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ABSTRACT Zinc oxynitride metal–insulator–semiconductor diodes are fabricated and characterized.
Although these devices display excellent rectification, their temperature-dependent current–voltage charac-
teristics are not explicable using analysis methodologies currently available in the literature. Therefore, we
employ a simple curve fitting strategy in order to elucidate measured trends. It is found that the forward
current trends are describable using three parameters, i.e., reverse saturation current, ideality factor, and
series resistance, whereas the reverse current temperature dependence only requires one parameter, i.e.,
shunt resistance. All four of these model parameters are found to be strongly temperature dependent.

INDEX TERMS Metal oxide semiconductor, zinc oxynitride, MIS diode, thin film device.

I. INTRODUCTION
Active metal oxide semiconductor materials have been
a focus in recent years due to their superior performance.
Amongst other advantages, low cost, the possibility of low
temperature deposition, and robust integration with other
organic and inorganic compounds are key attributes. In this
paper, we report on the characterization of diodes fabricated
from an oxide semiconductor, with the ultimate objective
of exploring the possibility of using such diodes in energy
harvesting applications. One of the most extensively stud-
ied semiconductors in this group is zinc oxide (ZnO).
Several ZnO diode studies have been reported [1]–[3]. In
order to improve the performance of ZnO, cation and
anion control strategies have been investigated and imple-
mented. These include the formation of InGaZnO and
InZnO for metal cation control and ZnON for anion con-
trol. ZnON is an attractive semiconductor material since
it possesses a high mobility (≈ 100 cm2/ Vs), high illu-
mination stability, and the ability to be deposited at room
temperature [4]–[6].
Moreover, it has been shown that depending on the degree

of nitrogen replacement of oxygen, the properties of ZnON
can vary between ZnO and Zn2N3 [4]. However, since ZnON
is a semiconductor with a mixture of ZnO, ZnOxNy, and
Zn3N2, and since Zn possesses a higher reactivity with
oxygen compared to nitrogen, ZnON has been associated

with problems of stability and reproducibility, especially
when exposed to air. To counter this problem, several
solutions have been proposed, including argon plasma treat-
ment [7] and heat treatment [8], [9]. In this work, we
investigate the implementation of zinc oxynitride (ZnON)
in a metal-insulator-semiconductor (MIS) thin-film diode
structure.
The main purpose of depositing a very thin insulating layer

between the metal and semiconductor is to minimize reac-
tion and diffusion between metal and semiconductor [10].
Furthermore, the thin insulating film has been demon-
strated to reduce leakage current and defect trapped charge
density [11], [12], thereby improving the reliability and
performance of the diode. Another advantage is the pos-
sibility of reducing the interface state density [13], [14]. In
this contribution, aluminium oxide (Al2O3) is used as the
insulating layer since the film quality and the thickness can
be precisely controlled via atomic layer deposition (ALD).
ZnON MIS diode current-voltage (I-V) characteristics are

modelled using [15]

I = IO

[
exp

(
q(V − IRs)

nkBT

)
− 1

]
− V − IRs

Rsh
(1)

where I0 is reverse saturation current, q is electronic charge,
Rs is series resistance, n is ideality factor, kB is Boltzmann’s
constant, T is temperature, and Rsh is shunt resistance. Since
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the exponential term dominates when V is positive, the
forward current is describable using three model parame-
ters, i.e., I0, n, and Rs. Conversely, since I0 and IRs are
found to be negligibly small at negative voltage for the
ZnON MIS diodes tested, the reverse current is determined
by only a single model parameter, i.e., Rsh. In order to
accurately fit experimental temperature-dependent I-V curves
using eq. (1), all four model parameters are assumed to
depend on temperature.
Although many parameter estimation strategies have been

proposed in the literature for the direct extraction of I0, n, Rs,
and Rsh [16]–[22], we have been unsuccessful when employ-
ing these methods to the assessment of our ZnON MIS
diodes. In contrast, we can readily estimate I0, n, Rs using
the exponential portion of eq. (1) to accurately fit to an exper-
imental I-V curve. Moreover, we find our estimates of these
parameters to be almost unique since the low, intermediate,
and high current portions of the forward current are primarily
determined by I0, n, and Rs, respectively as shown in Fig. 1.
From this, a fitting procedure is proposed as follows. First I0
is estimated as the y-intercept of the low voltage portion of
the curve. Next using this estimated value of I0, n is varied
whilst maintaining Rs as 0 � until a good fit of the low volt-
age portion of the curve is obtained (this region is found to be
approximately linear when plotted on a semilog scale). Next,
Rs is increased until a good fit to the higher voltage portion
of the curve is obtained. Finally, all 3 parameters are tweaked
to produce an optimal fit. This fitting is accomplished using
Mathematica.

II. FABRICATION AND EXPERIMENTAL SETUP
The structure of the fabricated diode is shown in Fig. 2.
The 1 mm thick Corning substrate was cleaned by first rins-
ing it with deionized (DI) water and then ultrasonicating
it in acetone and then isopropyl alcohol solution, each for
10 minutes. It was then blow dried with nitrogen gas and sub-
sequently baked at 120 ◦C for 30 minutes to remove possible
moisture. Molybdenum bottom contact (100 nm) was then
sputtered at room temperature. The ZnON layer (50 nm) was
deposited through the reactive magnetron sputtering method
by using zinc target (99.99 % purity) together with argon,
nitrogen, and oxygen gases (Ar/N2/O2 = 4/180/1.5 SCCM)
that flowed into the chamber at room temperature. The cham-
ber pressure and RF power were maintained at 12.5 mTorr
and 250 W, respectively. From the Hall measurements, the
magnitude of the Hall mobility for the as-deposited ZnON
film based on this formulation is 21.5 cm2/Vs. The Al2O3
layer (2.5 nm) was then deposited through the atomic layer
deposition (ALD) at 250 ◦C. Finally, a nickel top contact
(100 nm) was sputtered at room temperature. The sample
was then annealed at 250 ◦C in normal atmospheric condition
for 2 hours. The annealing condition was optimised based
on the improvements/degradations observed in the forward
I-V characteristics after each annealing process. Shadow
mask was used to pattern the semiconductor, insulator,

FIGURE 1. The effects of all three parameters on the J-V curve. Black lines
depict the actual behavior and the red, green, and yellow lines show the
effects of varying the (a) ideality factor n, (b) series resistance Rs,
and (c) saturation current Io, respectively whilst maintaining identical
values for the other model parameters.

and top contact layer. The active area of the diode
is 0.66 mm2.

I-V and C-V measurements were carried out using
Keithley 4200 Semiconductor Characterization System
(4200-SCS) inside a LakeShore probe station and the tem-
perature was controlled using Lakeshore 336 Temperature
Controller. All measurements were carried out in the dark
and the temperature was varied from 50 ◦C to 200 ◦C in
50 ◦C intervals (323 K to 473 K in 50 K intervals). All
I-V measurements were done under a vacuum environment
except for room temperature measurement (normal atmo-
sphere). The voltage for the I-V characterization for the
room temperature measurements and temperature dependent
measurements was swept from −3 V to +3 V with 0.2 V
intervals and from −1.5 V to 1.5 V with 0.05 V intervals,
respectively. The C-V sweep was carried out at 1 MHz with
an ac modulation voltage of 30 mV.

III. RESULTS AND DISCUSSION
A. ROOM TEMPERATURE I-V AND C-V MEASUREMENTS
A J-V plot for a ZnON MIS diode at room temperature
is shown in Fig. 3. The diode shows typical rectifying
behaviour (exponential increase of current in forward bias
and weak dependence in reverse bias) with a threshold volt-
age of approximately 0.95 V and a leakage current density
of 0.4 μA/cm2 at −3 V. Introduction of a thin interfacial
layer between metal and semiconductor reduces the leakage
current and likely increases the threshold voltage [12]. The
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FIGURE 2. MIS diode structure and actual sample of the fabricated diode.
All layers are sputter deposited except for the Al2O3 which is by atomic
layer deposition.

TABLE 1. Parameters extracted from room temperature measurements.

rectification ratio of the diode is 9500 at ± 3 V. The for-
ward and reverse breakdown voltage of the diode are 28 and
−25 V, respectively. Generally, the diode possesses a strong
rectifying property.
The forward current 3-parameter curve fitting method is

implemented to obtain n = 2.55, I0 = of 1.6 × 10−10 A,
and Rs = 3800 �. The reverse current 1-parameter fitting
yields Rsh = 1.3 G�.

The n = 2.55 ideality factor is much larger than that
expected for thermionic emission (n = 1) or generation-
recombination (n = 2). This large value of n can be
elucidated using induced gap state (IGS) theory [14], as fol-
lows. Modeling the ZnON MIS diode in non-equilibrium
as a voltage divider consisting of an insulator capaci-
tance density, CI, in series with a parallel combination of
the semiconductor and interface state capacitance densities
leads to

n ≈ 1 + CFB + CSSmin
CI

= 1 + 3.6 Fcm2 + 1.7 Fcm2

3.2 Fcm2
= 2.67

(2)

where CFB and CSSmin are flatband and minimum interface
state capacitance densities, which apply when the semicon-
ductor is operating in depletion. This calculated value of
n = 2.67 is in reasonable agreement with the measured
value of n = 2.55. According to IGS theory, current in the
ZnON MIS diode is thermionic, but n is large since much
of the applied voltage drops across the insulator instead of
the semiconductor.
The free electron carrier concentration is determined from

the slope of the 1/C2-V plot as shown in Fig. 3 and inset (a).
The barrier height is calculated from the built-in potential
estimated by extrapolating the 1/C2-V plot [23]. From this,

FIGURE 3. J-V and C-V curves for a ZnON MIS diode at room temperature.
Inset (a) shows the 1/C2-V curve that is plotted in order to estimate the
barrier height. Inset (b) shows an I-V plot in reverse bias, which is almost
linear and is used to estimate the shunt resistance of the diode.

the calculated free electron carrier concentration and barrier
height are 2.2 × 1018 cm−3 and 0.86 eV, respectively. An
alternative way to estimate the barrier height, �B, is from
I-V data using [23]

IO = AA∗∗T2exp

(
−q�b

kBT

)
(3)

where A is diode area and A** is the effective Richardson
constant [24]

A∗∗ = 4πqm∗k2

h3
(4)

where m* is effective mass and h is Planck’s constant.
Assuming m* = 0.19 m0 for ZnON [6], [25] and using
I0 = 1.6 × 10−10 A leads to �B = 0.83 eV. Thus, our
C-V and I-V estimates for �B are quite similar. Parameters
extracted from room temperature I-V and C-V measurements
are summarized in Table 1. Table 4 presented at the end of
this contribution provides overall comparison of the param-
eters extracted at room temperature for the diode fabricated
in this contribution and other reported metal oxide diodes
work.

B. TEMPERATURE DEPENDENT I-V MEASUREMENTS
Fig. 4 shows J-V curves in forward bias for a ZnON
MIS diode at four temperatures. J-V characteristics depend
strongly on temperature, increasing with increasing temper-
ature. The 3-parameter fit to the measured J-V curves is
quite good. Extracted fitting parameters for all curves are
collected in Table 2. From Table 2, it can be observed that
all four model parameters vary strongly with temperature.
Next, the reverse bias I-V curves as the function of tem-

perature for a ZnON MIS diode are shown in Fig. 5. Using
eq. (1), a linear fit of the data is used to estimate the shunt
resistance. These values of Rsh are compiled in Table 3.
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FIGURE 4. Measured (indicated as points) and fits (smooth curves) of the
forward J-V curves for a ZnON MIS diode at multiple temperatures.

TABLE 2. Model parameters used to fit measured temperature-dependent

I-V curves for a ZnON MIS diode.

FIGURE 5. Measured (indicated as points) and fits (smooth curves) of the
reverse biased curves for a ZnON MIS diode at multiple temperatures.

All of the five extracted parameters; saturation current
I0, barrier height �B, ideality factor n, series resistance Rs,
and shunt resistance Rsh are strongly temperature depen-
dent; temperature trends for each of these parameters are
plotted in Fig. 6. I0 increases with increasing temperature,
as does �B since they trend together according to eq. (3).
n decreases with increasing temperature, suggesting that
thermionic emission contributes more to the forward cur-
rent at higher temperatures. Both Rs and Rsh decrease with

TABLE 3. Shunt resistance, Rsh as a function of temperature as estimated

from measured reverse bias I-V curves for a ZnON MIS diode.

FIGURE 6. Temperature trends for model parameters used to obtain J-V
fits to measured data for a ZnON MIS diode. (a) I0 and �B, (b) n, (c) Rs,
and (d) Rsh.

FIGURE 7. Temperature-dependent free electron carrier concentration
estimated from the temperature-dependent Rs data.

increasing temperature. This is ascribed to an increase in
the free electron carrier concentration with increasing tem-
perature. Rsh is suspected to arise from the existence of
a peripheral leakage path at the edges of the diode. Thus, the
decrease of Rsh with increasing temperature is also ascribed
to an increase in the electron free carrier concentration with
increasing temperature.
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TABLE 4. Comparison of the extracted parameters at room temperature between the diode fabricated in this contribution and other recent reported diode

work based on metal oxide semiconductors.

Evidence that the physical mechanism responsible for the
temperature dependence of Rs and Rsh is identical is pro-
vided by the observation that their fractional decrease in
resistance with increasing temperature are quite similar, i.e.,
Rs (T) / Rs (323 K) = 1, 0.46, 0.14, and 0.05; Rsh (T) / Rsh
(323 K) = 1, 0.66, 0.1, and 0.02 for T = 323, 373, 423, and
473 K. The free electron carrier concentration is estimated
for each temperature by assuming a linear relation of Rs with
temperature and using the free electron carrier concentration
at room temperature as obtained from C-V measurements in
the previous section

Rs(T) = ρ(T)L

A
≈ L

qμnnc(T)A
∝ 1

nc(T)
(5)

where ρ is resistivity, L is length, μn is electron mobility,
and nc is free electron carrier concentration. By assuming
that other parameters apart from Rs and nc are independent
of temperature, the estimated temperature-dependent free
electron carrier concentration obtained is shown in Fig. 7.
The regression fit to the data reveals a characteristic tem-
perature of 50 K, corresponding to a free electron carrier
concentration enhancement energy of 4 meV.

IV. CONCLUSION
In this contribution, ZnON MIS diodes are fabricated and
characterized. These devices are found to exhibit excel-
lent rectification. A fitting method is employed to describe
the strongly temperature dependent forward and reverse
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current characteristics of the diode. Measured forward cur-
rent characteristics are accurately fit using three model
parameters, i.e., saturation current, ideality factor, and
series resistance while measured reverse current charac-
teristics are fit using only one parameter, i.e., the shunt
resistance.
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[11] M. Gökçen, Ş. Altındal, M. Karaman, and U. Aydemir, “Forward and
reverse bias current–voltage characteristics of Au/n-Si Schottky barrier
diodes with and without SnO2 insulator layer,” Phys. B Condens.
Matter, vol. 406, no. 21, pp. 4119–4123, 2011.

[12] E. Arslan et al., “Electrical characterization of MS and MIS structures
on AlGaN/AlN/GaN heterostructures,” Microelectron. Rel., vol. 51,
no. 2, pp. 370–375, 2011.

[13] J. F. Wager and J. Robertson, “Metal-induced gap states modeling
of metal-Ge contacts with and without a silicon nitride ultra-
thin interfacial layer,” J. Appl. Phys., vol. 109, no. 9, 2011,
Art. no. 094501.

[14] J. F. Wager and K. Kuhn, “Device physics modeling of surfaces
and interfaces from an induced gap state perspective,” Crit. Rev.
Solid State Mater. Sci., vol. 42, no. 5, pp. 373–415, 2017.

[15] J. Nelson, “The physics of solar cells,” in The Physics of Solar Cells.
London, U.K.: Imperial College Press, 2003, p. 14.

[16] H. Norde, “A modified forward I–V plot for Schottky diodes with
high series resistance,” J. Appl. Phys., vol. 50, no. 7, pp. 5052–5053,
1979.

[17] J.-C. Manifacier, N. Brortryb, R. Ardebili, and J.-P. Charles, “Schottky
diode: Comments concerning the diode parameters determination from
the forward I–V plot,” J. Appl. Phys., vol. 64, no. 5, pp. 2502–2504,
1988.

[18] K. Sato and Y. Yasumura, “Study of forward I–V plot for Schottky
diodes with high series resistance,” J. Appl. Phys., vol. 58, no. 9,
pp. 3655–3657, 1985.

[19] S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode
parameters from forward current-voltage characteristics,” Appl. Phys.
Lett., vol. 49, no. 2, pp. 85–87, 1986.

[20] E. K. Evangelou, L. Papadimitriou, C. A. Dimitriades, and
G. E. Giakoumakis, “Extraction of Schottky diode (and p-n junction)
parameters from I–V characteristics,” Solid State Electron., vol. 36,
no. 11, pp. 1633–1635, 1993.

[21] J. H. Werner, “Schottky barrier and pn-junction I/V plots—Small sig-
nal evaluation,” Appl. Phys. A, Solids Surf., vol. 47, no. 3, pp. 291–300,
1988.

[22] W. Jung and M. Guziewicz, “Schottky diode parameters extraction
using Lambert W function,” Mater. Sci. Eng. B Solid State Mater.
Adv. Technol., vol. 165, nos. 1–2, pp. 57–59, 2009.

[23] V. R. Reddy, M. S. P. Reddy, B. P. Lakshmi, and A. A. Kumar,
“Electrical characterization of Au/n-GaN metal–semiconductor and
Au/SiO 2/n-GaN metal–insulator–semiconductor structures,” J. Alloys
Compd., vol. 509, no. 31, pp. 8001–8007, 2011.

[24] Z. J. Horváth, “Comment on ‘analysis of I–V measurements on CrSi2-
Si Schottky structures in a wide temperature range,”’ Solid State
Electron., vol. 39, no. 1, pp. 176–178, 1996.

[25] K.-C. Ok, H.-J. Jeong, H.-M. Lee, J. Park, and J.-S. Park,
“Comparative studies on the physical and electronic properties of
reactively sputtered ZnO and ZnON semiconductors,” Ceram. Int.,
vol. 41, no. 10, pp. 13281–13284, 2015.

[26] Q. Wu et al., “A dual-functional IGZO-based device with Schottky
diode rectifying and resistance switching behaviors,” IEEE Electron
Device Lett., vol. 40, no. 1, pp. 24–27, Jan. 2019.

[27] S. Ilican, K. Gorgun, S. Aksoy, Y. Caglar, and M. Caglar,
“Fabrication of p-Si/n-ZnO:Al heterojunction diode and determina-
tion of electrical parameters,” J. Mol. Struct., vol. 1156, pp. 675–683,
Mar. 2018.

[28] L. Du et al., “High-performance flexible Schottky diodes based on
sputtered InGaZnO,” IEEE Electron Device Lett., vol. 65, no. 10,
pp. 4326–4333, Oct. 2018.

[29] B. Jang, T. Kim, S. Lee, W.-Y. Lee, and J. Jang, “Schottky nature
of Au/SnO2 ultrathin film diode fabricated using Sol–Gel pro-
cess,” IEEE Electron Device Lett., vol. 39, no. 11, pp. 1732–1735,
Nov. 2018.

[30] A. Shokri and L. Dejam, “Experimental and theoretical investiga-
tions on temperature and voltage dependence of an Au/AZO thin-film
Schottky diode,” Int. Nano Lett., vol. 7, pp. 1–8, Dec. 2018.

[31] J. Zhang, Q. Xin, A. Song, and J. Zhang, “High performance Schottky
diodes based on indium-gallium-zinc-oxide,” J. Vac. Sci. Technol. Vac.
Surfaces Film, vol. 34, no. 4, pp. 1–5, 2017.

[32] L. Du et al., “Effects of substrate and anode metal annealing
on InGaZnO Schottky diodes,” Appl. Phys. Lett., vol. 110, no. 1,
Jan. 2017, Art. no. 011602.

[33] C.-H. Chang, C.-J. Hsu, and C.-C. Wu, “Rectified Schottky diodes
based on PEDOT: PSS/InGaZnO junctions,” Org. Electron., vol. 48,
pp. 35–40, Sep. 2017.

[34] D. I. Choudhary, “Flexible substrate compatible solution processed
P-N heterojunction diodes with indium-gallium-zinc oxide and copper
oxide,” Mater. Sci. Eng. B Solid State Mater. Adv. Technol., vol. 218,
pp. 64–73, Apr. 2017.

[35] S. Singh et al., “Fabrication and characterization of hydrother-
mally grown MgZnO nanorod films for Schottky diode applications,”
Microsyst. Technol., vol. 23, no. 1, pp. 39–46, 2017.

[36] Q. Xin, L. Yan, L. Yuo, and S. Aimin, “Study of breakdown voltage
of indium-gallium-zinc-oxide-based Schottky diode,” Appl. Phys. Lett.,
vol. 106, no. 11, Feb. 2015, Art. no. 113506.
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