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ABSTRACT In this paper, a novel normally off p-gallium nitride (GaN) gate high electron-mobility
transistor (HEMT) with composite AlN/Al0.17Ga0.83N/Al0.3Ga0.7N barrier layers is proposed. Compared
to the standard (STD) p-GaN/AlGaN/GaN HEMT structure, the composite barriers (CB) with AlN etch-
stop layer can effectively improve the uniformity of the device threshold voltage (VTH) and reduce the
leakage current. The CB p-GaN gate HEMT achieved a VTH of 1.7 ± 0.06 V; this value was 2.1 ± 0.2 V
for STD HEMT. In addition, the off-state drain leakage current was suppressed one order of magnitude
by adopting a composite barrier design.

INDEX TERMS Gallium nitride (GaN), high electron mobility transistor (HEMT), normally-off, pulse
measurement.

I. INTRODUCTION
Gallium nitride (GaN)-based high electron-mobility tran-
sistors (HEMTs) are promising for high switching speed
and high-power semiconductor device applications because
of their high electric field strength, high mobility, and
good thermal stability [1]. The channel modulation mech-
anism of traditional AlGaN/GaN HEMTs is inherently
normally-on because a high-density two-dimensional elec-
tron gas (2DEG) is formed by the polarization-induced
charges in the AlGaN/GaN interface. Therefore, normally-
off behavior of AlGaN/GaN HEMTs with a sufficiently
large and stable VTH is highly desirable owing to single
voltage supply consideration. Thus, several researches have
been proposed to realize the normally-off operation char-
acteristics of the AlGaN/GaN HEMTs such as ultra-thin
barrier (UTB) [2], gate-recessed structures [3], [4], the fluo-
rine treatment [5], [6]. Recently, GaN HEMTs with a p-GaN
gate stack (p-GaN gate HEMTs) have been demonstrated

commercially in a MHz-switching power device, in which
a p-GaN layer on top of an AlGaN barrier depletes 2DEG
carriers in the channel [7]–[10]. The two major challenges
of p-GaN gate HEMTs are the etching depth uniformity
of the nongated active region and the plasma-induced dam-
age during the p-GaN removal process. In this study, we
overcame the drawbacks of the conventional p-GaN removal
process by developing a new transistor barrier structure
comprising composite 1-nm AlN/12-nm Al0.17Ga0.83N/1-nm
Al0.3Ga0.7N on top of the GaN channel [11]. With a BCl3+
CF4 gas mixture highly selective dry-etching process that
stops at the AlN layer, the 60-nm p-GaN layer of the non-
gated area can be removed. The selectivity can be attributed
to the nonvolatility of aluminum fluoride (AlF3) [12], which
generates a wide process window with a wide etching con-
trol tolerance. Moreover, the AlN layer beneath the p-GaN
layer achieves a high energy barrier layer to suppress the
leakage current induced by thermionic emission; the gate
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FIGURE 1. Cross-sectional structure of the p-GaN gate HEMT
with (a) standard barrier and (b) composite barrier layers design and TEM
photography.

voltage swing range and the gate lags were improved simul-
taneously. Therefore, this novel composite Schottky barrier
design of normally-off p-GaN gate GaN HEMT exhibits
a high potential for high-switching-speed power-electronic
applications.

II. DEVICE STRUCTURE AND FABRICATION
Fig. 1 shows the cross-sectional schematic and transmis-
sion electron microscopy (TEM) profile of the proposed CB
p-GaN gate device and its corresponding epitaxial struc-
ture. For the proposed CB p-GaN gate HEMT, the epitaxy
wafer was grown by metal-organic chemical vapor depo-
sition on 6-in Si (111) p-type substrates. A 300-nm-thick
undoped GaN channel layer was grown on top of a 4-
µm-thick undoped AlGaN/GaN/AlN buffer transition layer.
A 14-nm-thick undoped composite barrier (1-nm-AlN/ 12-
nm-Al0.17Ga0.83N/ 1-nm-Al0.3Ga0.7N) layer was sandwiched
between the GaN channel layer and a 60-nm p-type GaN
cap layer. The Mg concentration is 3 × 1019 cm−3 and the
active Mg concentration is 1 × 1018 cm−3, which was con-
firmed by Hall measurement. This structure exhibited a sheet
charge density of 7.2 × 1012 cm−2 and a Hall mobility
of 1252 cm2/V·s at 300 K after removing the p-GaN cap
layer. The STD structure exhibited a sheet charge density of
6.5 × 1012 cm−2 and a Hall mobility of 1133 cm2/V·s with
the same characterization. For device fabrication, the active
region was protected by photoresist and the mesa isolation
region was etched to 200-nm depth in a reactive ion etching
chamber using BCl3+ Cl2 mixed gas plasma. A 3-µm-long
p-type GaN gate finger was formed by selective dry etching
because of the p-GaN/AlN interface design. A mixture of
BCl3+ CF4 gas plasma was adopted to remove p-GaN for
530 s to form the gate terminals. The CF4 plasma reacted
with Al atoms and formed a thin AlF3 etching stop layer
when the mixed gas plasma reached the AlN barrier layer.
As shown in Fig. 2, the p-GaN removal depth was measured
using an atomic force microscope. The AlN layer was flu-
orinated by CF4 plasma after the p-GaN removal process,
and AlF3 signal was detected through X-ray photoelectron
spectroscopy (XPS) measurements.
To ensure uniform and complete removal of the p-GaN

layer, a 600 s etch was used with 70 s over etching, and an

FIGURE 2. p-GaN removal depth as a function of etch duration and XPS
F1s signal of a sample dry etched for 600 s.

obvious etching stop function was achieved by adopting AlN
layer design [12]. Subsequently, the sample was immersed
into diluted HF/NH4OH chemical solution to remove the
newly formed AlF3 and AlOx compounds. Ohmic contacts
were prepared through electron beam evaporation to form
a multilayered Ti/Al/Ni/Au (25/120/25/150 nm) structure
sequentially, followed by rapid thermal annealing at 875 ◦C
for 30 s in a nitrogen-rich atmosphere. After the formation
of the ohmic contacts, the gate region of Ni/Au (25/120 nm)
metal layer was deposited using an electron beam evaporator.
Finally, a-200 nm-thick SiO2surface passivation layer was
deposited using an electron beam evaporator. The lengths of
gate-to-source (LGS), gate (LG), gate-to drain (LGD) are 2,
3 and 7µm, respectively. The width of device (W) is 50µm.
For comparison, a STD p-GaN gate HEMT with 12 nm
Al0.17Ga0.83N barrier layer was also grown and fabricated
with an identical process flow.
The schematic band diagrams of the CB and STD p-

GaN gate HEMTs are shown in Fig. 3. Because of the
large bandgap (3.4 eV) of GaN and the Fermi level (EF)
close to the valence band (EV), The p-GaN cap can
decrease the potential and thus increase the energy bar-
rier in the channel to realized 2DEG depletion, and thus,
resulting in normally-off operation [13], [14]. The gate leak-
age current under positive gate operation is controlled by
thermionic emission and affected by the direct tunneling
or trap assisted tunneling [15], [16]. When the gate bias
was switched from 0 V to a positive bias, the holes were
emitted from reverse-biased Schottky junction; thus, the elec-
trons and holes are injected and some of the carriers are
trapped in the AlGaN layer during the transient process
in STD p-GaN/AlGaN/GaN HEMT [17]. For the composite
barrier p-GaN design, the 1-nm-Al0.3Ga0.7N/GaN channel
behaves similar to a 2DEG channel with good carrier con-
finement. The main purpose of 12-nm-Al0.17Ga0.83N layer
is to improve the epitaxial quality and suppress the lattice
mismatch induced dislocation compared to the traditional
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FIGURE 3. Energy band structure at the gate position for CB and STD
p-GaN gate HEMT.

high Al mole fraction (20-30%) barrier layer design of GaN
HEMT. Finally, the AlN layer forms a high barrier between
p-GaN and Al0.17Ga0.83N to minimize the leakage current
induced by thermionic emission together with an etching
stop layer function.

III. DEVICE PERFROMANCE AND DISCUSSION
Fig. 4(a) shows the IDS−VGS and IGS−VGS transfer curves
of the STD and CB p-GaN gate HEMT. The maximum out-
put current density was 272 mA/mm at a gate bias of 8 V
and the on-resistance was 5.65 �·mm for the STD p-GaN
gate HEMT. These results were respectively 320 mA/mm
and 5.05 �·mm for the CB device. The average subthresh-
old slope (S.S) for the STD device was 375 mV/dec; this
value was improved to 167 mV/dec for the CB device. The
better S.S of the CB p-GaN HEMT was attributed to its
better 2DEG carrier confinement and lower leakage current
induced by thermionic emission [18]. Meanwhile, the for-
ward gate leakage of the STD device increased rapidly at
a VGS of 6 V, and the gate swing range was increased by
1 V in the CB design. The inset in Fig. 4(a) plots the I-V
output of both devices to demonstrate the correct character-
istic. Fig. 4(b) shows the distribution of VTH (defined by
the IDS = 1mA/mm) for 30 devices on the wafer with the
same gate length of 3 µm using 1 mA/mm as the criteria.
For the STD device, the mean value of VTH was 2.1 V
and the standard deviation was 0.2 V. These values were
1.7 V and 0.06 V for the CB device, suggesting good uni-
formity of the AlN etching stop layer design as a result
of the self-terminated p-GaN removal process. However,
the composite AlN/Al0.17Ga0.83N/Al0.3Ga0.7N design raised
the Fermi level slightly compared with the traditional
Al0.17Ga0.83N barrier design, and the VTH was thus reduced.
Compared to others published results, CB p-GaN HEMT
performed a good current density and low leakage current
simultaneously [13], [14].
To investigate the improvement in electrical characteristics

of the CB p-GaN gate design, the three-terminals I–V (IGS)

FIGURE 4. (a) IDS − VGS & IGS − VGS transfer and IDS − VDSoutput
characteristics of both devices, (b) VTH distribution of 30 samples for STD
and CB p-GaN HEMT.

curves of the device were measured. The gate turn-on voltage
(VON) was determined when the gate leakage current reached
+1µA/mm. The VON of CB p-GaN gate HEMT improved
to 7.8 V, and this value was 6.3 V for the STD one owing to
the suppression of the thermionic-emission-induced leakage
current. The higher VON is also beneficial for improving the
gate voltage swing range and driver voltage dynamic range.
Moreover, the AlN barrier layer in the CB p-GaN barrier
suppresses the reverse gate leakage current by one order of
magnitude (see inset Fig. 5), resulting in an improvement in
the off-state breakdown voltage (VBR, ID = 1mA/mm) from
218 V to 256 V compared to the STD device are shown in
Fig. 5.
Fig. 6 shows the dynamic RON recovery transients from

10 µs up to 1ms with an OFF-state (VGSQ = 0 V
and VDSQ = 50 V, duration = 20 ms) stress condition.
Then the device was switched on with VGS = 8 V and
VDS = 1 V bias conditions and the RON,D is thus extracted
under a duty cycle of 10% for both devices. The value of
RON,S was extracted from the slope of pulse I-V output at
VGS = 8 V and VDS = 1 V, which quiescent bias point
are with VGSQ = 0 V and VDSQ = 0 V. The degrada-
tion in dynamic switching performance was determined by
calculating the ratio of RON,D /RON,S. It reasonably sug-
gests that the RON,D /RON,S ratio close to 1 of the CB
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FIGURE 5. Off-state breakdown characteristic and reverse gate leakage for
STD and CB p-GaN HEMT.

FIGURE 6. Dynamic RON transients from 10 µs up to 1ms after OFF-state
(VGSQ = 0 V, VDSQ = 50 V, duration = 20 ms) to ON-state (VGS = 8 V,
VDS = 1 V) switching for STD and CB p-GaN HEMT.

p-GaN gate device was improved from the recovery time
of 500 to 80 µs compared to the STD device, which was
dominated by low device surface leakage and shallow trap
density [19], [20]. In other words, the reduction in the leak-
age current induced by thermionic field emission in the CB
p-GaN HEMT is beneficial for mitigating the performance
degradation.
Fig. 7 shows the pulsed I–V characteristics of both devices

measured with static quiescent biases (VGSQ, VDSQ) of (0 V,
0 V) at room temperature with an ON-state gate bias of
8 V [21], [22]. The device is switched with 10 µs pulse
width and 1 ms period, respectively. The quiescent drain
bias (VDSQ) was swept from 0 to 200 V with 50-V incre-
ments. Clearly, the current collapse of the STD device is
worse than that of the CB device, and the high drain lag of
the STD device under relatively high stress lead to I-V slope

FIGURE 7. Pulsed IDS − VDS characteristics from quiescent gate bias
(VGSQ) point of 0 V with 10µs pulse width and 1 ms pulse period.
Afterward, the quiescent drain bias (VDSQ) was swept from 0 to 200 V (in
50 V increments).

decreases, indicating that the surface defect trap density is
higher than that of the CB device. Therefore, the AlN etch-
ing stop layer provides a uniform etching profile of p-GaN
removal and thus reduces the surface damage. Moreover,
the superior carrier confinement of the CB p-GaN HEMT
achieves a better dynamic operation than the traditional
design does.

IV. CONCLUSION
In summary, composite 1-nm-AlN/12-nm-Al0.17Ga0.83N/
1-nm-Al0.3Ga0.7N p-GaN gate HEMTs were successfully
fabricated and studied. With a 1-nm AlN etching stop layer
design, a better VTH uniformity was obtained in the CB
p-GaN HEMT. In addition, the superior surface etching uni-
formity improved the drain lag, especially at higher drain
bias stress. This composite barrier design also had a lower
leakage current induced by thermionic emission and a better
2DEG carrier confinement, which are beneficial for sup-
pressing the gate leakage current and gate-lag characteristics
compared with those of the STD design. Therefore, the as-
developed design exhibits a high potential for repeatable and
manufacturable normally-off p-GaN gate HEMT application.
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