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ABSTRACT The transition metal dichalcogenides (TMDCs) have been extensively investigated for various
applications such as logic, memory and optical devices, and sensors. The pressing challenge in the
research of TMDCs is the electrical performance limited by the high contact resistance. We report more
than 5000 times reduction in the contact resistance of WS2 field-effect transistor (FET) with Ti contact
(81 M� µm to 14.6 k� µm) by high-pressure hydrogen annealing. Schottky barrier height reduction
appears to play a major role in the reduction of the contact resistance. This process can be used to reduce
the contact resistance even further by combining with a doping technique for TMDCs and a contact metal
optimization for TMDC FETs.

INDEX TERMS Contact resistance, Fermi-level depinning, high-pressure hydrogen annealing, WS2 FET.

I. INTRODUCTION
Recently, transition metal dichalcogenides (TMDCs) have
generated significant research interest due to its unique
electrical, optical, and mechanical properties [1]–[5]. Their
applications in various devices such as field-effect transis-
tors (FETs), memory devices, optical devices, and multifunc-
tional sensors have been actively investigated [6]–[15]. For
example, Radisavljevic et al. [6] demonstrated a single-layer
MoS2 FET for the first time, with high field effect mobility
(µFE) of over 200 cm2/Vs. Bertolazzi et al. [10] demon-
strated a MoS2 non-volatile memory cell with a graphene
floating layer. TMDCs have unique advantages in thin film
transistor (TFT) applications, because of relatively high
µFE (30–100 cm2/Vs) compared to other materials such as
organic TFT or a-Si TFT [13], [14].
In spite of the promising initial results, several technical

challenges need to be overcome in order to consider TMDCs
for practical electronics and display applications. Thus, a sig-
nificant number of studies have been actively conducted on
the various aspects of the integration processes that affect
gate dielectric, contact resistance, interface, and reliability, to
improve the performance of TMDC FETs. The performance

of single layer MoS2 FETs could be substantially improved
with a high-k gate dielectric, which reduced the carrier scat-
tering (µFE ∼ 200 cm2/Vs) [6]. Several approaches to reduce
the contact resistance of TMDC FETs have been reported,
including molecule or Cl doping techniques, the use of
low work function contact metal, and the use of Fermi-
level depinning layer [16]–[20]. In particular, the method
of Fermi-level depinning using a thin interlayer dielectric is
found to be effective in the reduction of low-frequency noise
in multilayer MoS2 FETs [21]. Dielectric passivation tech-
niques have also been investigated to improve the stability
of TMDC FETs [22], [23].
In this study, we analyzed the effect of high-pressure

hydrogen annealing (HPHA) on the performance of WS2
FETs in terms of drive current, conduction mechanism and
contact resistance. The mechanism of the three-fold increase
in the drive current and the conduction mechanism change
from bipolar to close-to-unipolar have been identified.

II. EXPERIMENT
WS2 (HQ graphene) flakes were transferred onto
SiO2 (90 nm)/silicon substrates by a mechanical
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FIGURE 1. (a) Raman spectra for multi-layer WS2 before and after the
HPHA. (b) The thickness of multi-layer WS2 measured by AFM and the
inset figure shows the image of WS2. (c) Schematic of WS2 FET with
HPHA (20 atm, 300 ◦C, 30 min).

exfoliation process. The optical characteristics of the trans-
ferred bilayer and multilayer WS2 were evaluated using
Raman spectroscopy (RENISHAW in ViaRaman microscope,
laser wavelength: 514 nm, 50 mW). Fig. 1(a) shows repre-
sentative Raman spectra of a multilayer WS2 before and
after the HPHA. The thickness of WS2 flakes can be
roughly estimated from the frequency difference between
E1

2g (in-plane vibrational motion) and A1g(out-of-plane vibra-
tional motion). As the thickness of WS2 increases, the
E1
2g mode shows redshifts, while the A1g mode shows

blueshifts [24], [25]. Fig. 1(b) shows the thickness of the
multilayer WS2 flake measured by non-contact atomic force
microscopy (AFM) and the inset shows the AFM image of
the multilayer WS2. The thickness of the multilayer WS2
was approximately 18 nm. The schematic of WS2 FET is
shown in Fig. 1(c). After transferring WS2 onto SiO2, the
source and drain electrodes (Ti/Au) were deposited using e-
beam evaporation and patterned using a lift-off process. The
channel length and width were 3 µm and 6 µm, respectively.
Finally, the HPHA was performed at 20 atm and 300 ◦C for
30 min. The process condition of HPHA used in this work
was determined to maximize the introduction of hydrogen
and minimize the damage to the WS2 layer [26], [27]. The
Raman spectra of WS2 before and after the HPHA shown
in Fig. 1(a) indicate that there is no noticeable change in
the quality of WS2 after the HPHA.

III. RESULT AND DISCUSSION
Fig. 2(a) shows the transfer characteristics (IDS–VBG) of the
WS2 FET before and after the HPHA. Before the HPHA, the
electron current was relatively low, indicating a significantly
high channel resistance and bipolar type I-V characteris-
tics involving both electron and hole currents were observed
as previously reported in [16] and [28]. On the other hand,
the I-V characteristics were substantially changed after the
HPHA. The transfer curve and threshold voltage (VTH) was
shifted to the negative direction after the HPHA [29]. Since
TMDC FETs are basically Schottky junction FETs, SBH
reduction with contact engineering tends to reduce the thresh-
old voltage. Average drain current increased by ∼3 times
from 0.127 µA/µm to 0.32 µA/µm after the HPHA. The
off current was slightly increased after the HPHA, but the
difference was small.
The enhancement in the electron current was also con-

firmed in the output characteristics (IDS−VDS) also (Fig. 2(c)
and (d)). The shape of output current curve provides the clue

FIGURE 2. (a) IDS-VBG of WS2 FET before/after the HPHA. (b) The average
width normalized drain current before/after the HPHA at VBG-VTH = 20 V.
IDS-VDS curves of WS2 FET (c) before and (d) after the HPHA.

to the origin of performance enhancement. The envelope
curve of Fig. 2(c) follows the path of a quadratic curve,
which indicates the presence of a high series resistance.
After the HPHA, the output curves shown in Fig. 2(d) exhib-
ited quadratic saturation characteristics and the drain current
increased by more than 300%. This enhancement could be
explained by the interface state passivation by the hydrogen
as in the case of silicon and a reduction in the contact resis-
tance. In either case, more detailed analysis is necessary to
understand the actual mechanism of improvement.
First, we investigated the change in the interface states of

WS2 channel after the HPHA. Unfortunately, in case of WS2
FETs, charge pumping method could not be used due to the
high series resistance. Therefore, a relatively rough compar-
ison was performed using the subthreshold slope (SS) from
IDS − VBG of WS2 FET using the following equation [30].

SS = dVg
d

(
log10 Id

) = ln 10 · kT
q

(
1 + Cs + Cit

Cox

)

≈ 60mV

(
1 + Cit

Cox

)
(1)

where Cit is the capacitance related to the interface trap
density (Cit = qDit), Cox is the oxide capacitance which
is 38.35nF/cm2 in this work. The average interface trap
densities of the WS2 FETs decreased from 3.39 × 1013

eV−1cm−2 to 1.73 × 1013 eV−1cm−2 after the HPHA as
shown in Fig. 3(a). Even though the density of interface
states decreased by about 49%, this change was not enough
to explain 300% enhancement in the drive current.
Next, the influence of HPHA on the contact resistance was

investigated. The series resistance between the source and
drain (RSD), including the contact resistance, was obtained
from the ratio between two IDS − VBG curves measured at
different drain biases [16], [31]. The RSD could be extracted
with an assumption that the contact resistance is not affected
by the drain bias. Fig. 3(b) shows the total resistance
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FIGURE 3. (a) Dit for the eight devices and (b) RT for VDS = 0.3 V and 0.5 V
including the extracted RSD for WS2 FET after HPHA. Inset figure shows the
extracted 2RC at the high gate overdrive (1/(VBG − VTH) ∼ 0V−1).
(c) Comparison of extracted RC before/after the HPHA. (d) SBH with Ti
contact and the inset figure shows the Arrhenius plots for before/after the
HPHA.

(RT = VDS/IDS) as a function of gate overdrive for the
two drain biases (VDS = 0.3 and 0.5 V) and the RSD for
the WS2 FET after the HPHA. Since RT of WS2 FET
is the sum of the channel resistance and series resistance
(RT = RSD + RChannel), the RSD can be extracted using two
different channel resistance values at a high overdrive bias.
The detail explanation of the method used to calculate the
series resistance can be found in [21]. The inset figure in
Fig. 3(b) shows the extrapolation curve to extract the contact
resistance at a high gate-overdrive condition (1/(VBG−VTH)
∼ 0 V−1) by fitting the RSD − 1/(VBG − VTH) curve.
The extrapolated RSD values were approximately 27 M�

before and 4.85 k� after the HPHA. The contact resistance,
RC, which is roughly equal to the half of RSD, decreased
by more than 5000 times. Fig. 3(c) shows the length nor-
malized contact resistance, RC of the WS2 FET. After the
HPHA, the RC was drastically decreased to 14.55 k�µm
from 81 M�µm. This result is very encouraging because
more than three orders of magnitude reductions in the con-
tact resistance was achieved without any additional doping
or depinning layer, even though the final value of RC is
still slightly higher than the previously reported results in
the literature (Table 1). However, once the mechanism of
the improvement is fully understood, there is a possibility
to use the HPHA in combination with the methods listed in
Table 1 to reduce the RC further.
Then, the SBH at the metal and WS2 contact were ana-

lyzed using the temperature dependence of the drive current
to investigate the influence of HPHA. The barrier height
was extracted using the Richardson-Schottky equation shown
below [16], [31].

I = AA∗T2exp

⎡

⎣−
(
φB − √

q3V/4πε0εrd
)

kBT

⎤

⎦ (2)

TABLE 1. RC And µFE for WS2 FETs With Various Treatments.

where A is the contact area, A* is the effective Richardson
constant, φB is the SBH, q is the electron charge, V is the
applied forward bias, ε0 and εr are the permittivity of vac-
uum and WS2 respectively, d is the width of the interface
barrier, kB is the Boltzmann constant, and T is the temper-
ature. The inset of Fig. 3(d) shows the Arrhenius plot for
the WS2 FET before and after the HPHA. For the barrier
height extraction, IDS-VDS was measured at the temperature
range from 200 K to 400 K, and I0 value was extracted
at VDS = 0 V . The SBH was calculated from the slope
of Arrhenius plot (ln(I0/T2) − 1/T). The average SBH is
found to be reduced from 0.18 eV to 0.13 eV after the
HPHA. The difference ∼50 meV in the SBH seems to be
small to explain the change in the drive current. Interestingly,
drastically enhanced device performance in TMDC FETs
with relatively small change in SBH was also reported by
other groups. Das et al. [7] reported that ∼5 times increased
drain current was achieved with high mobility by reducing
only 20 meV of Schottky barrier [7]. Thus, there is a pos-
sibility that the SBH measurement method might not be
accurate for TMDC FETs, or there might be additional fac-
tors affecting the performance of TMDC FETs other than
Dit and Rc.
Then, how the HPHA would have affected the SBH?

Fermi-level pinning effects at the metal contact of multi-
layer and monolayer TMDCs materials have been reported
in [7] and [32]. The SBH at the interface of Ti and multi-
layer TMDCs was found to be higher than the theoretical
prediction [19]. The previous study on the hydrogenation
of MoS2 might provide the clue [33]. If the hydrogenation
reaction happened at the interface of Ti and WS2 reduced the
SBH, it may result in the Fermi-level depinning like behav-
iors. Also, the recent study on the effect of HPHA on metal
and graphene also indicates that the hydrogen can penetrate
into the interface of metal and TMDC materials [27].
This hypothesis can explain the change in the current

conduction mechanism also. As the SBH decreased after
the HPHA, the electron conduction could become domi-
nant while the hole current was suppressed as schematically
illustrated in Fig. 4, resulting in the close-to-unipolar con-
duction behavior. Even though the details role of hydrogen
at the interface of metal and WS2 will require more theo-
retical studies, the experimental evidence such as the drastic
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FIGURE 4. Band diagram of metal (Ti) and WS2 contact (a) before
and (b) after the HPHA. The band diagram after the HPHA illustrates that
the electron current is enhanced by the SBH decrease.

RC reduction, SBH reduction, and conduction mechanism
change point that the Fermi-level alignment was changed
after the HPHA, i.e., Fermi-level depinning effect.
We have not explored another possibility such as the bulk

defects of WS2 which might have been passivated by hydro-
gen and improved the performance of FETs. At this point,
the quality of WS2 channel was not sufficient to separately
identify the contributions of the interface state and bulk
defects.

IV. CONCLUSION
HPHA has been identified as an effective method to reduce
the RC of WS2 FETs. Three orders of magnitude reduction
at the RC were attributed to the reduction of SBH via the
hydrogen related reaction at the interface of Ti and WS2.
Even though the final RC is still higher than other approaches,
HPHA has an advantage that it can be easily combined with
other approaches to reduce the RC such as doping or low
work function metal, because it can be performed after the
device fabrication.
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