

)
/∂n

]
Vm, and (5)

Ce(r) = Ce(∞)exp(γVm/RTr), (6)

where ϕ(x, y) is a level-set function defined as a func-
tion of the signed distance from the point (x, y) to the
growing surface, n is the vector normal to the growing sur-
face, Ce(r) is the equilibrium vapor-phase concentration of
growing species in the vicinity of a growing surface with
a radius of curvature r, Vm is the molar volume of 4H-SiC
(1.25 × 10−5 m3/mol) [33], and R is the ideal gas constant.
Eq. (6) is known as the Gibbs–Thomson effect [34]. Eqs. (4)
and (5) were solved by methods that use the high-order
nonoscillatory schemes for Hamilton-Jacobi equations [35].

IV. RESULTS AND DISCUSSION
In the case that k can be assumed to be independent of θ

and C/Si, the maximum doping level of aluminum (Nmax),
which corresponds to NA at k = 1, was assumed to be
3.0 × 1017 cm−3 to give NA of 2.0 × 1016 cm−3 that
was assumed for device simulation in [20]. As shown in
Fig. 7(b), the use of R0 = 0.90 µm/h reproduces the result
in Fig. 2 qualitatively. When R0 is lower (i.e., 0.42 μm/h),
NA in the region around the trench bottom is too low
[Fig. 7(a)]. When R0 is higher (i.e., 1.7 μm/h), on the
other hand, the width of the regions (with low NA) close to
the trench sidewalls is too narrow [Fig. 7(c)]. Figs. 8(a)-(c)
shows topography changes over growth time in the case
R0 = 0.9 µm/h. During the initial stage of trench filling, the
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(a) (b) (c)

FIGURE 7. Simulated isoconcentration contours of aluminum in (a) 6.4-h
(R0 = 0.42 µm/h), (b) 3.2-h (R0 = 0.90 µm/h), and (c) 1.6-h
(R0 = 1.7 µm/h) grown 4H-SiC filled trenches when k is a function of Rg
only.

(a) (b) (c)

FIGURE 8. Simulated isoconcentration contours of aluminum in (a) 0.4-h,
(b) 1.6-h, and (c) 2.4-h grown 4H-SiC filled trenches when R0 is 0.90 µm/h
and k is a function of Rg only.

regions with r < 0 (in the subtrenches and around the cor-
ners of the trench bottom) are filled rapidly due to Eqs. (5)
and (6), resulting in high NA there [Fig. 8(a)]. The region
with r < 0 then moves to the center of the trench [Fig. 8(b)].
Since the center region comes to have high Rg, it continues
to have high NA [Figs. 8(c) and 7(b)].
In contrast, the case that k can be assumed to be indepen-

dent of Rg and C/Si is considered to correspond to the case
of Rg being too high. Nmax was therefore assumed to be
2.0×1016 cm−3. As shown in Fig. 9(c), the use of θ0 = 40◦
results in the sloped boundaries between the low and high NA
regions. In the cases θ0 = 20◦ or 30◦, on the other hand, the
boundaries become relatively vertical [Figs. 9(a) and 9(b)],

(a) (b) (c)

FIGURE 9. Isoconcentration contours of aluminum in 3.2-h grown
trenches simulated by assuming θ0 of (a) 20◦, (b) 30◦, and (c) 40◦ when R0
is 0.90 µm/h and k is a function of θ only.

(a) (b) (c)

FIGURE 10. Simulated isoconcentration contours of aluminum in (a) 0.4-h,
(b) 1.6-h, and (c) 2.4-h grown 4H-SiC filled trenches when R0 is 0.90 µm/h
and k is a function of θ only.

which are similar to the SSRM image in Fig. 2. However, the
width of the high NA region is narrower than that in Fig. 2.
Topography changes over growth time are thus shown in
Figs. 10(a)-(c) in the case θ0 = 30◦ only. From the initial
stage of trench filling [Fig. 10(a)], NA becomes large both
in the subtrenches and in the region on the mesa top.
The comparison between these two cases is the advantage

of the latter. For further investigation, however, compu-
tational fluid dynamics simulation (based on the detailed
growth conditions) and quantitative analysis of the experi-
mental observation (Fig. 2) are needed in both models for
k(Rg) and k(θ ). Additional experiments can also improve
these functions of one variable to k(Rg, θ , C/Si) contours
for practical topography simulation, which should contribute
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to reducing the development time for 4H-SiC SJ devices
fabricated using CVD trench filling.
Note that the filled subtrenches with high NA will lead

to local electric-field concentration in reverse-biased SJ
devices. To avoid that prospect, either fabricating subtrench-
free trenches or making a start of trench-filling growth by
a thin n-type layer should be required.

V. CONCLUSION
Aluminum doping during 4H-SiC CVD trench filling was
numerically modeled. As a first order approximation, growth-
rate- and surface-normal-scaling functions were determined
from the reported experimental results. The resultant iso-
concentration contours of aluminum were qualitatively
agreed with the reported SSRM image. Improvement of the
proposed models based on additional experiments should
accelerate development of high-voltage 4H-SiC SJ devices.
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