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ABSTRACT Ferroelectric field effect transistors (FeFETs) based on lead zirconate titanate (PZT) ferro-
electric material and amorphous-indium-gallium-zinc oxide (a-IGZO) were developed and characterized.
The PZT material was processed by a sol-gel method and then used as ferroelectric gate. The a-IGZO thin
films, having the role of channel semiconductor, were deposited by radio-frequency magnetron sputtering,
at a temperature of ∼50◦C. Characteristics of a typical field effect transistor with SiO2 gate insulator,
grown on highly doped silicon, and of the PZT-based FeFET were compared. It was proven that the
FeFETs had promising performances in terms of Ion/Ioff ratio (i.e., 106) and IDS retention behavior.

INDEX TERMS Ferroelectric transistor, PZT, IGZO.

I. INTRODUCTION
Ferroelectric field effect transistors (FeFET) are highly
attractive as non-volatile memories due to characteristics
like non-destructive read-out, high-density integration pos-
sibility, high speed of reading and writing and low power
consumption [1], [2]. CMOS compatible FeFET employing
silicon (Si) transistors and Al doped HfO2 as ferroelectric
material were recently reported [3]–[5]. Ferroelectric gate
thin film transistors (FeTFT) were developed using different
ferroelectrics such as PZT [6]–[10], poly(vinylidene fluoride-
trifluoroethylene) [P(VDF-TrFE)] [11]–[14], (Bi,La)4Ti3O12
(BLT) [15] or HfO2-based materials (e.g., Si-doped or
Zr-doped HfO2) [16]–[19]. In terms of architecture, the
[P(VDF-TrFE)] based FeTFT devices are generally top-gate,
whilst the fully inorganic structures are bottom-gate.
Among the above mentioned ferroelectrics, HfO2-based

materials recently attracted significant attention. Since the
breakthrough of Böscke et al. [20], which reported in
2011 the ferroelectricity of Si-doped HfO2, incremen-
tal focused researches have been performed in order
to asses if HfO2 based-materials can overcome some
of the limitations of conventional ferroelectrics (such as
PZT), markedly their (i) reduced compatibility with metal-
oxide-semiconductor (CMOS) technologies or (ii) limited

scalability. The ferroelectricity of HfO2 films manifests
when the layer thickness is reduced to few nm (e.g.,
10 nm) [16], [21]. However, this could generate an impor-
tant technological hindrance, since a non-uniformity of only
1 nm will correspond to a thickness variation of 10%, with
a negative impact on the overall performance reproducibility.
One the other hand, PZT presents ferroelectricity even at film
thicknesses of tens or hundreds of nm, and thereby a similar
thickness non-uniformity will not induce a deleterious effect
of the same magnitude.
A disadvantage shared by all polycrystalline ferroelectrics

(HfO2, PZT included) is the random orientation of the crys-
talline grains, which will determine a random behavior of
the correlation between the polarization and direction of
the electric field along the crystalline grains. Moreover, in
PZT the binding of cations to oxygen is relatively weak
(thus, the oxygen vacancies formed relatively easy) and
this can cause reliability concerns. However, PZT, as gate
in FETs, is appealing due to its high remnant polariza-
tion and low coercive voltages. Moreover, this material can
be obtained via solution methods, offering high scalabil-
ity, while maintaining the good ferroelectric response [22].
Still, a drawback of PZT is the difficulty of integration in
the mature Si technology because of the poor quality of
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the PZT/Si interface [23]. Nevertheless, this issue can be
overcome by combining the ferroelectric PZT with an oxide
semiconductor, such as indium-gallium-zinc oxide (IGZO).
First suggested by Nomura et al. [24], amorphous IGZO
(a-IGZO) is already acknowledged as a suitable mate-
rial for application in transparent transistors, acting as
the semiconductor channel. The notoriety of a-IGZO was
gained in the last decade due to its relatively large car-
rier mobility, high transparency and good uniformity on
large areas. Consequently, IGZO has been used so far
in FeFETs as channel semiconductor in combination with
[P(VDF-TrFE)] [11], [12], BLT [15], and bilayer gates, e.g.,
[P(VDF-TrFE)]/Al2O3 [25]–[27].
At an energy band gap of ∼3 eV and a work function

of 4.5 eV, IGZO has an unsuitable band alignment with
Si- [28] and Zr-doped HfO2 [29] for FET-type applications.
In the case of PZT and un-doped HfO2, the band alignment
is presumed to be favorable (type I-straddled), but with low
valence band offset (∼0.4 eV) and low conduction band off-
set (∼0.2 eV) for PZT. Nevertheless, the band offset may
vary as both the band gap and the work function of polycrys-
talline films are greatly influenced by the synthesis method
variables. For example, the IGZO band gap was found to
vary in the range 2.5 – 3.5 eV [30], [31].
For the design of FeFETs, PZT has been combined with

MoS2 [6], [7], graphene [8], [32], ITO [9] or ZnO [10].
Graphene, ITO and ZnO are transparent in visible range,
whilst MoS2 has a band gap of ∼1.2 eV. The use of graphene
in PZT- FeFETs (memory window of 4.1 – 4.3 eV, ∼ 72%
of Ihigh/Ilow can be retained after 10 years) devices pro-
duces good performances, but it cannot substitute IGZO,
as it has a p-type conduction. In ZnO the free carriers are
generated as consequence of oxygen vacancies (VO), and
therefore, the electron concentration and its reproducibility
is difficult to be managed. In the case of IGZO, the free
carriers density is governed by indium concentration, while
the VOs, which are the predominant defects also in type of
material, have the highest formation energy in the vicinity
of gallium atoms. Thereby, the modification of gallium con-
centration in IGZO can be used to control the formation of
VOs, and consequently, to tune the free carriers density [33].
Although ITO/PZT based FeFETs were considered promis-
ing, they are affected by large leakage currents, which can
be associated with the unfavorable band alignment (valence
offset of −1.1 eV) [34].
To the best of our knowledge, no reports on the fabrication

and performance of FeFETs using HfO2 – doped or un-doped
– or PZT (as ferroelectric gate) and a-IGZO (as channel
semiconductor), have been published yet. In this article we
advance the use of one of these combinations (i.e., PZT and
IGZO) for the development of a new ferroelectric transistors.

II. DEVICE FABRICATION AND EXPERIMENTAL METHODS
Two types of bottom-gate field effect transistors (FET)
were fabricated: (i) with 50 nm thick SiO2 gate insulator
grown on highly doped Si (“SiMat”) and (ii) with 230 nm

thick PZT (PbZr0.2Ti0.8O3) deposited by sol-gel method
onto temperature resistant glass substrate. The fabrication
steps of the PZT layers are described elsewhere [35]. The
40 nm thick IGZO channel semiconductor was deposited
by radio-frequency magnetron sputtering (RF-MS) (using
a customized AJA Phase II J system) on both SiO2 and
PZT, at room-temperature (i.e., without intentional heating;
the substrate temperature reaching a temperature of ∼50 ◦C
under the deposition conditions, due to plasma bombard-
ment processes only), in the same deposition session. The
sputtering of In:Ga:Zn (1:1:2) oxide target was performed
in inert atmosphere, using an Ar flow of 20 sccm, and
a substrate-to-target separation distance of 80 mm. To ensure
good uniformity the substrates were rotated at a speed of
30 rpm. The Ti/Au layers for the gate (only on PZT based
transistors) and source-drain electrodes were deposited by
RF-MS, subsequently to the patterning of the substrates
by photolithography. In both SiO2 and PZT-based tran-
sistor cases, the channel width – length ratio was W/L
= 20 µm/20 µm. The as-fabricated transistors and metal-
ferroelectric-metal structures – MFM (the schematics given
in Figd. 1 (d – f) were thermal-treated in air at 250 ◦C, on
a hot plate in two consecutive sessions of 2 h, under dark
conditions. Subsequently, the devices were analyzed.
The structure of the PZT layers was analyzed by X-ray

diffraction (XRD) in symmetric geometry, using a Bruker
D8 Advance machine (CuKα radiation). The morphology
of the PZT/IGZO based FET was investigated by scanning
electron microscopy (SEM), with a Zeiss Merlin Compact
field emission scanning electron microscope. The transfer
and output characteristics of the FETs were evaluated with
a Keithley 4200 semiconductor parameter analyzer, in dark
conditions, using 0.5 s per one step of 0.2 V in sweeping VGS
and 0.1 V in sweeping VDS. The electrical measurements
were performed in normal atmospheric conditions at room-
temperature, and in vacuum (at 2 × 10−6 mbar) at various
temperatures. Furthermore, the capacitance-voltage (C-V)
characteristics of SiO2/IGZO/Ti/Au and PZT/IGZO/Ti/Au
structures were carried out directly on FETs; the C-V curves
were recorded at 100 kHz frequency of the a.c. small signal
of 100 mV amplitude using a Hioki LCR meter, by sweeping
the voltage from negative to positive values and back. The
polarization–voltage (P–V) measurements were performed at
100 Hz by employing a TF2000 ferritester system equipped
with a FE-Module (aixACCT).

III. RESULTS AND DISCUSSION
The polycrystalline nature of PZT layers structure can be
depicted based on Fig. 1 (c). The identified diffraction
maxima are ascribed to crystallized PZT [35]. Crystalline
coherence length (Dh00) and mean square strain values
of 73 nm and 0.02, respectively, were determined by the
Williamson-Hall method. In addition, the top-view and cross-
view SEM analyses revealed that the PZT layer is dense and
elicits a clear separation interface with the IGZO thin film
(see Fig. 1 (a) and (b)). MFM structures, having areas of
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FIGURE 1. (a) Cross-sectional SEM image of PZT/IGZO based FET;
(b) Top-view SEM image of the PZT layer’s surface; (c) XRD pattern of the
sol-gel synthesized PZT thin film; Schematics of the (d) SiO2 based FET,
(e) PZT based FeFET; and (f) metal-ferroelectric-metal (MFM) structures.

FIGURE 2. (a) Capacitance-voltage (C-V) characteristics of the PZT based
MFM; (b) Hysteresis loop recorded for the PZT film.

0.0196 mm2, were fabricated on the same glass wafer as the
FET structures, to enable performing the C-V and hysteresis
loop measurements.
The C-V characteristics (Fig. 2 (a)) are asymmetric in

terms of capacitance values, and moreover, show a small shift
towards negative voltages. The asymmetry of the C-V curves
can be caused by the different PZT interface formed with the
bottom (Ti/Au/PZT) and top (PZT/Ti/Au) electrodes, respec-
tively. Moreover, the bottom electrode was subjected to an
annealing temperature of 650 ◦C after the deposition of the

TABLE 1. Performance parameters of FeFETs. This work: electrical prop-

erties of SiO2 and PZT based FETs. In the case of PZT-based FET, the

threshold voltage (consequently, µfe) has two values, corresponding to for-

ward and reverse sweeps. Ion(SiO2 base FET) = 2.6×10−6 A , Ioff (PZT based

FET) = 2.1 × 10−6 A; Other works: [P(VDF-TrFE] [25], [36], [37], BLT [15],

PZT [9], [32] and HfZrO [18], [19].

PZT film, and this caused its degradation. The significant
impact of the thermal annealing on the bottom electrodes
is revealed by the cross-section SEM image (Fig. 1 (a)),
which evidenced the presence of voids with diameters up to
100 nm in the Au layer.
The hysteresis loops (Fig. 2 (b)) were recorded using

a triangular voltage wave with a frequency of 100 Hz. The
current hysteresis shows the presence of the characteris-
tic peaks associated to polarization reversal. The value for
remnant polarization (Pr) is around 53 µC/cm2, while the
coercive voltages of −6.5 V and +5.2 V lead to a coercive
field of 240 kV/cm. It should be mentioned that the hysteresis
loops have a small shift towards negative voltages.
The typical pinch-off of n-type semiconductor FETs was

shown by the output characteristics of SiO2 or PZT based
FETs (Fig. 3 (a) and (d)). Both devices showed a good
saturation tendency, while the linear regime was recorded
for VDS biases lower than 1 V for both devices.
Table 1 summarizes the essential parameters for FET

devices (Ion − IDS at maximum VGS bias; the Ion/Ioff ratio,
where Ioff and Ion are the IDS at minimum and maximum
VGS bias, respectively; the threshold voltage – Vth; the sub-
threshold slope – SS; field effect mobility – µfe). The leakage
current, IGS, in the case of SiO2 based FET was 10−10A,
thus, with two orders of magnitude higher with respect to
the one of FeFET, degrading the Ioff level and consequently
the Ion/Ioff ratio.
The field effect mobility values were calculated using

the equation 1, where oxide capacitance values are
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FIGURE 3. SiO2/IGZO/Ti/Au structure: (a) Output characteristics;
(b) Linear transfer characteristics with inset of sub-threshold region,
and (c) C-V curve; PZT/IGZO/Ti/Au structure: (d) Output characteristics;
(e) Linear transfer characteristics with inset of sub-threshold region;
and (f) C-V curve.

Cox(SiO2) = 6.9 × 10−8F/cm and Cox(PZT) = 2 ×
10−6F/cm. The obtained µfe values are underestimated with
∼24%, due to the contact resistance effect, Rc = 29k�
(extracted using Transmission Line Method [38]).

µ = L

W

IDS
Cox(VGS − Vth)VDS

(1)

The transfer characteristics (IDS vs. VGS) with a double
sweep of the VGS, under VDS = 0.1V, are presented in
Fig. 3 (b) and (e). For SiO2 based FET, the hysteresis width –
defined as the � VGS at (Ion−Ioff)/2 – has a negligible value
of 0.2 V. The insignificance of the hysteresis width for this
device is confirmed by the C-V measurements (Fig. 3 (c)).
However, in the case of PZT based FET, � VGS is 3.2 V
and the hysteresis width in capacitance – defined as � V
at (Cmax − Cmin)/2 – is 6.2 V. (Fig. 3 (f)). Both I-V and
C-V hysteresis loops show a clock-wise behavior, which is
intriguing since, in a proper FeFET, the hysteresis loops have
to be counter clock-wise when the ferroelectric is grown on
a n-type semiconductor.
Equation (2) [39], [40] was used to estimate (consid-

ering the product of the deep bulk states density and the
IGZO thickness as much lower-than the interface states den-
sity) the maximum the interface states densities, Dit, of 1 ×
1012 cm−2 eV−1 for SiO2/IGZO and 1.3×1013 cm−2 eV−1

for PZT/IGZO structures. This interface quality difference is
reflected also in the sub-threshold performance of the TFTs
(inset – Fig. 3 (b) and (e)), i.e., the higher sub-threshold

FIGURE 4. PZT FeFET structure: (a) Linear transfer characteristics; (b) (C-V)
characteristics measured at different temperatures.

current for SiO2-TFT.

Dit = Cox
q2

(
qSS

kT ln10
− 1 − CD

Cox

)
(2)

where CD ∼ 10−7 F/cm is depletion capacitance.
Considering the IGZO thickness of 40 nm and its electron

concentration of 6×1017 cm−3 (extracted from Hall measure-
ments, data not shown here), it results that the free carriers
from the channel can compensate a polarization of maxi-
mum 0.4 µC/cm2. This is a much smaller value than the one
extracted from the hysteresis loop presented in Fig. 2 (b). On
the other hand, the Dit extracted for the PZT/IGZO interface
corresponds to about 6 µC/cm2.

The result is that the hysteresis loops at room-temperature
are dominated by the interface traps. PZT-based FeFETs
with clock-wise loops are not unprecedented [6], [7]. The
observed hysteresis loops were described by the dynamic
charge trapping and de-trapping which take places when VGS
is swept from negative to positive, and back. Nevertheless,
even in the case of a clock-wise hysteresis, the field effect
can be modulated by changing the polarization value in the
ferroelectric gate, as shown in Sun et al. [6].

We have also performed temperature-dependent hysteresis
measurements on the PZT/IGZO FeFET (Fig. 4). One can
see that, up to 420 K, the counter clock-wise hysteresis could
not be recovered. A possible explanation for this is that the
capacitance measurement was performed between the gate
and source/drain electrodes, thus the results are affected
by some parasitic capacitances (e.g., overlap capacitance
between the gate electrode and the source/drain electrodes
with only PZT in between).
It is shown that the hysteresis width (memory window)

increases with temperature. This effect can be attributed to
the presence of ferroelectric polarization in the gate layer.
As the temperature increases the trapping on the interface
states is no longer active, and thus the effect of ferroelec-
tric polarization is more visible in the device characteristics.
Moreover, a peculiar behavior was revealed by the C-V vs.
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FIGURE 5. Retention behavior of the PZT-IGZO based FeFET; Variation of
the “On” and “Off” states with a time lapse of 1000 seconds.

temperature measurements: from 200 K to 250 K, the C-V
curve has a positive shift, while, from 250 K to 420 K, the C-
V curves show a shift towards negative voltage. Up to 250 K,
the positive shift could be caused by the trapping of electrons
by the existing defects at the given top electrode (with acti-
vation energy larger than 21.4 meV), which partially screens
the applied gate bias and makes the effective gate voltage
smaller. As the temperature is further increased, the curves
are shifted toward negative VGS values due to the carriers
thermal activation (electron detrapping) from trapping states.
The memory function (as non-volatile memory) was tested

by applying a voltage pulse of +20 V or − 20 V for
3 seconds on the gate electrode, orienting in this way the
polarization upward (towards the IGZO channel) or down-
ward (towards the gate electrode), and then measuring the
drain current at regular time intervals with no potential
applied on the gate (floating gate).
Two IDS values were obtained, for On and Off states

(Fig. 5), corresponding to the two orientations of the polar-
ization. Thus, the memory function is present although the
ferroelectric hysteresis is masked by the parasitic effect of the
interface states. The memory property can be explained by
the fact that, after removing the external poling field applied
on the gate, the polarization value and orientation stabilizes
to the value allowed by the available charges for compensat-
ing the depolarization field. The values/orientations appear
to be different leading to different values of the drain current.
We can speculate that the upward value (for positive gate
voltage) is very stable (induces accumulation in the chan-
nel), leading to an almost constant value of the drain current
up to 1000 seconds. The opposite orientation of polariza-
tion seems to stabilize after about 100 seconds, as suggested
by the fact that the drain current value increases from few
tens of picoamps to few nanoamps. This is owned to the fact

that during the poling period and immediately after removing
the poling field, the polarization value is close to the one
extracted from the hysteresis loop (about 50 µC/cm2). After
removing the poling field, the polarization value decreases,
probably around 0.4 µC/cm2 or less, leading to an increase
drain current value. One can observe that the increase in
the value of the drain current is about the same order of
magnitude with the assumed decrease in polarization value
after removing the poling field.
There is an apparent inconsistency between the clock-

wise hysteresis (Fig. 3e) and the presence of IDS retention
(Fig. 5). The question of how both behaviors can characterize
the same FeFET can arise. We believe that this may be
a result of the measurement procedure. The current-voltage
characteristic in Fig. 3e is a dynamic one (VGS sweeping);
in this case, both voltages are applied on the structure, VGS
and VDS.
The retention measurement results, presented in Fig. 5,

were obtained after the gate probe was mechanically lifted
(open gate); in this case only VDS is applied on the structure.
The fact that there is a certain superposition between the gate
electrode on one hand and the source/drain electrodes on the
other hand, may lead to different behavior of charges in the
structure when both VGS and VDS are applied, compared to
the situation when only VDS is applied and the gate is not
grounded.
When a positive voltage is applied on the gate, then polar-

ization will be oriented towards the IGZO channel, attracting
electrons to the interface for compensating the positive polar-
ization charges. Some of these electrons are trapped on the
interface states. When the applied VGS is higher than +9 V
(Fig. 3e), the device is not completely trapped. Therefore,
applying a VGS bias of +20 V before measuring the IDS
retention time is enough for obtaining the maximum accumu-
lation current, ∼2 microamps, the same as the one measured
in Fig. 3e. Moreover, because the gate contact is open, there
are no parasitic conduction channels for the charges in the
structure and the drain current remains at the value set after
poling the ferroelectric with positive VGS.

The functionality of here presented FeFET device is infe-
rior to those based on [P(VDF-TrFE)] and IGZO, which
show field effect mobility higher than 40 cm2/Vs, Ion/Ioff
of 108 and retention time of days [25]. However, contrary
to PZT, P(VDF-TrFE) suffers of permanent degradation of
its ferroelectric properties when is exposed to temperatures
higher that 65 ◦C, being unsuitable for high temperature
applications.

IV. CONCLUSION
Thin PZT layers were obtained by sol-gel, a low-cost fab-
rication method, and successfully integrated into FeFETs.
The device provided good performances in terms of both
Ion/Ioff ratio and threshold voltage. However, the interface
states between PZT and IGZO acted as traps and affected the
ferroelectric memory window. In spite of this, good retention
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behavior was shown due to the polarization switching in the
gate ferroelectric.
Therefore, PZT/IGZO based FeFETs could become inter-

esting alternatives, even for transparent electronics, if the
contribution of interface states acting as traps will be reduced
(ideally, completely removed). This could be the solution to
recover the ferroelectric memory window and to manufacture
an accurate FeFET that may compete with the existing non-
volatile memories based on trap charges or floating gate.
One possible route to optimize the interface quality is to
use a textured or even epitaxial ferroelectric layer instead of
a polycrystalline one. However, such an approach, based
on ferroelectric layers of higher structural quality would
imply the use expensive deposition technologies (i.e., PVD
or CVD) and would introduce certain restrictions in what
concerns the substrate choices.
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