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ABSTRACT We have investigated the effect of hot electron stress on the electrical properties of
AlGaN/GaN high electron mobility transistors (HEMTs) of hydrogen poisoning. The AIGaN/GaN HEMTs
were biased at the semi-on state, and they suffered from the hot electron stress. The devices of hydrogen
poisoning were degraded, while there is almost no degradation for the fresh ones. The hot electron stress
leads to the significantly positive shift of threshold voltage and the notable decrease of drain-to-source
current for the AIGaN/GaN HEMTs of hydrogen poisoning. For the AlIGaN/GaN HEMTs of hydrogen
poisoning, the trap density increases by about one order of magnitude after the hot electron stress experi-
ment. The physical mechanism can be attributed to electrically active traps due to the dehydrogenation of
passivated point defects at AlGaN surface, AlIGaN barrier layer, and heterostructure interface. The results
of this paper may be useful in the design and application of AIGaN/GaN HEMTs.

INDEX TERMS GaN HEMT, hydrogen poisoning, hot electron stress.

I. INTRODUCTION

Owing to its large band gap, high breakdown electric field
and large two-dimensional electron gas (2DEG) concen-
tration [1], [2], there are potential applications in high-
temperature, high-frequency and high-power field for GaN
high electron mobility transistors (HEMTs). As we already
know, the effect of hydrogen poisoning on device stabil-
ity and reliability is important, especially if the devices
are planned for space applications. In hermetically sealed
packages, there would be hydrogen released from packaging
material, and the devices in the hermetically sealed pack-
ages would be fully exposed to the hydrogen. The electrical
characteristics of the devices could be altered, leading to
their eventual failure due to hydrogen diffusion into the
devices [3]. Thus there is a serious reliability concern for
III-V field-effect transistors induced by hydrogen [4]-[9],
such as InP HEMTs, GaAs PHEMTs, and GaAs MMICs.
This is named as the hydrogen poisoning behavior for these

types of devices. The hydrogen poisoning phenomenon of
AlGaN/GaN HEMTs has been reported in our previous
work [10], where there was a significantly negative shift of
threshold voltage.The worst case for hot electron effect in
AlGaN/GaN HEMTs may be biased at the semi-ON state or
ON state [11]-[14]. Previous investigations mainly show that
the semi-ON bias condition is typically the worst case for
hot electron stress (HES) in A1GaN/GaN HEMTs [11]-[13].
In this work, both of the fresh and hydrogen poisoning
AlGaN/GaN HEMTs were biased at the semi-ON state for
hot electron stress (HES) experiment.

Degradation of AlIGaN/GaN HEMTs under operating con-
ditions remains a major issue. In particular, hot electron
stress (HES) can trigger on-state degradation by generating
defects [15]-[17], which is consistently cited as one of the
most relevant mechanisms that would limit the performance
and reliability of the devices [18], [19]. Furthermore, low
frequency noise (LFN) is a useful technique to characterize
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the defects in microelectronic devices [20], [21], and there
are extensive series of LFN investigations on the Si and SiC
based MOS transistors, and AlGaN/GaN HEMTs [22].

In this letter, the effect of hot electron stress on the elec-
trical charateristics of AlGaN/GaN HEMTs with hydrogen
poisoning was investigated. The variation of defect density
was analyzed using the LFN method. The corresponding
physical mechanism for the effect of hot electron stress on
hydrogen poisoned devices was also discussed. The results
may provide useful guidelines in the space application of
AlGaN/GaN HEMTs.

Il. EXPERIMENTAL

The AlGaN/GaN HEMTs were fabricated [23], and the
device structure was shown in Fig. 1. The schematic dia-
gram of cross section of the AlIGaN/GaN HEMTs is shown
in Fig. 1(a). The devices have a gate length of 0.5 pum,
a gate width of 1.25 mm, and a gate-source and gate-
drain spacing of 2 wm and 5 pm, respectively. A SiNx
layer of 150 nm was grown on the surface to passivate
devices. The surface morphology of AlGaN/GaN HEMTs
is shown in Fig. 1(b). The dies were placed in a chamber
for 1 week at room temperature. where the ambient was H»
gas with one atmospheric pressure. Here, this is denoted as
the worst hydrogen poisoning process. The electrical prop-
erties were characterized by semiconductor device analyzer
(Agilent BI5S00A). The devices were biased at a drain-source
voltage of 30 V by power instrument (Agilent E3645A) and
the drain-source current (/;5) of 200 mA, which is denoted as
HES experiment. LFNs were measured by SR785 dynamic
signal analyzer in connection with the filters and amplifiers
(Proplus 9812B).

Drain

GaN bulfer layer

FIGURE 1. Device structure: (a) the schematic diagram of cross section
and (b) surface morphology of AlGaN/GaN HEMTs.

IiIl. RESULTS AND DISCUSSION

A. EFFECT OF HES ON ELECTRICAL CHARACTERISTICS OF
AlIGaN/GaN HEMTS OF HYDROGEN POISONING

To determine the effect of hot electron stress on the electrical
properties of AlGaN/GaN HEMTs of hydrogen poison-
ing, the output characteristics were measured for the fresh
AlGaN/GaN HEMTs and the ones of hydrogen poisoning
for comparison, as shown in Fig. 2. As for the typical fresh
AlGaN/GaN HEMT, no variation could be observed from the
output characteristics of the devices after 5 h or 10 h experi-
ments of HES as shown in Fig. 2(a) where the gate-to-source
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FIGURE 2. The typical output characteristics of AlGaN/GaN HEMTs:
(a) fresh devices and (b) the hydrogen poisoning devices.

B ey (b)
0.4 (.8 |-¥ after hydrogen poisoning
-o-after 5h HES
03 0.6 |- after 10 h HES

" -m-tresh (a)
0.8}-@-after 5h HES
~4—after 10 h HES

Vds=5V Vds=5V

5 4 3 a2 4 0 § 4 3 4 A 0
Ves (V) Ves (V)

FIGURE 3. The typical transfer characteristics of AlIGaN/GaN HEMTs with
drain-to-source voltage of 5 V step: (a) fresh and (b) with hydrogen
poisoning.

voltage (V) is ranging from —3.0 V to 0 V with a step of
0.5 V. However, as for the AlGaN/GaN HEMTs of hydrogen
poisoning as shown in Fig. 2(b), the output characteristics
of the devices were obviously influenced by the 5 h or 10 h
experiments of HES. As for the AlGaN/GaN HEMTs after
hydrogen poisoning, the I;; values (blue line) are obviously
larger than those of the fresh ones at the same Vg, which are
in good agreement with our previous results [10]. It could
be interesting to find that after 5 h experiment of HES, the
145 values (red line) of the AlGaN/GaN HEMTs are smaller
than those of the ones of hydrogen poisoning (blue line) and
eventually the fresh ones (black line). Under the conditions
of Vos =0V and Vg =5V, the typical Iy value increases
from 833 mA to 915 mA, and the maximum variation of I
is up to 82 mA for the AIGaN/GaN HEMTs after hydro-
gen poisoning. However, after 5 h experiment of HES, the
typical Iz value decreases from 915 mA to 788 mA, and
the maximum variation of I, is up to 127 mA. It indicates
that the effect of HES on the devices of hydrogen poisoning
is notable. Furthermore, there is little variation after 10 h
experiment of HES.

As for the fresh AIGaN/GaN HEMTs, there is almost no
variation of transfer characteristics (I4s-Vys) and transconduc-
tance (Gy,) after 5 h or 10 h experiments of HES as shown in
Fig. 3 (a), where the drain-to-source voltage (Vy;) was set as
5 V. However, as for the AIGaN/GaN HEMTs after hydro-
gen poisoning as shown in Fig. 3(b), there are variations
of transfer characteristics and transconductance after 5 h or
10 h experiments of HES. For typical fresh AlGaN/GaN
HEMT is of a threshold voltage (V) of —2.45 V, and
a maximum transconductance (Gjax) of 0.35 S. There was
a negative shift for the I,-Vgs curves and G, curves, and
the typical Vi, changes from —2.45 V to —2.77 V after
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hydrogen poisoning, which is in agreement with our previous
results [10]. Interestingly, after 5 h experiment of HES, there
was a positive shift for the I4-V,y curves and Gy, curves,
and the Vy, value of AlGaN/GaN HEMTs is larger than
that of the hydrogen poisoning ones, and eventually larger
than the fresh ones. The typical Vy, shifts from —2.77 V to
—2.11 V, and the typical Gy, value increases from 0.25 S
to 0.36 S. The maximum variation of Gy is up to 0.11 S
for the AIGaN/GaN HEMTs of hydrogen poisoning due to
HES. Moreover, there is little variation after 10 h experiment
of HES.

The gate-leakage currents of the fresh AlGaN/GaN
HEMTs and the ones of hydrogen poisoning were obtained
as shown in Fig. 4. From Fig. 4 (a), no obvious variation
could be observed on the gate-to-drain (Igg -Vgq) curves
of the fresh AlGaN/GaN HEMTs before and after 5 h or
10 h experiments of HES. From Fig. 4 (b), there is also
no obvious variation on the gate-to-source (Igs-Vs) curves
of the fresh AlGaN/GaN HEMTs before and after 5 h or
10 h experiments of HES. As shown in Fig. 4 (c), the gate-
leakage current of the AlGaN/GaN HEMTs of hydrogen
poisoning is similar to the fresh ones. However, after the
5 h or 10 h experiments of HES, the gate-leakage current
becomes smaller, which indicates that the HES has an effect
on gate-to-drain leakage current of the devices of hydrogen
poisoning. As shown in Fig. 4 (d), the gate leakage current
of AlGaN/GaN HEMTs of hydrogen poisoning is similar
to that of the fresh ones. Furthermore, the HES have no
obvious impact on /g of the hydrogen poisoning devices.
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FIGURE 4. Schottky characteristics after HES: (a) /, d-Vgd and (b) Igs-Vgs
for the fresh devices, (c) Igd-VYgd and (d) Igs-Vgs for the hydrogen
poisoning devices.

B. EFFECT OF HES ON LOW FREQUENCY NOISE OF
AlIGaN/GaN HEMTS OF HYDROGEN POISONING

To analyze the effect of hot electron stress on the defect
in AlIGaN/GaN HEMTs of hydrogen poisoning, the low fre-
quency noise spectrum were obtained under various gate bias
voltages. The current spectral noise density (S;) was mea-
sured at low drain bias (V43 = 0.1 V) as shown in Fig. 5.
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The normalized S;/I? is 1/f with the frequency in the range
of 10 Hz to 1 kHz for the typical AlIGaN/GaN HEMT as
shown in Fig. 5 (a). The normalized current spectral density
S;/I? taken at 25 Hz is plotted in Fig. 5 (b) versus the cur-
rent of the fresh AlIGaN/GaN HEMTs before and after 5 h
or 10 h experiments of HES. The number fluctuation model
explains the 1/f noise by the charge trapping/detrapping of
mobile carriers between interfacial traps and the channel.
Based on this model, the S;/I? can be modeled by [22]:

S1/* = (gm/D*Swpy (1)

where Sy, as input-referred spectral noise density was
adjusted here to achieve a good fit to the data, and
gm/ly extracted from the measured characteristics. The Spr
are 1.1x1071, 1.0x107!, and 1.12x107!" for the fresh
AlGaN/GaN HEMTs, after 5 h and 10 h experiments of
HES, respectively. Then, it was possible to determine the
density of traps (V;) by:

Subr = q*kTAN;/WLFC} )
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FIGURE 5. The characteristics of low frequency noise for AIGaN/GaN
HEMT: (a) the typical S;/I? versus frequency for the fresh devices,
and (b) the S;/I? at 25 Hz versus / (b) for the fresh ones and (c) with
hydrogen poisoning.

where . = 0.5 nm is the AlGaN/GaN conduction band
alignment, W and L are the gate width and length, respec-
tively, and Cp, is the AlGaN barrier capacitance [22]. From
the equation, as a first order estimate, the extracted N; are
6.2x10'7, 5.7x10!7, and 6.3x10'7cm™3eV~! for the fresh
AlGaN/GaN HEMTs, and after 5 h or 10 h experiments of
HES, respectively. Due to the perfect material except for the
surface in Si-based devices, volume traps and crystal defects
are almost negligible. Therefore, N; mainly attributed to the
contribution of the traps at the interface between the gate
dielectric and the Si surface or the traps in the gate dielec-
tric [24], [25]. However, N; is considered to be the volume
trap density in the GaN buffer layer (or AlGaN barrier) by
ignoring the trapping effect of gate dielectric in AlIGaN/GaN
MISHFET [25]. In our work, the N; is also considered to be
the volume trap density in the GaN buffer layer (or AlGaN
barrier) of AIGaN/GaN HEMTs.
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FIGURE 6. Schematic diagram of the physical mechanism for the effect of
HES on hydrogen poisoning AlGaN/GaN HEMTs: (a) lot of traps at the
surface, barrier layer, and interface for the fresh device, (b) less traps for
the hydrogen poisoning device, and (c) more traps for the hydrogen
poisoning device after the HES experiment.

As for the AlIGaN/GaN HEMTs of hydrogen poisoning
as shown in Fig. 5 (¢), the S,y are 6.5x10712, 9.3x 10714,
and 3.5x107? for the fresh AlGaN/GaN HEMTs, hydro-
gen poisoning, and after 10 h experiments of HES,
respectively. The extracted N; is 3.7x107, 53%x10%3,
and 1.9x10%%cm™3eV~!, respectively. The defect density
decreases by about two orders of magnitude for the
AlGaN/GaN HEMTs after hydrogen poisoning, while it
increases by about three orders of magnitude for the devices
of hydrogen poisoning after 10 h experiments of HES.

C. MECHANISM OF HES EFFECT ON AIGaN/GaN HEMTS
OF HYDROGEN POISONING

The physical mechanism could be explained as shown in
Fig. 6. At the AlGaN surface, the AlGaN barrier layer,
and the heterostructure interface of the fresh AlGaN/GaN
HEMTs, there are several kinds of defects [26], such as
nitrogen antisite (Ng,), Ga vacancy (Vg,), N vacancy (Vy),
oxygen impurity centers (Oy), or Ga-N divacancy (Vga-Vi)
as shown in Fig. 6 (a). As for the AIGaN/GaN HEMTs with
hydrogen treatment, H would diffuse into the AlGaN barrier
layer and the interface to passivate the defects [27]-[29],
and there would be the hydrogenated defects [30], such as
[VeaH31°, antisite [Ng.H>1°, and [Vg,VyH3]~. This results
in the decrease of defect [27], [31], as shown in Fig. 6(b),
and it is supported by the extracted N; results (red line)
as shown in Fig. 5 (c). This leads to the degradation of
transconductance and negative shift of threshold voltage as
shown in Fig. 3 (b) (blue line). During the experiment of
HES, hot electrons with energy higher than an activation
threshold could release hydrogen atom [30], and convert the
[VaH31° to the [VgaHa]™ or [VgeHa]™, the [VaaVH3]™
to the [V VyHa]*>~ or [V, VNH]?~, the [Ng.Hz]° to the
[Ng,H]~. This could create electrically active traps by
dehydrogenation of passivated point defects [30], [32]-[35].
Therefore, the trap density increases as shown in Fig. 6 (c),
and it is confirmed by the results of the extracted N; (blue
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line) as shown in Fig. 5 (c). Meanwhile, this leads to the
recovery of transconductance and positive shift of threshold
voltage as shown in Fig. 3 (b) (red and green lines).

IV. CONCLUSION

The effect of hot electron on the hydrogen poisoning
behavior of HEMTs was investigated, and the threshold
voltage shifts positively for the AlGaN/GaN HEMTs with
hydrogen poisoning due to HES. It results in smaller
drain-to-source current of AIGaN/GaN HEMTs with hydro-
gen poisoning. Furthermore, trap density increases in the
AlGaN/GaN HEMTSs. The corresponding physical mecha-
nism for HES-dependent behavior could be attributed to the
increase electrically active traps due to the dehydrogenation
of passivated point defects, such as converting [VaaH31°
to [Veatal™, [VaVwH3]™ to [VaaVWH2I*™, [NGaH2] to
[NgaH]™, etc. The results may provide useful guidelines in
the space application of AlGaN/GaN HEMTs.
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