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ABSTRACT We demonstrated dual-surface modification of GaN/AlGaN/GaN high-electron mobility tran-
sistors using tetramethylammonium hydroxide (TMAH) and piranha solutions prior to gate metallization.
The TMAH-treated device exhibits improved performances with lower I-V hysteresis, in off-state leak-
age current and gate leakage current. The device performances were further significantly improved with
applies additional piranha solution treatment right after the TMAH treatment, especially in hysteresis and
1/f-noise characteristics. It is found that the Schottky barrier height is high and ideality factor is low
measured from I-V characteristics for the TMAH and piranha solution treated device. Reasonable gate
leakage mechanisms were also discussed using Poole–Frenkel and Schottky emissions. In addition, it is
observed that the magnitude of interface state density for the TMAH treatment after the piranha solution
treated device shows significantly low compared to other devices. These excellent device-performances are
observed due to the reason of dual-surface treatment which effectively decreases the surface trap density
with an appropriate etching and passivation of the device surface exposed prior to the gate metallization.

INDEX TERMS AlGaN/GaN, HEMTs, dual-surface treatment, counter-clockwise hysteresis, 1/f-noise
characteristics.

I. INTRODUCTION
AlGaN/GaN-based high-electron mobility transis-
tors (HEMTs) are attractive devices for high power
and radio frequency applications because of remarkable
material characteristics related to III-nitrides such as wide
energy band-gap, high breakdown electrical field, and high
saturation velocity [1], [2]. However, the performances of
the devices are inherently limited by the surface conditions.
It is therefore essential to remove the native oxide layer
from the device surface and stabilize the surface. Many
efforts such as in-situ or ex-situ wet etching, dry etching,
and pre/post annealing [3] were given to improve the
device performances. Various wet chemical solutions

such as hydrogen fluoride (HF), hydrochloric acid (HCl),
sulfuric acid (H2SO4), and hydroxide-based solutions such
as NaOH, KOH and TMAH have been widely used as
a method of the surface treatment on the AlGaN/GaN
HEMTs [3]–[10]. The surface treatment, however, can
generate N (or Ga) deficiency on the (Al)GaN surface
and hence can alter the surface state density through the
formation of donor (acceptor)-like states [3]–[4], which is
strongly related to the device performances.
Many experimental studies have reported to enhance the

device performance of the GaN related devices using TMAH
surface treatment [11]–[14]. In particular, before depositing
insulating dielectric material such as Al2O3 must remove
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FIGURE 1. Schematic illustration of the proposed GaN/AlGaN/GaN HEMTs.

native oxides, carbon and other contamination while leav-
ing the surface smooth. Thus, reducing contamination (for
example: particulate, chemical and metallic) is significant
factor for fabricating high performance devices, as this
prevents gate oxide breakdown, reduce contact resistance,
and minimize threshold voltage shift. Furthermore interest-
ing advanced surface modifications have been applied to
develop high performance device concept called dual-surface
modification [15]–[18].
Piranha solution, a strong oxidizing agent and it will

remove organic materials (i.e., photoresist residue), and
it will also hydroxylate semiconductor surfaces to make
them highly hydrophilic nature. Few researchers have used
piranha solution treatment for the fabrication of prior to
Al2O3 deposition on GaN devices [7]–[19]. Nepal et al. [7]
reveal that the GaN surface by piranha treatment produced
the lowest total trapped charge density and smoothest Al2O3
films. Their findings motivated our study to investigate
the effect of surface treatment using piranha solution after
TMAH treatment. The purpose of utilizing this type of
combination treatment is, further smoothing the roughened
surface; remove the carbon contamination, and effective neu-
tralization of the surface caused by the piranha solution.
Until now, dual-surface modification based on TMAH treat-
ment after using piranha solution has not been explored as
a surface treatment on GaN-based devices.
With this aim in mind, in this work, we have fabri-

cated GaN/AlGaN/GaN HEMTs by utilizing TMAH and
piranha solutions as dual-surface treatment before the
gate metallization. The reference device with conventional
buffered oxide etchant (BOE) surface treatment was also fab-
ricated to compare the effects of the surface treatments on the
I-V and C-V, characteristics, and the 1/f-noise performances
of the AlGaN/GaN HEMTs.

II. GROWTH AND DEVICE FABRICATION
Fig. 1 shows schematic structure of the AlGaN/GaN het-
erostructure grown on sapphire substrate by metal-organic
chemical vapor deposition (MOCVD). The thicknesses of
the GaN cap and AlGaN barrier layer are 3 and 14 nm,
respectively. Hall effect measurement showed carrier density
of 8.8 × 1012 cm−3 and electron mobility of 1800 cm2/V·s.

For device fabrication, the active region was isolated by
transformer-coupled plasma reactive-ion etching (TCP-RIE)
using BCl3/Cl2 mixture. Before ohmic metallization, an
8 nm-thick Al2O3 layer was deposited by using plasma-
enhanced atomic layer deposition (PEALD) to protect the
device surface during high-temperature rapid thermal anneal-
ing (RTP) [20]. Si/Ti/Al/Ni/Au (1/25/160/40/100 nm) metal
stack-layers were deposited for the ohmic contact and fol-
lowed by RTP at 800 ◦C for 30 s in N2 ambient. Then,
50 nm-thick Si3N4 layer was deposited by plasma enhanced
chemical vapor deposition (PECVD) as a hard mask for
the Al2O3 layer to protect from TMAH treatment and the
gate region was defined and exposed with TCP-RIE. The
surface treatments were performed in the TMAH solution
(H2O:TMAH = 5 : 1) for 8 min 30 sec at room temperature
and followed by additional treatment in the piranha solu-
tion (H2O2:H2SO4 = 1 : 3) for 30 sec. For comparison, the
reference device without the surface treatment was also pre-
pared only employing the surface etching in buffered oxide
etchant (BOE, H2O:HF = 6:1) for 15 sec at room temper-
ature to remove the native oxide layer from the surface.
Finally, Ni/Au (30/200 nm) as gate metals were deposited.
The gate length and width of these devices are 2 and 10 μm,
respectively.

III. RESULTS AND DISCUSSION
Fig. 2(a) shows the transfer characteristics for the fabricated
devices at VD = 7 V. The threshold voltage (VT) of the

FIGURE 2. (a) ID-VG characteristics and transfer curve of all devices in the
saturation region (VD = 7 V). (b) Capacitance-voltage characteristics of
BOE-treated and TMAH-treated HEMTs at room temperature.
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TMAH-treated HEMT (device A) shifts in positive direc-
tion, compared to that of the reference device. The shift
of VT is also clearly observable from the C-V character-
istics from the Fig. 2(b). The positive shift of VT is due
to the increased Schottky barrier height (SBH). The TMAH
solution removes the native oxide layer formed on the GaN
cap layer, such as GaxO, which would lead to a Ga defi-
ciency on the surface. This explains the VT shift in positive
direction for the TMAH-treated device because the Ga defi-
ciency on the surface forms acceptor-like states, which is
responsible for the increase of SBH [4]. It is also noticed
that the device with additional subsequent piranha treat-
ment (device B) shows slightly shifted VT further in positive
direction. This is because the piranha treatment probably fur-
ther stabilizes the TMAH-treated GaN surface with sulfur
passivation effects [21]–[22].
The subthreshold characteristics for devices at VD = 0.1 V

are shown in Fig. 3. The TMAH-treated devices (both A and
B) exhibits the subthreshold swing of 72 mV/dec, almost
half of the value of 140 mV/dec observed from the ref-
erence device. The off-state drain leakage currents of the
TMAH-treated devices are nearly of ∼ 10−8 A/mm, approx-
imately two orders lower than that of the reference device.
The reason for the improved subthreshold characteristics and
off-state drain leakage current is mainly due to the improved
surface quality and the increased SBH (i.e., 0.56 eV, 0.72 eV
and 0.76 eV for BOE, device A and device B) and decreased
ideality factor (i.e., 3.44, 2.33 and 1.85 for BOE, device A
and device B) with TMAH treatment. The SBH and ide-
ality factor values were evaluated from the intercept and
slope values of the forward gate I-V characteristics using
thermionic emission theory [23]. The increased SBH in the
TMAH-treated devices apparently results in the reduced gate
leakage currents shown in the Fig. 3.

FIGURE 3. Semi-logarithmic scale of drain and gate currents versus gate
voltage in fabricated devices at VD = 0.1 V.

The gate leakage mechanisms were analyzed using
Schottky emission (SE) and Poole-Frenkel emission (PFE)
models from the plots of ln (IG) vs. VG

1/2 as shown in Fig. 4.
The gate current conduction mechanism when dominated by

PFE is given by [24] and [25]
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where SPFE and SSE are the Poole-Frenkel and Schottky
emission lowering coefficients, respectively. The theoretical
value of the SPFE and SSE can be defined as
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The comparisons in Fig. 4 show that the conduction of device
A is affected by SE at lower voltages up to 0.56 V (region I)
and PFE at higher voltages above 0.56V (region II) whereas
the device B is subjected to SE at very lower voltages up to
0.18 V (region I) and PFE at >0.18 V (region II). In gen-
eral, PFE is closely related to tunneling of carriers and also
is related to the wide distribution of traps in the band gap
of dielectric materials. The traps may be related to impuri-
ties and/or structural defects which cause the enhancement
in the trapping/de-trapping performance of the carriers. The

FIGURE 4. Plots of Log (IG) vs. VG
1/2 of device A and device B obtained

from the gate leakage characteristics.
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SE leads to current conduction through the contact interface
rather than from bulk material. The better gate characteris-
tics for the device B are directly related to reduction of the
interface state density and the decrease in tunneling prob-
ability over the device operation. In general, as a barrier
height increases the tunneling probability is decreases [27].
Fig. 5(a) shows the hysteresis characteristics. For the

forward sweep, the gate voltage (VG) was changed from
– 3 to 1 V at VD = 0.1 V and vice versa for the reverse
sweep. The TMAH-treated devices (device A and B) exhibit
less hysteresis than the reference device, as expected from
the improved surface quality explained above. It is noticed
that the TMAH-treated devices exhibit a counter-clockwise
type hysteresis which is unusual compared to the hystere-
sis characteristics observed from most AlGaN/GaN HEMT
devices similar to the case of the reference device in this

FIGURE 5. (a) Hysteresis characteristics of BOE-treated and TMAH-treated
HEMTs, (b) device A and (c) device B at VD = 0.1 V, respectively.

work. The reason for the counter-clockwise hysteresis is
because the surface states formed with the TMAH treat-
ment become acceptor-like [4], [5] while the surface states
of the device without TMAH treatment become donor-like.
Moreover, the device B exhibited almost low hysteresis of
-9.9 mV (the data of device A and B are clearly shown
from the Figs. 6 (b) and (c)) due to the effective neutral-
ization of the surface caused by the sulfur passivation. For
the surface with donor-like surface states, when the gate
voltage is high, surface states become mostly filled with
electrons and neutralized to deplete the 2DEG density in
the channel [28], [29] and to decrease the channel current
which results in clockwise hysteresis. For the surface with
acceptor-like surface states, on the other hand, no surface
states available to capture electrons at high gate voltage and
electron density in 2DEG channel thus increases to increase
the channel current which results in counter-clockwise hys-
teresis. Similar results of hysteresis behavior were found for
GaN-based devices [29], [30]. The detailed device character-
istics are summarized in the Table 1, including the interface
trap density (Dit) and the current collapse due to the gate
lag. Dit was extracted from the conductance method (from
10 kHz to 6 MHz). A ∼40% reduction of the interface
trap density of the device B is obtained compared to the
device A. The gate lag effect was measured at VG = – 3 V
and VD = 0 V with pulse width/period of 500 μs/1 ms
current collapse. The device B shows the lowest Dit and the
smallest current collapse. Verifying the effectiveness of the
dual surface treatment (i.e., piranha solution after TMAH
treatment) is very critical to support our data. To meet this,
we carried out the roughness of surface treatments using
BOE, TMAH and dual-surface (TMAH + piranha) modifi-
cation using atomic force measurements (not shown here).
The measurement showed that the roughness is found to be
2.14, 1.31 and 1.20 nm for BOE, device A and device B,
respectively.

TABLE 1. Comparison of crucial device characteristics of the fabricated

HEMTs with different surface treatments.

Next, the low frequency noise or 1/f-noise measure-
ments are technologically inevitable to study impurity
and trap-levels in semiconductor structures and to diag-
nose the standard quality and reliability of semiconductor
devices [31]–[32]. Fig. 6 shows the 1/f-noise characteris-
tics, measured at VD = 0.1 V, VG - VT = – 0.35 V,
and f = 10 ∼ 103 Hz. In 1/f-noise characteristics, the
variation of normalized spectral power density of voltage
fluctuations with frequency is measured [31]–[33]. The noise
spectra in Fig. 6 are rather Lorentzian-like (1/f γ , γ = 2) due
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FIGURE 6. Normalized drain current spectral density (SId) as a function of
frequency of all devices with different chemical treatments.

to generation-recombination (GR) noise or existence of
trapping/detrapping centers. This is directly related to the
presence of electron traps and/or detrapping between the
2DEG channel and traps in GaN buffer layer [34]. It was
found that the SId of the device B is one order lower than
that of the reference device and even the device A in all
frequency ranges, as expected from the improved surface
quality.

IV. CONCLUSION
We successfully demonstrated GaN/AlGaN/GaN HEMTs
using TMAH and piranha solutions treatment prior to gate
metallization and compared to other devices. The TMAH
solution produces the acceptor-like state by resultant Ga defi-
ciency and it enhanced the SBH, which result in the
improved off-state performances. Furthermore, the additional
piranha solution treatment decreases the surface states, and
it improves device performance such as current, hystere-
sis and 1/f-noise characteristics. The relevant gate leakage
mechanisms are explained by using Poole-Frenkel emis-
sion and Schottky emission. The interface state density
obtained from the calculations based on the conductance
method is quite sensitive to the TMAH and piranha solu-
tion treated device. These experimental results are significant
for the development of high-performance GaN-based HEMT
devices.
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