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ABSTRACT This paper aims to investigate the recently proposed figure of merit, �VDIBLSS/(Ion/Ioff),
in detail. Experimental results show that �VDIBLSS/(Ion/Ioff) represents the index of device immunity
to short-channel effects in bulk FinFETs. The value of its numerator, �VDIBLSS, accounts for the drain-
induced barrier lowering and subthreshold swing. The value of its denominator, Ion/Ioff, accounts for the
transistor performance in transitioning between on and off states. Small �VDIBLSS and large Ion/Ioff are
desirable, representing the improved gate control over the channel potential. We found that both �VDIBL
and �VSS values are more correlated with the drain off-state current, Ioff, than they are with the drain
on-state current, Ion. A high-performance FinFET device exhibits �VDIBLSS of about 100 mV and Ion/Ioff
of about 1 × 106. Thus, �VDIBLSS/(Ion/Ioff) in a high-performance FinFET device is expected to be
around 1×10−4 mV. Using this figure of merit, along with the verification using conventional parameters
such as �VDIBLSS and Ion/Ioff, the proposed device shows better electrical characteristics than that in our
previous work due to the optimized process conditions implemented.

INDEX TERMS �VDIBLSS/(Ion/Ioff), bulk FinFETs, drain–induced barrier lowering, short–channel effects,
subthreshold swing.

I. INTRODUCTION
Fin field–effect transistors (FinFETs) are regarded as strong
candidates for the sub–20 nm regime because of their excel-
lent immunity to short–channel effects (SCEs) [1]–[3]. In
the silicon industry, bulk FinFETs are preferred over silicon–
on–insulator (SOI) FinFETs for enhanced heat dissipation,
similar performance, and less cost [4]–[8]. Also, the number
of required masks used for device fabrication heavily dis-
courages the implementation of SOI FinFET technology in
low–cost manufacturing of consumer electronics products.
Hence, the implementation of bulk FinFET technology is
still currently the most practical option even though SOI
would provide a much better short–channel performance.
Recently, a new figure of merit (FoM),

�VDIBLSS/(Id,sat/Isd,leak), has been presented for the
purpose of monitoring the performance of n–channel bulk
FinFET devices [9]. Logic FoMs, such as drain–induced
barrier lowering (DIBL), subthreshold swing (SS), saturation

drive current, Id,sat, and source/drain (S/D) subthreshold
off–state leakage current, Isd,leak, are merged into a single
parameter to represent the overall device performance.
Among them, �VDIBL is defined as Vt,lin − Vt,sat, where
Vt,lin is the linear threshold voltage, and Vt,sat is the sat-
uration threshold voltage [10]. �VSS is approximately the
value of SS [9]. �VDIBLSS is defined as �VDIBL + �VSS,
representing the gate voltage (Vg) domain covered by the
combination of DIBL and SS. Id,sat/Isd,leak represents the
transistor performance in transitioning between on and off
states. As more analysis regarding this new FoM is done,
more interesting facts are found.
In our previous work, we utilized this new FoM,

�VDIBLSS/(Id,sat/Isd,leak), to characterize and compare the
performance of n–channel bulk FinFET devices with and
without the lightly–doped drain (LDD) implantation. The
main purpose of this paper is to investigate in more detail
the fundamental concepts of �VDIBLSS/(Ion/Ioff), where
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FIGURE 1. Bulk FinFET in this work.

Id,sat/Isd,leak is replaced with Ion/Ioff for simplicity. It
should be noted that by changing the term Isd,leak into
Ioff, other components of the leakage current such as gate
leakage, band–to–band tunneling, and gate–induced drain
leakage (GIDL) are also covered [11]. However, since the
Ioff of the proposed device in this work is sufficiently small
(7 × 10−13 A) and is dominated by the subthreshold leak-
age current, these leakage currents can be ignored in our
computation of �VDIBLSS/(Ion/Ioff). Such low leakage cur-
rent is attributed to the FinFET structure and the high–κ
metal–gate process [1], [12]. Our findings show that the
�VDIBLSS/(Ion/Ioff) parameter is a key index for reporting
the device immunity to SCEs in bulk FinFETs. In general,
this new FoM can be used for reporting the device immu-
nity to SCEs in any metal–oxide–semiconductor (MOS)
FETs (MOSFETs)–based devices. Detailed discussion and
analysis of �VDIBLSS/(Ion/Ioff) are presented.

II. DEVICE FABRICATION
A silicon starting material was used for manufacturing
FinFET devices with physical gate lengths between 16 nm
and 20 nm. The major processes are described as fol-
lows. After p–well implantation (BF: 2.5 × 1019 cm−3 −
5 × 1019 cm−3), the fin structure was formed. Fin widths
were between 8.2 nm and 9.1 nm, and fin heights were
between 40.1 nm and 42.3 nm. Definition of gate length
and dry etching were then carried out. LDD implantation
was absent in this work. Next, the sacrificial nitride layers
were deposited on the silicon surface, followed by lithog-
raphy and etching processes. The selective epitaxial growth
of in–situ phosphorus–doped silicon was performed. The
total oxide spacer thicknesses were between 4.2 nm and
4.4 nm. Rapid thermal processing was used for activating
implanted dopants. Subsequent processes took place using
standard high–κ complementary MOS (CMOS) technology.
The gate dielectric thicknesses were between 1.8 nm and
2 nm. A schematic view of the proposed FinFET is shown
in Fig. 1. The main structural parameters are shown.
The previous work, presented in [9], is used for com-

parison with the proposed device in terms of electri-
cal parameters such as Vt,sat,�VDIBL,�VSS, Ion/Ioff, and
�VDIBLSS/(Ion/Ioff). Furthermore, the influence of Vt,sat on

FIGURE 2. The (a) �VDIBL and (b) �VSS as a function of Vt,sat in
n–channel bulk FinFETs without lightly–doped regions. (c) The �VDIBL as
a function of �VSS in n–channel bulk FinFETs without lightly–doped
regions. Small �VDIBLSS(= �VDIBL + �VSS) is preferred, implying that the
suppression of SCEs is observed. In addition, it is noted that the proposed
device behaves better than the device from the previous work [9].

�VDIBLSS/(Ion/Ioff) in bulk FinFETs is investigated under
a given Vt,sat range.

III. RESULTS AND DISCUSSION
First, we investigate the influence of Vt,sat on the device’s
�VDIBL and �VSS characteristics (Fig. 2(a) and Fig. 2(b)).
Parameters are defined as follow: �VDIBL = DIBL× (Vdd −
Vd,low) and �VSS ≈ SS × �Id [9]. Results show that when
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FIGURE 3. The (a) �VDIBLSS and (b) Ion/Ioff as a function of V t,sat in
n–channel bulk FinFETs without lightly–doped regions. (c) The �VDIBLSS as
a function of Ion/Ioff in n–channel bulk FinFETs without lightly–doped
regions. Smaller value of � VDIBLSS results in larger transistor on/off
current ratio, which means a low–risk of SCEs in bulk silicon FinFETs.

the V t,sat is decreased further, both the �VDIBL and the �VSS
become larger. This is attributed to the fact that the SCEs
strongly influence the device performance in bulk FinFETs.
We also observe that the Vt,sat has little impact on the �VSS
characteristics. Under the same Vt,sat condition, the pro-
posed device has smaller values of �VDIBL and �VSS in
comparison with that in the previous work [9] because opti-
mized process conditions were implemented. Fig. 2(c) shows
�VDIBL as a function of �VSS in n–channel bulk FinFETs

FIGURE 4. The �VDIBLSS/(Ion/Ioff) as a function of V t,sat in n–channel
bulk FinFETs without lightly–doped regions. The �VDIBLSS/(Ion/Ioff)
parameter exhibits a strong V t,sat dependence.

without lightly–doped regions. It is clear that smaller �VDIBL
corresponds to smaller �VSS.�VDIBL of 30 mV and �VSS
of 70 mV are desirable in a nanoscale device. This implies
that the on and off states of a nanoscale device are almost
completely controlled by the gate. The value of �VDIBLSS is
the sum of �VDIBL and �VSS. Smaller value of �VDIBLSS
in a nanoscale device assures that smaller DIBL and steeper
SS values are achieved simultaneously, under which condi-
tion, Ioff is not significantly affected by the DIBL effect and
SS [13].

�VDIBLSS is affected by the Vt,sat due to the contribu-
tion of DIBL and SS (Fig. 3(a)). �VDIBLSS of 100 mV
is used to monitor and compare the characteristics of bulk
FinFETs. Hence, the smaller values of �VDIBL and �VSS
are simultaneously obtained. It is also interesting to note
that Ion/Ioff increases with increasing Vt,sat (Fig. 3(b)). An
Ion/Ioff of 1×106 indicates that the Vg has much more control
over the operation of the MOSFET than the drain voltage,
Vd. The relatively flat trend of �VDIBLSS (and Ion/Ioff) vs.
Vt,sat is a result of the reduction of SCEs in this work.
According to [4], [9], [10], and [14], when the charge shar-
ing from the S/D to the channel is suppressed, a higher
Vt,sat, which approaches the value of Vt,lin, can be obtained.
Therefore, a negligible trend of �VDIBLSS (and Ion/Ioff) vs.
V t,sat can be observed. We aim to minimize the value of
�VDIBLSS/(Ion/Ioff) and obtain a relatively flat trend of
�VDIBLSS/(Ion/Ioff) vs. V t,sat. Such case indicates better
short–channel performance. To further analyze the role of
�VDIBLSS in bulk silicon FinFETs, the �VDIBLSS as a func-
tion of Ion/Ioff is shown in Fig. 3(c). As seen in this figure,
small �VDIBLSS is almost always linked with large Ion/Ioff.
This again proves that the improvement of SCEs in bulk
silicon FinFETs reduces the sensitivity of Ioff to the DIBL
effect and SS. In other words, a potential barrier between the
source and the channel region is not significantly decreased
when the Vd is high (0.8 V) [10], [14]. Small DIBL leads
to small off–state leakage current. Steep SS results in good
on/off switching performance. Hence, the value of �VDIBLSS
can be used to evaluate the overall performance of n–channel
bulk FinFET devices.
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FIGURE 5. The �VDIBLSS/(Ion/Ioff) as a function of �VDIBLSS in n–channel
bulk FinFETs without lightly–doped regions. It is observed that when
�VDIBLSS is smaller than 100 mV, the �VDIBLSS/(Ion/Ioff) parameter value
becomes significant smaller than 1 ×10−4 mV. Hence, the device
performance is quantified by �VDIBLSS/(Ion/Ioff). Smaller
�VDIBLSS/(Ion/Ioff) means stronger immunity to SCEs.

The measured values of �VDIBLSS/(Ion/Ioff) for n–channel
bulk FinFETs without lightly–doped regions as a function
of V t,sat are shown in Fig. 4. One important point to note is
that �VDIBLSS/(Ion/Ioff) exhibits a strong V t,sat dependence.
�VDIBLSS/(Ion/Ioff) decreases as V t,sat increases. This is due
to the fact that SCEs occur in bulk FinFETs. This proves the
usefulness of the �VDIBLSS/(Ion/Ioff) parameter in analyzing
SCEs for bulk FinFETs. Another important point is that the
proposed device has smaller �VDIBLSS/(Ion/Ioff) than that in
our previous work. As explained in Fig. 2, smaller �VDIBLSS
and larger Ion/Ioff result in better device performance. Next,
the �VDIBLSS/(Ion/Ioff) as a function of �VDIBLSS is investi-
gated. It is demonstrated in Fig. 5 that the �VDIBLSS/(Ion/Ioff)
decreases as the �VDIBLSS decreases. At the same time,
the �VDIBLSS/(Ion/Ioff) decreases as the Ion/Ioff increases, as

FIGURE 6. The �VDIBLSS/(Ion/Ioff) as a function of Ion/Ioff in n–channel
bulk FinFETs without lightly–doped regions. An Ion/Ioff of larger than 1
×106 is achieved, eventually resulting in the �VDIBLSS/(Ion/Ioff)
parameter value smaller than 1 ×10−4 mV. Smaller �VDIBLSS/(Ion/Ioff)
also means better switching performance.

shown in Fig. 6. When the value of �VDIBLSS/(Ion/Ioff) is
around 1 ×10−4 mV, the values of �VDIBLSS and Ion/Ioff are
100 mV and 1 ×106, respectively. This behavior is due to
the interrelated effects of �VDIBL and �VSS in a nanoscale
device. Smaller �VDIBLSS, which means reduced electric
field in the drain region of a MOS transistor, indicates bet-
ter on/off characteristics. Thus, �VDIBLSS/(Ion/Ioff) becomes
a key device parameter in evaluating the performance of
n–channel bulk FinFET devices.
Some state–of–the–art devices in [8], [16], and [17] are

used for comparison with the proposed device. These are
shown in Fig. 4–6. Although it is difficult to compare apples
to apples due to the differences in fabrication conditions, we
observe a consistent trend: devices with reduced DIBL and
SS eventually result in smaller �VDIBLSS/(Ion/Ioff).

FIGURE 7. A physical explanation of �VDIBLSS/(Ion/Ioff). Logic FoMs, such as DIBL, SS, Ion, Ioff, are merged into a single parameter to analyze the overall
device performance. Smaller �VDIBLSS/(Ion/Ioff) is desirable implying a superior immunity to SCEs. I0 is the Id used for defining the V t [15].
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The physical meaning of �VDIBLSS/(Ion/Ioff) is sum-
marized by redrawing the figure in [9] (Fig. 7).
�VDIBLSS/(Ion/Ioff) contains information on the important
performance parameters: The DIBL effect and SS in the
x–axis of the Id–Vg curve and the transistor on/off current
ratio in the y–axis of the Id–Vg curve. �VDIBLSS refers to
the Vg domain covered by the combination of DIBL and
SS as depicted by the graph in Fig. 7. Ion/Ioff refers to
the on/off transition performance. Small �VDIBL results in
small leakage current, increasing the separation between Ioff
and Ion. Steep SS exhibits fast on/off transition performance,
which also increases Ion/Ioff. Thus, �VDIBL and �VSS are
interrelated. As a result, small �VDIBLSS/(Ion/Ioff) is a good
indication that the SCEs are under control.
In general, the �VDIBLSS/(Ion/Ioff) parameter can also

be utilized for special technologies such as of III–V
MOSFETs and tunnel FETs (TFETs) [18]–[20]. These top-
ics are beyond the scope of this paper. However, these
technologies are nevertheless short–channel devices, so the
�VDIBLSS/(Ion/Ioff) parameter can still be useful. Note that in
a high–performance device, the �VDIBLSS/(Ion/Ioff) parame-
ter should still always be smaller than 1 ×10−4 mV because
it means that small �VDIBLSS and large Ion/Ioff are being
simultaneously obtained.

IV. CONCLUSION
We have demonstrated experimentally that the
�VDIBLSS/(Ion/Ioff) parameter can be used to evaluate
the performance of n–channel bulk FinFET devices. The
numerator corresponds to DIBL and SS, and the denomina-
tor indicates how well a nanoscale device performs under
switching operation. Small �VDIBLSS and large Ion/Ioff are
desirable for a high–performance FinFET device. Thus,
the smaller the value of �VDIBLSS/(Ion/Ioff), the better
the performance of a nanoscale device. Furthermore, for
a given V t,sat, the proposed device has better electrical
characteristics compared to our previous work, including
smaller �VDIBLSS (<100 mV) and larger Ion/Ioff (>1
×106).
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