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ABSTRACT Cryogenic characterization and modeling of two nanometer bulk CMOS technologies
(0.16-μm and 40-nm) are presented in this paper. Several devices from both technologies were exten-
sively characterized at temperatures of 4 K and below. Based on a detailed understanding of the device
physics at deep-cryogenic temperatures, a compact model based on MOS11 and PSP was developed. In
addition to reproducing the device dc characteristics, the accuracy and validity of the compact models
are demonstrated by comparing time- and frequency-domain simulations of complex circuits, such as a
ring oscillator and a low-noise amplifier, with the measurements at 4 K.

INDEX TERMS Cryogenic electronics, CMOS, cryogenic, cryo-CMOS, characterization, modeling, kink,
4 K, LNA.

I. INTRODUCTION
Cryogenic electronics plays a fundamental role in several
applications, such as spacecraft, high-energy physics exper-
iments, metrology, superconductive astronomical detectors
and, with the increased interest in quantum computing,
the manipulation of quantum bits (qubits) [1]–[5]. Most
qubits are placed in the coldest chamber of dilution refrig-
erators, where temperatures reach values in the range of
10-100 mK, in order to expose their quantum behavior
and extend the lifetime of their quantum state. State-of-the-
art quantum processors typically consist of a few qubits
that are controlled and read out by general-purpose elec-
tronics operating at room-temperature [6]–[8]. Only a few
components, such as the first amplification stages, oper-
ate at cryogenic temperatures (1-4 K) in order to reduce
their noise level [9], [10]. Nonetheless, future quantum
computers would require millions of qubits to run any

algorithm with practical applications, such as the simu-
lation of a complex molecule [11]. Thus, an enormous
amount of room-temperature electronics and, consequently,
an unpractical number of wires to connect such electronics
to the qubits would be required. A viable alternative is to
place the electronics much closer to the qubits [12]–[14]:
a few circuits would operate at the qubit temperature (10-
100 mK), while most of the electronics would be placed
at 4 K, i.e., the lowest temperature at which existing dilu-
tion refrigerators can still provide a relatively large cooling
power (≈ 1 W). Among electronic technologies operating at
those temperatures, only CMOS can provide the high level
of integration required to reliably manipulate such a large
number of qubits. However, although compact simulation
models are crucial for the design of the high-performance
circuits necessary for a large-scale quantum computer, the
characterization and modeling of nanometer CMOS devices
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FIGURE 1. Summary of CMOS technologies measured at cryogenic
temperatures. The works on characterization are indicated by blue squares
while attempts at modeling by red diamonds. The references with an
asterisk showed kink.

at cryogenic temperatures are not yet adequate. The use of
nanometer CMOS nodes is particularly relevant to build low-
power circuits for quantum-computing applications, since
the handling of high-frequency and large-bandwidth signals
is required for qubit control. As shown in Fig. 1, several
CMOS technologies have been characterized at tempera-
tures below 77 K [15]–[41], but only [24], [37], and [39]
address quantum-computing needs, i.e., nanometer technolo-
gies (below 0.18 μm) necessary for high-speed circuits (>
10 GHz), operating at 4 K or below where qubits can,
in theory, still operate and the cooling power of state-of-
the-art dilution refrigerator enables the placement of large
integrated circuits. Furthermore, very few cryogenic mod-
els have been developed [29]–[39] with only [37] and [39]
(of which this paper is an extension) recently focusing on
the region of interest. In this paper, we present the charac-
terization and SPICE modeling of two CMOS nanometer
technologies (0.16-μm and 40-nm bulk CMOS) at 4 K,
and for 0.16-μm devices also at 1 K and 100 mK [39].
Unlike prior works (see Fig. 1), we model, for the first
time, the behavior of bulk CMOS devices at temperatures
as low as 100 mK, and we validate the compact models
at 4 K by comparing simulations and measurements of two
complex circuits, namely a ring oscillator and a low-noise
amplifier (LNA) for spin-qubit readout [42]. The paper is
organized as follows: Section II describes the devices char-
acterization; Section III discusses the cryogenic behavior
and the related physics in detail; Section IV presents the
modeling procedure and the resulting DC characteristics are
compared to the measured ones; Section V presents the val-
idation of the models with complex circuits and summarizes
the effects of cryogenic cooling on technology parameters
and on device figures of merit having an impact on future
cryogenic-circuit designs; finally, conclusions are drawn
in Section VI.

II. CHARACTERIZATION
Several transistors with different dimensions and different
oxide thickness from both technologies (SSMC 0.16 μm,

TABLE 1. Summary of characterized devices.

FIGURE 2. Measured ID(VGS) characteristics of thin-oxide NMOS in
0.16-μm CMOS. VDS = [0.1 V; 0.95 V; 1.8 V]. Solid line: 4 K; dashed line:
300 K.

ST 40 nm) were tested at 4 K, as shown in Table 1. Only a
few 0.16-μm devices were cooled down to 1 K and 100 mK,
namely one NMOS (W/L = 0.232/1.6) and two PMOS
(W/L = 2.32/1.6 and W/L = 0.232/1.6), since other devices
did not outlive the bonding required in the sub-Kelvin setup.
An ST-500 probe station by Janis Research was used for
300 K and 4 K testing, while a CF-CS81 dilution refrigerator
by Leiden Cryogenics was used for sub-Kelvin characteri-
zation. ID(VGS) and ID(VDS) characteristics are shown in
Fig. 2, 3, 4, 5, Fig. 6, 7, 8, 9 and Fig. 10 for the two
technologies.
As mentioned in Section I, mature CMOS processes have

been characterized at cryogenic temperatures and the physics
underlying several cryogenic effects has been explained.
Our measurements closely match to previous observations
for several aspects. A general increase in mobility (≈ 2×),
clearly visible in the long-channel devices of Fig. 3b-d and
Fig. 7b-d, and threshold voltage (≈ 30%) is observed. The
former is due to an overall decrease in electron scattering,
while the latter to an increase in ionization energy [43].
From 300 K to 4 K, the subthreshold slope (SS) improved
by 3.8× for the 0.16-μm NMOS (Fig. 2) and 3.2× for the
40-nm NMOS (Fig. 6), thanks to the intrinsic temperature
dependence of the diffusion current.
Furthermore, a jump in drain current, which is typically

referred to as kink, is observed in the 0.16-μm thick-oxide
short-channel NMOS in Fig. 5a-c. The voltage VDS at which
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FIGURE 3. Measured ID(VDS) characteristics of thin-oxide NMOS in
0.16-μm CMOS. VGS = [0.68 V; 1.24 V; 1.8 V]. Solid line: 4 K; dashed line:
300 K.

FIGURE 4. Measured ID(VGS) characteristics of thick-oxide NMOS in
0.16-μm CMOS. VDS = [0.1 V; 1.7 V; 3.3 V]. Solid line: 4 K; dashed line:
300 K.

the kink occurs, VDS−kink is close to VDD/2 and is bias depen-
dent, moving to higher values for larger VGS. The kink also
causes a very steep subthreshold slope, as shown in Fig. 4a-c
for VDS > 1.7 V. This jump in current is not observed
in all other PMOS and NMOS devices. Although no kink
was measured in thin-oxide 0.16-μm NMOS transistors, an
onset of the substrate-current body effect (SCBE), common
in nanometer CMOS transistors, is present and occurring at
a lower VDS at 4 K as compared to 300 K (Fig. 3a-c).

In addition, when cooled down to 100 mK, the 0.16-μm
devices showed proper operation, as shown in Fig. 10. In
this case, mobility does not significantly change with respect
to 4 K and the subthreshold slope improves by only 2.3×
when reducing the temperature from 4 K to 100 mK.
Finally, few devices showed a difference in drain current

in the subthreshold region when VGS was swept from low

FIGURE 5. Measured ID(VDS) characteristics of thick-oxide NMOS in
0.16-μm CMOS. VGS = [1.05 V; 2.17 V; 3.3 V]. Solid line: 4 K; dashed line:
300 K.

FIGURE 6. Measured ID(VGS) characteristics of thin-oxide NMOS in 40-nm
CMOS. VDS = [0.1 V; 0.6 V; 1.1 V]. Solid line: 4 K; dashed line: 300 K.

to high or from high to low values. Such hysteresis will be
discussed in Section III. For clarity, only the forward sweep
is shown in Fig. 2, 3, 4, 5, Fig. 6, 7, 8, 9 and Fig. 10.

III. ANALYSIS OF THE CRYOGENIC BEHAVIOR
In this section, the differences between room-temperature
and cryogenic behavior are discussed.

A. KINK EFFECT
For bulk CMOS transistors at 4 K, the kink (see Fig. 5a-c)
was first explained in [18]. At large VDS, the generation
of electron-hole pairs due to impact ionization leads to a
multiplication current, flowing in part to the drain and the
rest to the bulk (Ibulk in Fig. 11c). At the same time, an
increase in the substrate resistance Rbulk is observed due
to carrier freeze-out, which appears at temperatures below
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FIGURE 7. Measured ID(VDS) characteristics of thin-oxide NMOS in 40-nm
CMOS. VGS = [0.43 V; 0.76 V; 1.1 V]. Solid line: 4 K; dashed line: 300 K.

FIGURE 8. Measured ID(VGS) characteristics of thick-oxide NMOS in
40-nm CMOS. VDS = [0.1 V; 1.3 V; 2.5 V]. Solid line: 4 K; dashed line: 300 K.

70 K and is exemplified by the large resistance of the n-
well resistor in Fig. 11b. The multiplication current flowing
through Rbulk causes the bulk potential to raise, thus produc-
ing a threshold voltage drop and, consequently, the current
jump measured in Fig. 5a-c. Nonetheless, after reaching the
kink, the current jump tends to flatten out as the drain-bulk-
source lateral bipolar transistor starts conducting, with the
bulk-source junction equivalent to the forward-biased base-
emitter junction, thus diverting most of the drain ionization
current and leading to a gradual saturation of Ibulk, as can be
seen in the bulk current plot of Fig. 11c. Furthermore, the
voltage at which the kink occurs, VDS−kink, shifts to higher
VDS for larger gate voltages VGS. This can be explained by
considering that a higher VGS leads to a larger surface scatter-
ing and, hence, to a more pronounced mobility degradation,
which mitigates the impact ionization and, consequently, the
value of VDS where the kink occurs.

FIGURE 9. Measured ID(VDS) characteristics of thick-oxide NMOS in
40-nm CMOS. VGS = [0.85 V; 1.68 V; 2.5 V]. Solid line: 4 K; dashed line:
300 K.

FIGURE 10. Measured characteristics of the three devices tested at 1 K
and 100 mK compared to 4 K; (a) NMOS, VDS = 1.8 V ; (b)-(c) PMOS,
VDS = −1.8 V . Every curve is normalized to 300 K to remove chip-to-chip
spread since the 4 K measurements were done on a different chip placed
in the probe station.

FIGURE 11. (a) Cross-Section and schematic representation of the cause
of kink effect at 4 K; (b) N-well resistance versus current at 4 K; the
resistance value at 300 K is 3.5 k�; (c) Ibulk(VDS) of thick-oxide NMOS,
W/L = 2.32/0.322 at 4 K.

It is important to note that the kink is observed only in
two thick-oxide NMOS transistors, namely W/L = 2/0.322
and W/L = 0.4/0.322 in the 0.16-μm CMOS technology.
Prior works shown in Fig. 1 report the presence of the

VOLUME 6, 2018 999



Incandela et al.: CHARACTERIZATION AND COMPACT MODELING OF NANOMETER CMOS TRANSISTORS

kink only in mature technologies, mostly for feature sizes
larger than 0.35 μm and at temperatures below 100 K. The
reason for this technology dependence is strictly related to
transistor scaling. Traditional scaling rules require thinner
oxide thickness to keep a constant vertical electric field.
However, the vertical electric field in nanometer technolo-
gies has inevitably increased in spite of a proportional scaling
of supply and gate insulator thickness, leading to higher
mobility degradation (due to surface scattering, for exam-
ple) that mitigates the impact ionization effect and, hence, the
occurrence of the kink. Additionally, the substrate doping of
nanometer technologies is considerably higher due to channel
engineering, threshold-voltage control, lightly doped drain
(LDD) [20], pocket and deep retrograde implants, which
help to reduce the drastic increase of the bulk resistance and,
hence, the kink effect. Finally, supply voltages below 1.2 V
inevitably prevent the kink from occurring because carri-
ers cannot acquire enough energy through impact ionization
to overcome the silicon bandgap. All these effects com-
bined explain why we observe the kink only in thick-oxide
short-channel 0.16-μm NMOS devices. This type of tran-
sistor, in fact, closely resembles a 0.35-μm-CMOS device
and does not yet “benefit” from the scaling consequences
explained above. Long-channel devices (Fig. 5b-d) do not
show a kink because the longitudinal electric field never
reaches the required critical electric field to trigger impact
ionization. Finally, no kink is observed in 0.16-μm thick-
oxide PMOS because their intrinsic lower mobility suffices
for the complete suppression of the kink.

B. SUB-KELVIN REGIME
Measurements at 100 mK1 showed proper transistor opera-
tion, as mentioned in Section II. Fig. 10 shows the ID(VGS)
characteristics at 4 K, 1 K and 100 mK of the three transistors
listed in Section II normalized to the 300-K measurement to
remove any chip-to-chip spread between the devices mea-
sured at 4 K in the probe station and those measured in the
dilution refrigerator down to 100 mK. It can be observed
that the three characteristics in Fig. 10 are almost over-
lapping for the three transistors, meaning that mobility and
threshold voltage do not change significantly at temperatures
below 4 K. For the PMOS, the current slightly diminishes
below 4 K. The mobility degradation below 4 K is attributed
to the strong contribution of carrier-to-carrier and neutral-
impurity scattering, which increase at low temperature, as
also observed in [44] and [45]. Finally, the saturation in
threshold voltage is most likely due to the fact that, once
freeze-out is reached, the amount of ionized atoms does not
significantly change and, hence, the threshold voltage VT is
not notably influenced.

1. The temperature was set to 40 mK but because of self-heating in the
transistors, the temperature was around 100 mK for most of the measurement
time.

FIGURE 12. Forward (FWD) and backward (BWD) sweep of ID(VGS) in
subthreshold region for the thick-oxide NMOS (W/L = 2.32/0.16) at 4 K at
VDS = 3.3 V . Hysteresis causes a shift of ≈ 0.15 V.

C. HYSTERESIS
Although it has been a major concern in the past for several
technologies operating at cryogenic temperatures [23], [46],
[47], no significant hysteresis was observed in most of the
tested devices, with the exception of those that showed a
kink at 4 K and for the long-channel 0.16-μm PMOS at
100 mK.
For the thick-oxide NMOS (W/L = 2/0.16), hysteresis

occurs in the subthreshold region, as can be observed in
Fig. 12 where a voltage shift in VGS of around 0.15 V is
measured. This happens only for VDS > 1.7 V, i.e., after
the kink. This can be explained by considering that before
VGS overcomes the threshold voltage, negligible free charge
is present at the surface, thus preventing significant impact
ionization. As VGS rises and the channel is being formed,
the mechanism of avalanche due to impact ionization builds
up as well. Once the channel is formed and the current is
not negligible (at ≈ 0.4 V as shown in the forward-sweep
curve in Fig. 12), the threshold voltage decreases due to the
kink effect (see Section III-A), reaching the final value once
the avalanche current is maximum, which happens when the
channel is in strong inversion. When VGS is swept in the
other direction (red-circled line in Fig. 12), impact ioniza-
tion is already occurring at large VGS and, consequently, the
threshold voltage VT is already approximately 0.22 V. The
VGS must diminish below this value to completely turn off
the transistor.
At sub-Kelvin temperature, a softer hysteresis can be seen

in Fig. 13. However, although the temperature of the dilution
refrigerator was set to 40 mK, the temperature of the sample
varied between 40 mK and 100 mK due to self-heating. This
could partially explain the presence of hysteresis in Fig. 13 as
a measurement artifact. Further investigations are necessary
though, to fully explain the cause of a possible hysteresis
in the sub-Kelvin regime. In conclusion, we recognize that
hysteresis is not a significant issue in nanometer nodes, since
it emerged in very few tested devices.

D. SUBTHRESHOLD SLOPE
The subthreshold slope is expected to become steeper
with decreasing temperature due to the exponential
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FIGURE 13. Forward (FWD) and backward (BWD) sweep of ID(VGS) for the
thin-oxide PMOS (2.32/1.6) at 1 K and 100 mK at VDS = − 1.8 V .

dependence of ID,

ID ≈ I0 · e
q(VGS−VT )

nkBT (1)

where I0 is the saturation current, q the electron charge,
kB the Boltzmann constant and T the temperature. The
expression of the subthreshold slope results, therefore:

SS(T) =
[
∂ log(ID)

∂VGS

]−1

= ln(10)
nkBT

q
(2)

From the Eq. (2), it can be concluded that the subthreshold
slope should be linearly dependent on T . However, according
to [15], the subthreshold slope follows the proportionality
with the temperature down to ≈ 77 K, as predicted by
Eq. (2), but it becomes strongly sub-linear at lower tem-
peratures. The sub-linear trend matches our observation of
the NMOS SS (Fig. 2), which improves by only ≈ 3.8× from
300 K to 4 K. This can be attributed to the factor n and
its dependence on T . As a proxy for the subthreshold slope,
n is

n = 1 + Cdep
Cox

+ Cit
Cox

(3)

where Cdep, Cit and Cox, are the depletion, interface-states
and oxide capacitances per device area, respectively. The
temperature dependence of n can be explained by the
non-negligible increase of interface states at cryogenic tem-
peratures, as reported in [48]. By extracting the value of n
from the measurements at temperature T∗ as

SS(300 K)

SS(T∗)
= n300K

nT∗
· 300 K

T∗ , (4)

we obtain the plot of Fig. 14 for the 0.16-μm PMOS
(W/L = 2.32/1.6). In the figure, we can observe a drastic
increase of n below 1 K, which is in agreement with the the-
ory in [48]. In conclusion, a summary of subthreshold slope
and n of a PMOS (W/L = 2.32/1.6) versus temperature is
shown in Fig. 14.

IV. MODELING
No commercial compact model can predict the behavior of
CMOS at cryogenic temperatures and hence, commercial

FIGURE 14. Subthreshold slope (SS) and extracted ideality factor n of the
PMOS (W/L = 2.32/1.6) across temperature.

models cannot be used for the design of circuits operat-
ing at cryogenic temperatures. To overcome that limitation,
we propose a model for cryogenic CMOS devices based
on existing compact models. Our modeling effort aims at
demonstrating the capability of standard compact models to
cover cryogenic operation without significant modifications.
More specifically, we adopted MOS11 [49] and PSP [50]
for the 0.16-μm and the 40-nm CMOS technology, respec-
tively, since they were provided by the respective foundry
for the standard temperature range. The development of
PSP was inspired by MOS11 and therefore the modeling
procedure could be mirrored, as will be presented below.
Moreover, being MOS11 and PSP derived from surface-
potential equations, they are possibly better suited to cover
device behaviors in extreme conditions without trading off
accuracy for model continuity.
As shown in Section II, the 40-nm CMOS technology

did not show any specific cryogenic non-ideality. Therefore,
the modeling procedure consisted in updating the param-
eters in the foundry-provided models with the new values
extracted from the cryogenic characterization. On the con-
trary, some 0.16-μm transistors showed strong non-idealities,
such as the kink, which are not included in standard models
for bulk CMOS. As a consequence, the modeling of those
devices required the addition of extra electrical components
to capture semiconductor physics at 4 K. In particular, a
non-linear resistor was added in series to the bulk of the
transistor to emulate freeze-out of the substrate (see Fig. 11)
and, consequently, generate the kink at the appropriate VDS.
This, in addition to the extracted parameters, enabled the
modeling of the DC characteristics at every bias point.

A. EXTRACTION AND MODELING PROCEDURE
To model the cryogenic behavior of the devices in Section II,
we proceed in the following order: first, the temperature of
the simulator was set to −200 ◦C in order to match the mea-
sured and simulated subthreshold slope. At the same time,
the temperature-fitting parameters of the MOS11 model were
zeroed to prevent the simulator from extrapolating meaning-
less values of mobility, VT and other parameters at those
temperatures. This was not necessary for the PSP. We then
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FIGURE 15. Models (solid) and measurements (dashed) at 4 K; W/L in μm. (a,e) ID(VGS) and ID(VDS) of 0.16-μm thin-oxide NMOS; (b,f) ID(VGS) and
ID(VDS) of 0.16-μm thick-oxide NMOS; (c,g) ID(VGS) and ID(VDS) of 40-nm thin-oxide NMOS; (d,h) ID(VGS) and ID(VDS) of 40-nm thick-oxide NMOS.

set the parameters related to the threshold voltage VT (VFB
for MOS11, DELVTO for PSP) and mobility μ (BETSQ
for MOS11, FACTUO for PSP), since they have the largest
influence on ID, as observed from the measurements. After
this, the parameters that impact mobility degradation were
modified; in particular, those related to surface scattering
(THESRR for MOS11, THEMUO for PSP), and to veloc-
ity saturation (THESATR for MOS11, THESATO for PSP).
This enabled us to match the curves at high VGS where the
characteristics are degraded by these effects. In combina-
tion to mobility degradation, impact ionization was enhanced
through the parameters A1R, A2R and A3R for the 0.16-μm
technology in order to reproduce the kink or the onset of
SCBE, while this was not necessary for the 40-nm tech-
nology. At this point, the relative error between simulation
and measurement is below 20% for most of the curves. The
remaining parameters listed in Table 2 but not mentioned
above were modified to fine-tune the models, to compensate
for other second-order effects (e.g., channel-length modula-
tion) and, hence, to reduce the mismatch further below 10%
in almost all the bias regions.
During the whole procedure, the bulk contact of the

thick-oxide 0.16-μm NMOS transistor was connected to a
high-impedance non-linear resistor implemented as a look-
up table. The data of such look-up table were extracted from
the measurement of the n-well resistor in Fig. 11b and scaled
by a constant coefficient at the end of the modeling proce-
dure to tune the magnitude of the current jump and VDS−kink.
The final implemented resistor has an impedance of 100 k�
at Ibulk = 1 nA.
The modeling of the devices at 100 mK followed the

same procedure, proving that the models are scalable with
temperature. It has to be noted that the parameters related to
the dynamic behavior of the transistor were not modified and
hysteresis was not modeled since the majority of the devices

TABLE 2. List of modified parameters for the compact model at 4 K.

FIGURE 16. Models (solid) and measurement (dashed) of 0.16-μm
thin-oxide PMOS (W/L = 2.32/1.6) at 100 mK. (a) ID(VGS),
VDS = −1.8 → −0.09 V; (b) ID(VDS), VGS = −0.3 → −1.8 V.

did not show this effect. Finally, although the extraction
procedure described above has not yet been automated, we
believe that, especially for the majority of the devices that
do not show kink, the standard extraction procedure for the
respective model can be adopted.

B. MODELING RESULTS
The results of this parameter-fitting procedure are shown
in Fig. 15 and Fig. 16 where both 4 K and 100 mK
measurements (dashed lines) and simulations based on the
newly proposed models (solid lines) are superimposed. Good
matching (relative error < 10%) of simulations and exper-
imental data is obtained at every bias point, in both weak
and strong inversion, with a single set of parameters for
each device. However, the accuracy of the model is lim-
ited in the moderate-inversion region, e.g., in Fig. 15f for
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FIGURE 17. Ring oscillator frequency versus supply voltage (VDD) at 300 K
and 4 K. Measurements (dotted lines) and simulations (solid lines) are
compared with the compact model presented in Section IV.

VGS = 0.6 V → 1 V, because both models employ a smooth-
ing function to continuously merge the equations for weak
and strong inversion, which was not modified in this work.

V. MODEL VALIDATION
A. CIRCUITS AT CRYOGENIC TEMPERATURE
A 2703-stages ring oscillator in 0.16-μm CMOS has been
tested at 4 K. Its measured oscillation frequency is shown
in Fig. 17 for both 300 K and 4 K for different supply
voltages and compared to the simulation employing the
proposed model. The higher driving capability reduces the
gate delay by almost 30%. The simulation was performed
on a different process corner with respect to the curves in
Fig. 15, since the circuit was fabricated on a different die.
The room-temperature measurements and simulation were
firstly compared to calibrate the cryogenic model. After this
calibration, the output frequency fosc is in good agreement
with simulation over a wide range of supply voltages. Faster
saturation of the measured fosc at high VDD is observed at
4 K compared to simulation. This can be attributed to the
increased poly depletion region, which leads to a smaller
depletion capacitance in series with the thin-oxide and there-
fore a reduced effective gate-channel voltage (not included
in our modeling procedure) [24]. This reduction in effective
VGS leads to ID and, correspondingly, fosc tapering off.
In order to further validate the model with a complex real-

life circuit, a 0.16-μm-CMOS low-noise amplifier based on
the noise-canceling topology [51] was designed using the
cryogenic models developed in this work. A comprehensive
description of the circuit and its design flow together with
extensive experimental characterization have been reported
in [42]. Here, we focus our attention on the accuracy of
the presented model by comparing the measured frequency
response of the amplifier to the simulation employing the
developed cryogenic models (Fig. 18). Only a 3-dB error
can be observed in the DC gain, while the 3-dB bandwidth
matches within a 10% margin. The observed discrepancy is
well within the margin due to process spread, which has
not been modeled in this work due to lack of the required
corner-lot samples. In conclusion, both experiments above
confirm the effectiveness of the parameter extraction and the
modeling procedure presented above.

FIGURE 18. Frequency response of the cryogenic LNA: comparison
between measurement at 4 K and simulation with the proposed model.
Reproduced from [42].

TABLE 3. Comparison of performance at 300 K and 4 K.

B. IMPACT OF CRYOGENIC CMOS ON CIRCUIT DESIGN
Device performance at 300 K and 4 K is compared and sum-
marized in Table 3 for minimum-length devices for both
technologies. The higher threshold voltage VT combined
with a steeper SS is beneficial to minimize leakage currents.
However, a high VT reduces the voltage headroom avail-
able for circuits, especially when operating at low supply
voltages. This may force the adoption of low-voltage circuit
topologies typically showing a lower energy efficiency [52].
This can be particularly detrimental in cryogenic applica-
tions, such as quantum-computing controllers, because of
the tight power budget imposed by the cooling capabilities
of dilution refrigerators.
The effect of the higher VT is partially compensated

by the increase in mobility, which results in an over-
all increase of the maximum drain current (see Ion in
Table 3) and, consequently, in a faster switching speed
(see Fig. 17). The larger driving current and lower leak-
age bring an improved Ion/Ioff ratio (better than 100× for
40 nm), which is advantageous for the implementation of
high-energy-efficiency digital logic. Table 3 also shows the
transconductance efficiency in terms of gm/ID ratio in both
weak and strong inversion, extracted from the measurements
shown in Fig. 2, 3, 4, 5, Fig. 6, 7, 8, 9. A significant improve-
ment (≈ 3×) is observed at 4 K in weak inversion while
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a slightly lower efficiency appears in strong inversion. This
would lead to a major improvement in power efficiency for
cryogenic circuits biased in weak inversion. Finally, a lower
intrinsic gain is observed, due to the large increase in the
channel-length modulation factor λ, in agreement to what
was observed in [44].

VI. CONCLUSION
This work presents the extensive DC characterization of tran-
sistors fabricated in 0.16-μm and 40-nm CMOS technologies
at deep-cryogenic temperatures (4 K, 1 K and 100 mK).
A detailed understanding of the device physics at cryo-
genic temperatures was developed and captured in a compact
model that was validated both via device DC characterization
and through the design and testing of complex circuits.
It was demonstrated that nanometer bulk CMOS devices

can operate reliably down to 100 mK and that, for the first
time, their behavior can be modeled at such low temperature.
Moreover, nanometer CMOS technologies are not affected
by strong cryogenic non-idealities, such as kink, and several
device figures of merit, such as Ion/Ioff and gm/ID, signif-
icantly improve at 4 K, which is expected to enhance the
performance of both analog and digital circuits at cryogenic
temperatures.
Thus, the proposed models will enable the design and

simulation of circuits in nanometer CMOS, which is a viable
technology for the implementation of high-performance and
power-efficient cryogenic circuits, as required in demanding
applications such as quantum computing.
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