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ABSTRACT Our new proposal of voltage-control spintronics memory (VoCSM) in which spin-orbit
torque in conjunction with the voltage-control-magnetic-anisotropy effect works as the writing princi-
ple showed small switching current of 37 pA for about 350 KpT switching energy. This indicates
VoCSM’s writing efficiency is so high that VoCSM would be applicable for deep learning memories

requiring ultra-low power consumption.

INDEX TERMS Magnetic memory, nonvolatile memory, magnetic tunneling, magnetic devices, learning

(artificial intelligence), Nanopatterning.

I. INTRODUCTION

Since logic chips for deep learning (DL) such as
Graphics Processing Unit (GPU), Field-Programmable Gate
Array (FPGA) or DL-specific-System-on-a-Chip (SoC) cer-
tainly require high-memory bandwidth, current DL-chips use
TSV-based solutions (TS) with interposers and 3D-stacked
DRAM. However, in the case of TS, the cost performance
of TS is a severe issue, since integration cost is high
and bandwidth is limited because of the number of TSVs.
The ideal memory solution is “ultra-high density embed-
ded memory.” Although embedded Spin Transfer Torque
MRAM (eSTT-MRAM), which would replace eSRAM with
4x higher density, had been considered the ideal candi-
date, switching current (Ic) and endurance of STT-MRAM is
severely degraded as the write time is shorter for DL mem-
ory (<20ns) [1]. VoCSMs have been proposed as a new
MRAM concept to break the STT-MRAM impasse and
demonstrated their unique writing concepts and their features
such as the possibility of ultra-low power consumption [2],
high-speed writing [3], read-disturb robustness and unlim-
ited endurance [3], [4]. One of the features of VoCSM
is ultra-high efficiency in writing. However, the envisaged

capabilities of VoCSM remain unproven owing to the
immaturity of the technologies.

In this study, the ultra-high efficiency in writing was
demonstrated for the first time by developing self-aligned cell
structure and the ultra-precise fabrication process to show the
potential for a memory solution for DL logic chips. The pla-
nar and cross-sectional structure of the self-aligned cell were
explained using electron microscopic images. Patterning
damage at the MTJ edge introduced by the newly developed
process was compared with that by the conventional process.
Furthermore, the prospect of further reduction of power con-
sumption and the comparison with embedded (¢)DRAM /
eSRAM about application possibility as a memory for DL
of VoCSM were performed.

Il. THE VOCSM CELL, MATERIAL, STRUCTURE, AND
PROPERTIES

A. MATERIALS

The MTJ film mainly used had the structure of
(from bottom) Ta (2)/TaB (3) / FeB (2.1-2.2) / MgO
(1.8)/CoFeB (1.8)/Ru (0.9)/CoFe (1.8)/IrMn (8.0)/Ta (5.0)
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FIGURE 1. Schematic drawings of the TSSA process. (a) First mask
patterning, (b) 1st ion-beam etching (IBE) of MTJ. Etching stops on the SHE
electrode surface, (c) 2nd mask patterning, (d) 2nd IBE of MTJ. The SHE
electrode is patterned into stripe configuration. (e) Top (VCMA) electrodes
are connected on MTJ cells on the same SHE electrode stripe.

(f) Plane-view SEM image of the device before top (VCMA) electrode
patterning. SHE electrode connects the two pads. (g) Expanded image of
dashed-circle area in (f). Three rectangular MTJs are patterned on the SHE
electrode. (h) Cross-sectional TEM image of MTJ / SHE-electrode region
observed from the arrow in (e).

[nm] fabricated using an ultra-high-vacuum magnetron sput-
tering machine at room temperature. The films were then
annealed at 300°C for 1 h for pinning. Saturation mag-
netization (Ms) and dead-layer thickness are 1076 emu/cc
and 0.003 nm, respectively. The 3 nm-TaB layer is inserted
between the FeB storage layer (SL) and the Ta layer to
reduce dead-layer thickness in the SL [5].

B. STRUCTURE AND PROCESS
B.1. CELL STRUCTURE

The cell configuration is designed to reduce I, compared
with that of the conventional structure used in our previous
demonstrations [2], [3]. We developed two key fabrication
processes as described below.

A two-step self-alignment (TSSA) fabrication and device
image are shown in Fig. 1. Schematic drawings of the
TSSA process are shown in (a)-(e). MTJs are patterned by
orthogonally crossed stripes. This process can make MTJs
and the spin Hall effect (SHE) electrode have the same
width, which contributes to decrease in I [6]. I. is defined
as the switching current whose writing probability is 50%.
Plane-view SEM images of the device before top (VCMA)

1234

A2

FIGURE 2. Cross-sectional images of the MTJ on SHE electrode. High-angle
annular dark field scanning TEM images of the conventional process (a).

electrode patterning (f)(g), and cross-sectional transmission
electron microscopy (XTEM) image of MTJ / SHE-electrode
region (h) show MTJ and SHE electrode have the same size.

B.2. ETCHING PROCESS

We developed a new MTJ-patterning process for ultra-thin
SHE electrode that is based on highly selective etching (HSE)
of a storage layer (SL) on a Ta-SHE electrode. A comparison
of the conventional etching process and the newly developed
HSE process is shown in Fig. 2. Cross-sectional transmission
electron microscopy (XTEM) images of high-angle annular
dark field (HAADF) fabricated by the two processes are
shown. In the case of the conventional process (a), thickness
of the Ta-SHE electrode under MTJ (position Al) is 10 nm
and thickness at the MTJ etched area indicated as A2 is
6.8 nm. On the other hand, in the case of the HSE process (b),
thickness of the Ta-SHE electrode under MTJ (position B1) is
10 nm and thicknesses at the MTJ etched area (position A2) is
8.9 nm. It means only about 1 nm-over-etching is performed
in the case of the HSE process.

Bright field XTEM images of patterning edges etched by
the conventional process and the HSE process are shown
in Fig. 2 (c) and (d), respectively. The conventional process
introduces several nm-depth damaged regions at the SO layer
and the SL layer, whereas there is little damaged depth in the
case of the HSE process. The damaged regions are indicated
by arrows. However ion-beam etching on MTJs or magnetic
films introduces many kinds of damage [7]-[9]. Therefore
some patterning damage could be included at the MTJ edge
even in the case of the HSE process.

VOLUME 6, 2018



OHSAWA et al.: ULTRA-HIGH-EFFICIENCY WRITING IN VoCSM

ELECTRON DEVICES SOCIETY

C. PROPERTIES

I. as a function of MTJ size under a 20 ns-width write
pulse is shown in Fig. 3. I. decreases linearly as MTJ size
decreases. A device with I, of about 50 A is obtained
whose MTTJ size is about 5000 nm? (= 50 x 100 nm). The
I.s are much smaller than those in our previous report [6]
for which the conventional process was used.
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FIGURE 3. I¢ as a function of MT) area. MTJ area is estimated from CAD
design. The line is a linear approximation fit.

The effect of reduction in SHE electrode thickness is
shown in Fig. 4. I comparison between SHE electrode thick-
ness of 8 nm (circles) and 5 nm (triangles) with resistance
of about 110 k2 is shown. SHE electrodes are composed
of (from bottom) Ta 5Snm/ TaB 3nm () and Ta 2nm /
TaB 3nm (A), respectively. SL is FeB 2.2 nm in both cases.
Designed MT1J size is 50 x 150 nm in both cases. Because of
size and RA distribution, thinner SHE samples show about
10% smaller resistance. Samples of thinner SHE electrode
(A) show about half the I. of those of thicker SHE elec-
trode (Q)). Therefore, the HSE process capable of fabricating
MT]J cells with ultra-thin SHE electrode would have great
potential for reducing write current.
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FIGURE 4. Ic comparison between 8 nm(o)- and 5 nm(2)-SHE electrode
(total thickness).
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1Il. WRITE TESTS AND THE RESULTS

A. DEPENDENCE OF CRITICAL CURRENT ON FEATURE
SIZE

Dependence of I, on feature size (Wg) for various com-
binations of SL and SHE electrode is shown in Fig. 5.
Combinations of the SHE electrode / SL (thickness in
nm) are A: TalO/FeB 1.9, B: Ta 10/CoFeB 1.2, and C:
Ta 10/TaB 3/ FeB 1.9, respectively. The lines A, B, and C
are second-order polynomial (SOP) approximate lines cross-
ing the origin for each data group since /. dependence on
MT] size in perpendicular (p) - STT MTIJs is well plotted
on the SOP approximate line empirically. The SOP approx-
imate lines are a good fit with the data groups of VoCSMs
as functions of Wp.

I. dependence on Wr of VoCSM without MTJ bias and
p-STT MTlJs (in house) is shown in Fig. 6. An aspect ratio
defined as SL length (Lr)/ feature size (W) of the SL is used
as a parameter (see Fig. 5 inset). Wr for the p-STT MTIs
is diameter of the SL. The lines are SOP approximation. I.
decreases as the aspect ratio decreases since Is are directly
dependent on SL length (Lr). I, as a function of bias voltage
(V) of the VoCSM cell, indicated by the arrow in Fig. 6, is
shown in Fig. 7. Negative bias at the top electrode decreases
the I, whose slope of the linear fit is about 18 wA / V. The
I value showed as small as 37 pA under Vp, of —0.8 V. The
size of the SL in the cell is estimated as Wr 53 x Ly 118 nm,
respectively.

I comparison between p-STT MTJs and VoCSM is shown
in Fig. 8. The data points of VoCSM are V}, of —0.8 V. The
dashed line indicates CMOS current availability with an
assumption of 1 mA/wm, which means the write current
limitation. The lines for the p-STT MTJs and the VoCSM
are SOP approximation. It can be seen that the p-STT
MTIJs encounter the CMOS current limitation wall, whereas
VoCSM has smaller I, at the same Wpg and would have
potential for CMOS current-drive limitation owing to high
write efficiency of SOT writing under the VCMA effect.
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FIGURE 5. Empirical fits for /cs dependence on feature size. The inset
shows feature size (W) and SL length (Lg).
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FIGURE 6. Effect of VCMA on Ic. The inset shows resistance-current (R-/)
curves at each bias voltage. The line is a linear approximation fit. Negative
bias at the top electrode decreases the /.
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FIGURE 7. Effect of VCMA on Ic. The inset shows resistance-current (R-/)
curves at each bias voltage. The line is a linear approximation fit. Negative
bias at the top electrode decreases the /.

B. WRITE EFFICIENCY

We define the write efficiency n as n = AEjy,/I., where
AE;,, is a switching energy of SL described as AEy, =
MstHger /4 kpT, where My: saturation magnetization of the
SL, t: thickness of the SL, Hg.p: anisotropic field in the
SL perpendicular to the film plane (perpendicular magnetic
anisotropy), kp : Boltzmann constant, and T: temperature.
Hg. and AEj, of the cell indicated by the arrow in
Fig. 8 are estimated as 3.3 kOe and 350 kpT, respectively.
Therefore, n is about 9.5 kgT / pwA under V, of —0.8 V;
n = 350 kgT/37 wA, which is the writing efficiency of SOT
with the VCMA effect. Even in the case of Vb = 0V, n is
about 6.6 kgT/WA; n =350 kpT/53 wA, which is high effi-
ciency of only SOT without the VCMA effect. Whereas, in
the case of p-STT writing whose AE;, is equal to a reten-
tion energy ~ 40 kgT, n is about 1. Therefore, n of SOT
writing is much larger than that of STT writing; besides the
VCMA effect increases n further. However, AEgy would
vary from 225 (60%) to 700 (200%) kpT compared with
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FIGURE 8. Ic comparison between VoCSM (M) and p-STT MTJs (@®). Lines
for p-STT MTJ and VoCSM are SOP fits. Ic of the data point indicated by the
arrow is 37pA. That corresponds to the critical current density of about
3.2 MA/cm?, assuming SHE electrode and SL have the same conductivity.
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FIGURE 9. lllustrations of deep learning SoC chips with high-density and
high-bandwidth memories.

the stated value of 350 kgT owing to variation of Hgep
estimation in the MTJ cell.

C. FURTHER DECREASE IN POWER CONSUMPTION

The values of sy and VCMA coefficient of the samples
used in the write tests are about 0.18 and 70 fJ/Vm, respec-
tively. Write current can be decreased by increasing 6sy
and/or VCMA coefficient [2]. As for the Ogy, about 0.3 for
W [10] and in the case of topological insulator 2.0-3.5 for
Bi-Se [12] have been reported. As for the VCMA coeffi-
cient, the state-of-the-art coefficient of about 300 fJ/Vm has
been reported [11]. Furthermore, giant VCMA coefficient of
about 1800 has been calculated [13] and about 1000 has been
observed in highly strained Fe-Co systems recently [14].
Therefore, VOCSM has tremendous potential for reducing
power consumption, and the introduction of tailored strain
into the VoCSM device is expected to be one of the important
engineering techniques.

IV. VOCSM FOR DL LOGIC CHIP APPLICATION

Although GPU or FPGA for DL applications needs embed-
ded giga (G) bit memory with extremely high memory
bandwidth (HMB), SRAM is unavailable owing to huge over-
head of area and standby power. Therefore, high-cost HBM

VOLUME 6, 2018
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TABLE 1.

VoCSM are based on circuit simulations and layout design.

Comparison of memory solutions for DL logic chips. Data on

Memory Power e Memory Latency
Bandwidth (a.u) Capacity of between
SoC CMOS SoC/memory
(the same area (including
for eSRAM) bus)
eSRAM ©several TB/s 1 ®<512 Mb ©20~30ns
(reference) (~3002)
(a) High-cost 512G >1.3 - ®~50ns
(TSV/3D) (on HBM2)
(b) Low-cost ©several TBIs ©o.4 ©2.5Gb ©20~30ns
(VoCSM) (602)
(b') with eDRAM | @several TB/s ®>5 ©2.5~3 Gb ©20~30ns
(50~60f2)

(3D-stacked DRAM with TSV) and TSV-based silicon inter-
poser are currently used instead of eSRAM. e-STT-MRAM
cannot be a candidate since endurance is greatly reduced to
less than 1 x 107 as write pulse time decreases to less than
20 ns [1].

VoCSM with practically unlimited endurance even with
a 5 ns-write time has been reported [3]. Also, VoOCSM read
time operation using VCMA-MTI is reported to be 10 to
20 ns for high-density embedded memory. Considering these
reports and the results presented in this paper, it has been
confirmed that VoCSM is applicable to low-cost embedded
Gbit memory for DL logic chips. Table 1 shows a comparison
of memory solutions for DL logic chips. Smaller area (higher
density), higher access speed and lower power of VoCSM are
indicated compared with other memory solutions. VoCSM is
applicable to low-cost embedded Gbit memory for DL logic
chips, as illustrated in Fig. 9.

V. CONCLUSION

We proved the ultra-high-efficiency writing in VoCSM in
which SOT in conjunction with the VCMA effect works as
the writing principle. We found /¢ decreases with second-
order polynomials in accordance with the reduction in feature
size, and write current is about 40 WA, which would be much
smaller than that of p-STT MTIJs with the same switching
energy and the same size. Due to the proved high efficiency
in writing, VoCSM is thought to be the most suitable solution
for DL memories.
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