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ABSTRACT In this paper, we propose a trench MOS architecture for the upcoming 5 nm node and beyond
logic transistor. The intended device has a gate formed vertically downward, with added spacers along
the gate to S/D sidewall. In doing so, the recessed device having longer channel length (than the defined
gate footprint) would be a constructive approach to limit the short channel effects (SCE). The novel
transistor has the potential to enable the scaling of gate length (footprint) less than 10 nm and contacted
gate pitch below 32 nm, resulting in the smallest active area (on-wafer footprint) for a single device.
Novel process steps are simulated depicting easier fabrication while the electrical analysis shows a better
electrostatic control over any unwanted leakage flows. Along with the area scaling and SCE control, the
planar upper surface allows a vertical integration. Growing another flipped device on top surface permits
the designer to implement a logic circuit on a footprint of a single device, achieving ∼50% area gain
further. TCAD based simulations were performed to design and characterize the performances of an
individual device and the vertical inverter.

INDEX TERMS CMOS Logic, 5 nm Node, GAA-NWFET, UFET, 3D Integration, TCAD.

I. INTRODUCTION
Size of the silicon transistor is continuously scaled in
every generation to deliver the smaller and faster elec-
tronics technology [1]. Since last few decades, the trend
of CMOS scaling was accelerated by many prime movers
such as strained silicon and high-k/metal-gate technol-
ogy [2]–[4]. However, while scaling down below 32 nm
node, short channel effects (SCE), such as sub-threshold
leakage become a major concern in planar MOS devices.
Therefore, the planar MOSFET was replaced by a tri-gate
architecture (FinFET) to improve the electrostatic control at
the 22nm node [5]. Subsequently, the major industries fol-
lowed the same FinFET based architecture for their 16/14nm,
10nm and 7nm node (N7) technology [6]–[11]. Aiming at the
forthcoming sub-7nm node CMOS device, the critical key
dimensions are predicted in Table-1. The expected contacted

gate pitch (CGP) would be below 32nm for beyond 5nm node
technology. This tighter CGP budgeting would lead the gate
length scaling of less than 10nm. Even though the FinFET
has gate wrapping around the channel providing better elec-
trostatics, yet controlling the short channel effects at this
shortest gate length would be a real big challenge.
Researchers are looking into Gate-All-Around (GAA)

architectures, such as Nanowire (NW) /NanoSheet (NS) as
the leading device structure for the 5nm node due to its
superior electrostatics integrity than the FinFET [12], [13].
Although the NW with reduced diameter delivers best elec-
trostatic control, the reduction of channel area reduces the
current driving capability significantly. However, compro-
mising electrostatics to some extent in GAA-NS device,
drive currents are improved, yet the tighter constraint on
width scaling doesn’t allow a designer to scale down device
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TABLE 1. Node to Node Scaling Target.

FIGURE 1. Cross-sectional view of the proposed UFET transistor having
foot-print gate length of 6nm and trench depth of 20 nm.

size further. Though drive current in GAA devices can
be increased by stacking multiple wires/sheets per fin, but
a taller fin device increases the process complexity and
parasitic capacitances [14], [15].
In this study, an alternative device structure, a vertically

integrated recessed channel transistor [16], with parasitic
modifications is proposed as an alternative approach to con-
tinue the CMOS scaling. The cross-sectional view of the
proposed nano-scale transistor is shown in Fig. 1. As the
channel forms a U-shape inside the bulk, we referred this
transistor as UFET.
Though recessed channel devices are already being used

in DRAM cell [17], [18], and the U-shaped FET (V-shaped
FET) are also being used in power semiconductor appli-
cations since last few decades [19]. We have studied the
recessed channel planar device targeting the upcoming 5nm
node and beyond logic technologies.
TCAD Sprocess [20] was used to implement the individ-

ual device structures and Sdevice [21] simulation with SRH,
auger, BTBT recombination, bandgap narrowing, anisotropic
density gradient, fixed interface charge, mobility model with
multivalley correction, thin inversion layer correction with
high-k dielectric, and quantum correction for the inver-
sion layer were used to obtain electrical performances for
both UFET and GAA-NW. Mixed-mode simulation was per-
formed to obtain the characteristics of a vertically integrated
inverter device.

II. DEVICE SPECIFICATION AND PROCESS FLOW
The n-channel UFET transistor was built on a p-type bulk
Si substrate considering the surface on {100} plane and
sidewall surfaces along with the {110} plane. The source
and drain regions were doped with n+ type active dopant
atoms. The gate trench was considered of length 6nm and

FIGURE 2. Novel process steps followed to make the UFET device.

FIGURE 3. Process flow used to create two stacked GAA-NW transistor
with epitaxial S/D contacts.

depth 20nm. The gate dielectric of 0.4nm oxide (SiO2) and
1nm high-k (HfO2) were used. The recessed gate was filled
with the metal line considering proper work-function (WF).
Gate to S/D spacers (low-k) were considered having a height
of 6nm and length of 4nm. Silicide contacts similar to
a planar MOSFET [4] were made at top of the source and
drain regions which may provide a benefit of reducing the
increased contact resistivity over epitaxial or wrap around
contacts in GAA architecture. In this device, actual chan-
nel length would be the sum of Lg1 + Lg2 + Lg3. Other
parameters of the n-channel UFET device are specified in
Table 2.

TABLE 2. Specifications for n-Channel UFET Device.

The recent development of advanced patterning tech-
niques (EUV) has enabled the most critical process
steps [22]. The novel process steps to fabricate the n-channel
UFET device is described in Fig. 2. The p-type silicon sub-
strate was patterned and implanted to define the active region
(source, gate and drain region together) leading to the high-
temperature activation at beginning of the process. Then,
the center region of doped silicon was patterned and etched
away for the S/D to gate spacers as shown in Fig. 2(b).
Subsequently, the spacer material (low-k) was filled into
the trench to minimize the S/D to gate overlap parasitic
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FIGURE 4. Deviation of sub-threshold currents while scaling the gate
length from 10nm to 4nm for 5nm diameter (D5) based GAA-NW.

FIGURE 5. Comparisons of the Sub-threshold Slope (SS) of UFET and
D7/D5 GAA-NW.

capacitance, as shown in Fig. 2(c). A narrow trench was
then created by selectively removing the spacer dielectric
and silicon underneath to open the gate region as shown in
Fig. 2(d). After that, a thin conformal oxide covering was
grown up for interface oxide layer. Finally, a high-k layer
deposition followed by trench fill up with the gate mate-
rial was performed. Narrow windows were created to make
the contacts for source and drain terminal. The complete
device is shown in Fig. 2(f). Similarly, the p-channel UFET
transistor can be designed and processed on an n-type sili-
con substrate. In Fig. 3, we show the steps used of making
GAA-NW device [23] with specifications similar to [15].

III. ELECTRICAL PERFORMANCES OF UFET AND GAA-NW
While scaling down below 10nm gate length (Lg), a stronger
gate control is merely achieved by a thinner diameter for
GAA-NW’s. Above all, at this dimension ballistic [24] flow
is enabled significantly. In the UFET channel, the straight
lines are also within 5nm to10nm, so the Lg1, Lg2 and
Lg3 region might experience more ballistic conduction com-
pared to the two corner regions, however, at corners the
carrier will face more scattering as well as change the path
direction leading to a more drift-diffusion conduction. Hence,
more extensive studies are required to benchmark the ON
state drive current in both the devices. At this point, a drift-
diffusion based simulation model was used to analyze the
sub-threshold characteristics. The obtained total current was
normalized (by the width of UFET (W = 18nm) and the fin

FIGURE 6. The electrical behavior in UFET: (a) Electric field distribution,
(b) Spreading of Electrostatics potential, (c) Space Charges, and (d) STI
isolation.

FIGURE 7. Carrier (electron) distributions in both the UFET and GAA-NW
devices at a gate length of 5nm (footprint).

pitch of NW (FP = 18nm) and targeted at the same off-state
current (10nA/µm).
Fig. 4(a) and 4(b) predicts gate length scaling of two

stacked GAA-NW considering 5nm wire diameter (D5).
Fig. 4(c) shows the degradation of sub-threshold slopes (SS)
while reducing the gate lengths from 10nm to 4nm. The
gate length scaling with the 7nm diameter (D7) based NW
delivers even worst electrostatics. The Fig. 5(c), compares
SS variations for both the D7/D5 NW and the UFET tran-
sistor. In D5 NW, SS degradation from ∼78mV/decade to
∼160mV/decade is observed whereas, in UFET transistor,
an SS degradation of ∼87 mV/decade to ∼112mV/decade
is witnessed. At the applied potential, the distribution of
electric fields inside the bulk UFET is shown in Fig. 6(a).
The densely distributed fields along the channel dielec-
tric would form a strong inversion channel inside the
bulk while minimized field distribution in the low-k spacer
would help to shrink the S/D to gate overlap parasitics.
The impact of electrostatic potential spread by the buried
gate is shown in Fig. 6(b). Also, the distribution of space
charge is illustrated in Fig. 6(c). As the device operates
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FIGURE 8. Saturation transfer characteristics compared for both the
n-channel and the p-channel devices (UFET and GAA-NW FET).

TABLE 3. Electrostatics Comparison at the 5nm Foot-Print.

inside bulk silicon, one of the big challenges would be
isolation between two devices. Fig. 6(d) shows the car-
rier distributions in multiple devices while isolated by
the STI.
At the shortest gate length (Lg = 5nm in NW, Lg2 = 5nm

in UFET), distribution of (carrier) electron and electron cur-
rent densities are shown in Fig. 7 during the ON (Vg = 1V,
Vdd = 0.6V) and OFF (Vg = 0V, Vdd = 0.6V) state condi-
tion. At high and low applied gate voltages, the peak electron
current densities of 8.343×106A/cm2 and 1.137×102A/cm2

are observed in the UFET device, whereas electron cur-
rent densities of 2.229×108A/cm2 and 2.132×105A/cm2 are
observed in D5 NW. This provides an on-off current ratio
of 104 and 103 for UFET and NW respectively. The transfer
(IdVg) characteristics (at Vdd = |0.6|V) for both UFET and
GAA-NW are plotted in Fig. 8. Compared to GAA-NW,
the UFET shows ∼50mV/decade SS and ∼25mV/V DIBL
improvements in both the n-channel and p-channel devices.
The Table 3 summarizes SS and DIBL values for the
GAA-NW and UFET.
In UFET, the buried gate-dielectric layer physically iso-

lates the source and drain region, resulting in an effective
shading between the drain electric field and the source elec-
tric field. This isolation at an ultra-scaled device would play
a major role in conserving the short channel effects (such
as SS, DIBL etc.). Also, the impact of direct S/D tunneling
between source and drain is expected to be minimal, thus
less leakage flow from source to drain is expected. The gate
length scaling reduces Lg2 part (foot-print gate length) of
UFET’s channel, continuing the area scaling, and maintain-
ing larger physical channel length keeping the device capable
of better off-state control.

FIGURE 9. Proposal of Vertical Inverter shows the possibility of 50%
area gain in scaling beyond the 3nm node.

IV. VERTICAL LOGIC CELL DESIGN
The novel UFET device has some key advantages over other
device configuration such as: possibly easier process steps
and scalability. The advantage of having a planar upper sur-
face can be used to process another flipped UFET transistor
to continue the scaling beyond 3nm node. Fig. 9 shows the
schematic design of the proposed novel inverter. Vertically
integrated top and the bottom device will be acting as a pull-
up and pull-down devices which can be fabricated on a single
transistor area (same on-wafer footprint). Source terminal of
bottom n-channel UFET is connected to the lower poten-
tial (Vss) and source terminal of top p-channel UFET is
connected to the higher potential (Vdd). Both the gate and
the drain terminals are continuously connected. The input
is applied to the commonly connected gate and the out-
put is taken from the commonly connected drain. This

FIGURE 10. Layouts predicting an area gain while designing the vertical
logic cell: (b) Basic Inverter, (d) NAND gate, and (f) SRAM cell.
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FIGURE 11. A simulated inverter: (a) Full 3D view, and (b) Cross-sectional
2D view showing all major device dimensions.

FIGURE 12. Simulated results showing distributions of majority carrier in
both the pull up and the pull down devices at ON and OFF state condition.

approach will provide a significant area gain (Fig. 10(b))
especially for the beyond 5nm node when the footprint (Lg)
scaling would be limited by the gate trench fill process.
Continuing with this vertical design, the layout schematic in
Fig. 10(d) and Fig. 10(f) shows cell height reduction in 4T
NAND cell and in 6T SRAM cell. The layouts show in this
paper are simplistic and area calculation will change con-
sidering the impact of contacts, isolation etc. on the actual
layout design. Similar to this logic cell, other true logic
gates such as transmission gate and pass gate can also be
designed.
Current development of monolithic 3D integration has

enabled a new direction of CMOS integration. The ver-
tical stacking [25]–[27] along with many technological
breakthroughs in TSV [28] and ultra-thin FDSOI [29], [30]
process, would help to accomplish the proposed UFET based
vertical integration. Novel vertical design with two transistor
inverter is simulated using the Sentaurus-Device. Specifying
all the major dimensions, the 3D schematic inverter is shown
in Fig. 11. The footprint gate length of 6nm and trench depth
of 16nm is considered, in where the CGP is scaled down to
less than 24nm.

FIGURE 13. The transfer characteristics (IdVg) for both the pull-up and
pull down UFET.

FIGURE 14. Output characteristics (IdVg) for both the n-channel and
p-channel UFET.

FIGURE 15. The voltage transfer characteristics (VTC) of proposed vertical
inverter at different drive voltages.

While analyzing the electrical behavior of this compact
inverter, the distributions of majority carriers during ON
and OFF state condition are shown in Fig. 12. Although
the applied potential at continuously connected gate termi-
nal may influence the opposite device, the lower potential
at source/drain will mitigate the impact, similar to the
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FIGURE 16. Transient behavior of the vertical inverter with a pulsed input
signal.

planar MOSFET based circuit design. The transfer (IdVg)
and output (IdVd) characteristics for both the pull-up and
pull-down devices are plotted in Fig. 13 and in Fig. 14.
Sound transition of voltage transfer characteristics (VTC)
for the inverter operation even at a lower operating volt-
age of 0.4V is shown in Fig. 15. Along with a sharper
VTC, the transient output (Fig. 16) predicts a proper inverter
circuit.
In order to investigate the full AC behavior of this device,

detailed studies are required. The proposed novel device can
be a potential candidate for scaling the 3nm node and beyond
CMOS transistors. At current situation, there is a very lim-
ited space to scale down the device size further in lateral
direction, hence this vertical integration enables a novel trend
of CMOS scaling for the next generation technology.

V. CONCLUSION
An alternative device architecture has been presented in this
paper for the future trend of CMOS scaling. Using a recessed
channel UFET architecture, the CGP can be scaled down to
24nm, leading to a transistor where scaling in size and low-
ering the leakage might be achieved together. The advantage
of having a flat surface in UFET enables the vertical inte-
gration of an inverter. Finally, the vertical logic gate has
the possibility of achieving significant (∼50%) area gain for
ultimate scaling of CMOS technology.
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