ELECTRON DEVICES SOCIETY

Received 26 October 2018; revised 24 January 2019; accepted 7 February 2019. Date of publication 14 February 2019; date of current version 8 March 2019.
The review of this paper was arranged by Editor S. Reggiani.

Digital Object Identifier 10.1109/JEDS.2019.2899387

Investigation of a Hybrid Approach for
Normally-Off GaN HEMTs Using Fluorine
Treatment and Recess Etch Techniques

GOKHAN KURT

12 MELISA EKIN GULSEREN 2, GURUR SALKIM?, SERTAC URAL “'2, OMER AHMET KAYAL2,

MUSTAFA OZTURK?, BAYRAM BUTUN2, MEHMET KABAK', AND EKMEL OZBAY?23:4:5

1 Department of Engineering Physics, Faculty of Engineering, Ankara University, Ankara 06100, Turkey
2 Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
3 Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey
4 UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
5 Department of Physics, Bilkent University, 06800 Ankara, Turkey

CORRESPONDING AUTHOR: G. KURT (e-mail: gokurt@bilkent.edu.tr)

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) under Project PELIGAN 5160062. The work of E. Ozbay
was supported in part by the Turkish Academy of Sciences.

ABSTRACT A hybrid approach for obtaining normally off high electron mobility transistors (HEMTs)
combining fluorine treatment, recess etch techniques, and AlGaN buffer was studied. The effects of
process variations (recess etch depth and fluorine treatment duration) and epitaxial differences (AlGaN
and carbon doped GaN buffers) on the DC characteristics of the normally off HEMTs were investigated.
Two different epitaxial structures and three different process variations were compared. Epitaxial structures
prepared with an AlGaN buffer showed a higher threshold voltage (Vi = 43.59 V) than those prepared

with a GaN buffer (Vy, = +1.85 V).

INDEX TERMS AlGaN, GaN, enhancement-mode, fluorine plasma implantation, recess etch, HEMT,

normally-off.

I. INTRODUCTION

AlGaN/GaN HEMT devices have become the most widely
used devices for high power applications in areas such as
defense, space, and telecommunications applications. Since
these transistors have a wide band gap, high breakdown field,
and high saturation velocity [1], [2], they are almost fully
capable of meeting the demands of applications that require
high power and high-frequency operations. Several methods
have been used to improve the HEMT performance [3]-[5].
Conventional normally-on HEMTs with negative threshold
voltages are not suitable for power switching applications
because they do not have a fail-safe operation [6] and
have high circuit design complexity. Normally-off HEMTs
are preferred to prevent fault-turn-on issues and achieve
high threshold voltages (Vi) for high power switching
devices. Many techniques such as gate recess [7], fluorine
treatment [8], gate-controlled tunnel junctions [9], and p-
type gates [10] have been demonstrated to achieve normally-
off operation. Although reliable normally-off operation can

be achieved with such methods, gate leakage currents are
often increased. Suppression of the gate leakage current
is obtained by the conversion of the Schottky gate to
a metal-insulator-semiconductor stack, by inserting a dielec-
tric material between the gate metal and barrier layer [11].
Modification of the gate threshold voltage can be per-
formed using ‘gate-recess’ etching, which is etching the
barrier layer under the gate metal electrode. Reduction
of the AlGaN thickness results in a reduced polarization-
induced 2DEG density, which leads to a positive shift in
Vi [12], [13]. A positive threshold voltage can also be
achieved by F~ treatment by means of plasma treatment.
Due to the negative charges and strong electronegativity
of fluorine ions, the potential of the AlGaN barrier rises,
which provides a positive Vi, [14]. Gate recess and fluorine
treatment have been demonstrated in combination to fur-
ther increase the threshold voltage [15]-[17]. An approach
used in conjunction with the abovementioned techniques to
obtain normally-off HEMTs is the inclusion of an AlGaN
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FIGURE 1. Epitaxial structure illustration of Samples A, B, C, D (left) and,
E (right).

back-barrier, which has widely been reported to further
increase the threshold voltage, in addition to other advan-
tages such as suppressed leakages and improved breakdown
voltage [18]-[20].

In this paper, we present the results of an investigative
study of the DC characteristics of a normally-off GaN HEMT
obtained using a hybrid approach of fluorine treatment,
recess etch techniques, and AlGaN buffer. The dependence
of the threshold voltages and Ig max values on the gate recess
and fluorine treatment process differences were investigated,
and compared to characteristics achievable with a GaN:C
buffer. A relatively high threshold voltage of +3.59 V
is demonstrated for the device obtained with the hybrid
approach.

Il. DEVICE STRUCTURE AND FABRICATION

Two epitaxial HEMT structures were grown on
100 mm (111) silicon wafers with a resistivity higher
than 10 kQ-cm (Fig. 1). In Samples A, B, C (Group
1), and D (Group 2), the HEMT structure consists of
a 300 nm AIN nucleation and AlGaN strain managing
layer stack followed by 1150 nm of a low Al content
AlxGaj_xN (x: 0.05) buffer and 110 nm of a high mobility
channel GaN. To complete the active layers of the HEMT
structure, we grew a 1 nm AIN spacer prior to the 27 nm
AlGaN barrier; finally, epitaxial growth was finished with
a 3 nm unintentionally doped GaN capping layer. In
Sample E (Group 2), the AlGaN buffer was replaced with
a 1200 nm carbon doped highly resistive GaN buffer.
The rest of the layers and growth conditions were kept
the same as those of Group 1. In Table 1, the labeled
samples are listed in detail. A two dimensional electron gas
(2DEG) density of 6.7x10'> cm™2 and electron mobility
of 1425 cm?/V-s were measured for Samples A, B, C, and
D using the Hall technique. Sample E was found to have
an electron mobility of 1313 cm?/V-s and 2DEG density of
2.0x10" cm™2.

Group 1 of our experiment includes Sample A, Sample B,
and Sample C, in which we have compared the results
of the recess etch and fluorine treatment variations. Group
2 of our experiment includes Sample D and Sample E, in
which we have investigated the impact of the tradeoffs of
AlGaN back-barrier compared to the standard GaN buffer.
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Device fabrication for both experimental groups began with
mesa device isolation performed in the Sentech ICP-RIE dry
etching system using a BClz and Cl; gas mixture. Ohmic
contacts were formed by a Ti/Al/Ni/Au (12/120/35/65 nm)
metal stack deposited by electron-beam evaporation. This
process was then followed by a 3-step rapid thermal anneal-
ing (RTA) process specifically optimized for our HEMTs.
The annealing process was carried out in N, ambient at
400 °C for 180 s, 700 °C for 40 s, and 830 °C for 30 s
(Rc = 0.67 Q.mm and Ry, = 488 /0). The gate regions
were defined with optical lithography. Gate recess etch-
ing was performed with the Sentech ICP-RIE system using
BCl3/Cl, gas chemistry. In Group 1, the gate recess etch
depths for the three samples were set at 10 nm, 15 nm, and
15 nm respectively. In Group 2, the recess etch depth of
the both samples was set to 10 nm. Immediately after the
recess etching a low power F~ treatment was carried out
for 10 minutes, 10 minutes and 15 minutes, respectively,
for the samples used in Group 1. For Group 2, F~ treat-
ment time was 10 minutes. F~ treatment was carried out
with the Samco 140 ip ICP-RIE with SF¢ gas, RF power
of 10 W, and no ICP power. A longer low power treat-
ment was preferred in place of conventional shorter and
higher power processes in order to minimize surface dam-
age. A 10 nm thick Al,Os dielectric layer was deposited
under the gate region on each sample for both experimen-
tal groups. The Al,O3 dielectric deposition was performed
using an Cambridge Nanotech Savannah S100 ALD System.
The Al,O3 depositions were carried out at 200 °C. Optical
lithography was used to redefine the gate regions for the
metallization step in order to create the gate electrodes. The
gate electrodes were made of Ni/Au (50/300 nm) using e-
beam evaporation. A 240 nm SiNy passivation layer was
deposited with Sentech plasma enhanced chemical vapor
deposition (PECVD). Subsequently, the contact pad open-
ings were defined with optical lithography and etched using
a dry etching process. Interconnect patterns were formed
with optical lithography. Finally, a relatively thick Ti/Au
interconnect metal stack (200/2000 nm) was deposited by
e-beam evaporation. The devices have a source-drain spac-
ing of Lps = 9 pwm, source-gate spacing of Lgs = 2 pm,
two gate fingers with gate length of Lg = 2 wm, and a gate
finger width of 100 pwm. The schematic cross section and
micrograph of a fabricated E-mode HEMT are shown in
Fig. 2.
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TABLE 1. Summary of epitaxial and process properties, and average

measurement results.

Parameter Group 1 Group 2
(Mean + SD) A B C D E
ns(cm?) 6.7x10"% | 6.7x10"% | 6.7x10"% | 6.7x10™ | 2.0x10"
F treatment 10 10 15 10 10
(min.)
Recess Etch 10 15 15 10 10
(nm)
Vo (V) 285+ 2.60 = 359+ 285+ 1.85+
th 027 0.21 0.12 0.27 0.25
Tgmax 421+
(mA/mm) 4 500+ 6.5 | 396+16 | 421+24 | 741+23
Lo cakage 6.6+ 67+38 | 11422 | 6.6+25 | 19+53
(MA/mm) 25 E - DEs :
T, leakage 030 = | o g5 | 0009 = | 030+ 660 +
(MA/mm) 0.26 : 0.0062 0.26 1250
Vir (V) 6134i 52+14 | 73+£14 | 6314 | 23 +17
Ron 102 84 107 102 73
(Ohm.mm)
Vinee (V) 5.5 5.2 55 5.5 6.6
gm(mS/mm) | 148 150 146 148 190
Buffer AlGaN | AlGaN AlGaN AlGaN GaN:C
600 | Sample A | Sample B | Sample C
V,=10V V,=10V

V,=10V 4200
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FIGURE 3. Transfer characteristics of Sample A (left), Sample B (middle),
and Sample C (right) on the AlGaN buffer wafer.

1Il. RESULTS AND DISCUSSION

Device characterization was carried out using a Keithley
2612A SourceMeter instrument. Multiple devices were mea-
sured from each sample (4-10 devices). In Table 1, the
summarized average measurement results and process details
of both groups are given; the average and standard devia-
tion are given for the measured results (Ven, Iq max, g leaks
I4 1eak, and Vi) and the average is given for the calculated
results (Ron, Vinee, and gm). Fig. 3 and Fig. 4 show the
typical transfer characteristics of the measured devices at
a drain bias of Vg = 10 V. The threshold voltages were
extracted using the linear extrapolation method, that is, the
gate bias intercept of the linear extrapolation at maximum
transconductance has been extracted. The threshold voltages
were obtained as +2.85 V for Sample A, +2.60 V for
Sample B, 4+3.59 V for Sample C, +2.85 V for Sample D,
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FIGURE 4. Transfer characteristics of Sample D (left) on AlGaN buffer
wafer and Sample E (right) on the GaN:C buffer wafer.

and +1.85 V for Sample E. In Group 1, comparing Sample A
and Sample B, an increase in threshold voltage is expected
due to the decreased sheet carrier density caused by the
thinned barrier layer and increased concentration of fluorine
ions close to the channel. However, we observe that when the
recess depth is increased, a decrease in the threshold volt-
age by about 0.25 V is observed (Sample A to Sample B),
which is attributed to the increasing trap concentration at
the Al,O3/AlGaN interface due to increased surface dam-
age, which can become positively charged during DC-V,
measurements and lead to a negative shift in Vg, [21]. It
is clearly observed that if we increase the F~ treatment
time (Sample B to Sample C) while maintaining the same
gate recess etch depth, this degradation is compensated for
by the passivation of the traps from increased fluorine ion
concentration [21], and the threshold voltage shifts to a more
positive value, increasing by nearly 0.9 V. Comparing the
samples of Group 2, Sample D exhibits a greater threshold
voltage by 1 V. The higher threshold voltage of Sample D
is attributed to the AlGaN buffer. The AlGaN buffer acts
to raise the conduction band above the Fermi level, lead-
ing to a lower sheet carrier density and a higher threshold
voltage [22].

Typically, it is known that the gate recess increases the
transconductance, as a decrease in the barrier layer thickness
causes an increase in the transconductance [23]. Comparing
Sample A and Sample B, it is observed that a 5 nm
increase of recess depth only leads to a small increase in
gm- Sample C has a decreased transconductance compared to
both groups, which indicates that the etching damage from
the fluorine plasma treatment affects the electron mobility
in the channel. In Group 2, Sample E demonstrates a higher
peak transconductance value than Sample D; this increase
is also directly related to the higher sheet carrier density of
Sample E.

The drain leakage currents were extracted from the trans-
fer characteristic measurements as the drain current density
at the gate bias of Vo, = —6 V. The samples of Group 1
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FIGURE 5. Output characteristics of Sample A (left), Sample B (middle),
and Sample C (right) on the AlGaN buffer wafer.

displayed drain leakage magnitudes correlated with the drain
current densities. In Group 2, an order of magnitude improve-
ment is seen in the drain leakage characteristic of Sample
D compared to Sample E.

The output characteristics are shown in Figure 5 (Group 1)
and Figure 6 (Group 2). In Group 1, Sample B demonstrate
higher maximum drain current densities than Sample A. It is
supposed that the increase in current density in Sample B is
related to the lower threshold voltage, indicating that a 5 nm
increase in gate recess does not deplete the 2DEG region
in a sufficient amount to decrease drain current. Comparing
Sample C to Sample B, with the increase of fluorine treat-
ment time, an over 100 mA/mm drop in drain current
is observed. This decrease is related to mobility degrada-
tion caused by border traps and interface traps generated
by an increasing concentration of F~ ions in the channel
region [21]. For the three samples in Group 1, similar knee
voltages are obtained. In Group 2, Sample E exhibits a higher
maximum current density (741 mA/mm at Vgs = 6 V) than
Sample D (421 mA/mm at Vgs = 6 V), corresponding to
a higher drain current of a factor of 1.5, due to the higher
sheet carrier density. Sample E also exhibits a 1.1 V higher
knee voltage and lower static on-resistance. For both groups,
Ron values directly correlate with the threshold vales.

The Schottky gate reverse leakage characteristics are
shown in Fig. 7. The gate leakage currents were extracted
at the gate bias of Vg = —1 V. The increase recess depth
does not lead to a significant change in gate leakage current.
A slight increase is observed in the leakage characteristics
with longer fluorine treatment duration. The use of an AlGaN
buffer leads to the suppression of the gate leakage current
by one order of magnitude compared to a GaN:C buffer.

Off-state breakdown measurements were obtained at gate
bias of Vg = —6 V (Fig. 8). The breakdown voltage was
defined as the drain bias at the drain leakage current of
ImA/mm. For Group 1, Samples A and B display similar
breakdown voltages. Sample C displays a slightly higher
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FIGURE 6. Output characteristics of Sample D (left) on AlGaN buffer wafer
and Sample E (right) on the GaN:C buffer wafer.
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FIGURE 7. Gate leakage characteristics for both experimental groups.

breakdown voltage, owing to the increased energy barrier of
the buffer layer under the channel from increased fluorine ion
concentration [24]. In Group 2, owing to the reduced sheet
carrier density and improved electron confinement resulting
from the AlGaN back-barrier, Sample D demonstrates more
than double the breakdown voltage of Sample E.

In order to gain insight on the RF characteristics of the
fabricated normally-off devices gate lag measurements were
carried out for the samples of Group 2 (Fig. 9). The mea-
surements were carried out using an Agilent E3631A power
supply, Keysight Technologies 33500B waveform generator,
and a Keysight InfiniVision DSOX2004A oscilloscope. The
devices were pulsed from Vg of —2 V to 4 V, with a pulse
width of 1 ps and period of 20 s, corresponding to a duty
cycle of 5%. Sample D exhibits gate lag of 40%, whereas
Sample E exhibits gate lag of 8.8%. We conjecture that the
relatively low gate lag of Sample E compared to Sample D
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FIGURE 9. Gate lag characteristics for Group 2. In pulsed measurement Vg
switches from —2 V to 4 V, with frequency of 50 kHz and duty cycle of 5%.

indicates that the gate lag characteristic is more sensitive to
the traps in the AlGaN buffer than surface traps generated
by fluorine treatment and recess etch.

IV. CONCLUSION

A study of the DC characteristics of normally-off obtained
using a hybrid approach utilizing gate recess, fluorine treat-
ment techniques, and AlGaN buffer was carried out. The
fabricated AlGaN buffer normally-off devices were com-
pared to a GaN:C normally-off device in order to assess the
impact of the advantages of the AlGaN buffer. Variations
of the recess etch depth and fluorine treatment duration are
shown to have notable impacts on the threshold voltage, max-
imum drain current density, and breakdown voltage, whereas
the gate and drain leakage currents, knee voltage, and
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transconductance characteristics are maintained or exhibit
minimal variations. In terms of percentage increase or
decrease in the Vi, Igmax, and Vi, characteristics for the
process variations studied, it is observed that the increase in
fluorine treatment time has a greater effect than the increase
of the gate recess depth. It is observed that for variations in
recess etch depth, the characteristics that shows the most sen-
sitivity are Iq max, and Vp;, whereas for variations in fluorine
treatment time Vi, and Vyp, show the most sensitivity. Since
the maximum achievable drain current density decreases
as the threshold voltage increases, to achieve the optimum
tradeoff the fluorine treatment parameters should be opti-
mized. Of the DC characteristics of the AlGaN and GaN:C
buffer devices breakdown voltage, maximum drain current
density, transconductance, and threshold voltage demonstrate
consequential variations, with the breakdown voltage and
drain current density varying by over 50%. It is seen that the
decrease in threshold voltage for the GaN:C buffer compared
to the AlGaN buffer is on the order of those observed for
process variations, indicating that the AlGaN buffer is not the
most significant factor in achieving normally-off operation
in the studied hybrid approach.
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