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ABSTRACT This paper presents a new driving scheme for active-matrix organic light-emitting diode
displays. A pixel circuit based on this driving scheme was developed to compensate for the threshold
voltage and mobility variations of low-temperature polycrystalline-silicon thin-film transistors (TFTs),
eliminate image flickering and current-resistance voltage drops, and suit ultrahigh-definition (UHD) res-
olution applications. A new gate driver with a concise 6T1C structure is also proposed to realize the
driving scheme in practice. Fabricated TFTs and OLEDs were measured to establish models. Simulations
using these models demonstrate that the proposed pixel circuit achieves uniform OLED current regardless
of undesirable influences at UHD resolution.

INDEX TERMS Active-matrix organic light-emitting diode (AMOLED), low-temperature polycrystalline-
silicon thin-film transistors (LTPS TFTs).

I. INTRODUCTION
Achieving an ultra-high-definition (UHD) resolution
(3840×2160) for active-matrix organic light-emitting
diode (AMOLED) displays is a mainstream goal of the dis-
play industry in the near future [1]-[3]. To develop such
high-resolution AMOLED displays, high-speed operation
of pixel circuits is becoming the major requirement [4].
Low-temperature polycrystalline-silicon thin-film transistors
(LTPS TFTs) are recommended for pixel circuits because of
their high mobility and excellent current-driving capability
to support high-speed operation of display panels [5], [6].
Nevertheless, the non-uniform electrical characteristics of
LTPS TFTs among pixels, including threshold voltage (VTH)
and mobility variations, induce OLED current fluctua-
tions, resulting in serious image mura [7]. To date, various
pixel circuits compensating for VTH variations have been
developed [8]–[10], but few of these can be applied in
UHD displays because they require a long programming
time to detect the threshold voltage of TFTs. In 2007,
Chaji and Nathan [11] proposed the parallel addressing

scheme to increase the scanning speed of a panel without
limiting the programming time. By dividing the compensa-
tion operation from data input operation, the pixel circuits in
adjacent rows can execute the VTH compensation in parallel
without signals from the data line. As a result, the distribut-
ing time of pixels in a row line for scanning, called one scan
time, is only the “data input period” rather than the whole
programming time, which benefits high-resolution displays
requiring a short scan time. However, the driving scheme
accompanies complicated circuit operations and complicated
control signals in the VSS line, which causes circuit insta-
bility. Furthermore, having the OLED turned-on during the
programming period in [11] would cause image flickering
and deteriorate the contrast ratio of the displays. For high-
end AMOLED displays, the mobility variations of TFTs and
the power line IR drop must be solved to realize high image
quality. However, for pixel circuits using internal compensa-
tion methods, it is challenging to simultaneously support VTH
compensation, mobility compensation, power line IR drop
compensation, and parallel addressing scheme. Therefore,
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TABLE 1. Comparison between prior methods and proposed scheme.

external compensation methods have received much attention
recently [4], [7], [15]. By designing an external detecting
system out of the pixel array, the various variations in pix-
els can be sensed and compensated for, to produce uniform
OLED current. The corresponding pixel structures could,
alternately, be made simpler than those adopting internal
compensation methods. However, this type of driving scheme
is demanding for designers, given the requirement of a heavy
algorithm and complicated detecting circuit that must be
highly accurate.
This work proposes a new pixel circuit with a novel

driving scheme. The proposed driving scheme supports the
high-speed operation of pixel circuits and is capable of com-
pensating for the variations in threshold voltage and mobility
of TFTs. The flickering phenomenon and the effects of volt-
age drops in the power lines can also be eliminated. A new
gate driver circuit with a simple 6T1C structure was devel-
oped to generate the special signal, G[n], of the new driving
scheme. For flexibility, the time interval of the two pulses in
G[n] can be adjusted to provide adequate compensation time
for the proposed pixel circuit. Table 1 depicts a comparison
between prior methods and the proposed driving scheme.
Among these methods, only the proposed driving scheme
carries out high-speed operation with constant VDD and VSS,
free from flickering, no requirement of extra reference line,
and VTH/ mobility/ VDD compensation.

II. PROPOSED PIXEL CIRCUIT OPERATION
Figs. 1(a) and 1(b) show the proposed pixel circuit and the
new driving scheme, respectively. Five p-type LTPS TFTs
and two storage capacitors are used, and VDD and VSS are
the constant power supply and constant common electrode,
which enhance circuit operation stability. The stages of the
proposed driving scheme are initialization, VTH compensa-
tion, data input, and emission. For VDATA shown in Fig. 1(b),
one set of VDATA signals is composed of two voltage levels:
VREF[n+2] and Vdata[n]. VREF[n+2] is the reference volt-
age for pixel circuits in the [n+2]th row, and Vdata[n] is the
data voltage for pixel circuits in the [n]th row. VREF and
Vdata of different rows can be combined (e.g., VREF[n+3]
and Vdata[n], or VREF[n+4] and Vdata[n]) by adjusting the
time interval of the two low levels in G[n], namely the

FIGURE 1. (a) Proposed pixel circuit and (b) driving scheme.

duration of VTH compensation. Therefore, the VTH com-
pensation period can be adequately designed according to
designer requirement regardless of the display resolution.
The operation of the proposed pixel circuit is described

as follows. In the initialization stage, the values of G[n],
SCAN1[n], and SCAN2[n] are low to turn on all TFTs.
VREF[n] is applied to node A from the VDATA line.
Meanwhile, the voltages of node B (VB), node C (VC),
and node D (VD) are reset to voltages near VSS, VDD, and
VSS, respectively. During the VTH compensation stage, G[n]
and SCAN2[n] become high to turn off T1 and T3. Because
T2 remains on, to hold VB at VSS, VA is maintained at VREF
invariably by C2. Subsequently, VC is discharged through
T5 and T4 until T5 is turned off. At the end of this stage, VC
reaches VREF[n] + |VTH_T5|, where VTH_T5 is the threshold
voltage of T5. In the data input stage, G[n] is low again
to turn on T1. Vdata[n] is input to node A through T1, and
T5 is then turned on because the source-gate voltage of T5
(VSG_T5), which is VC−VA = VREF[n]+|VTH_T5|−Vdata[n],
is larger than |VTH_T5|. As a result, node C starts discharging
according to the following equation

C1 · dVSG_T5

dt
+ kT5

2

(
VSG_T5 − |VTH_T5|

)2 = 0 (1)

To obtain VSG_T5, let VSG_T5 = Z+|VTH_T5|, and substitute
it into Eq. (1), yielding,

V ′
SG_T5 = −kT5

2C1
Z2 (2)
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Let P = 1/Z => Z′ = −Z2P′, and substitute it into Eq. (2),
yielding,

− Z2P′ = −kT5

2C1
Z2 (3)

Therefore, P can be expressed as

P = kT5

2C1
T + A (4)

where T is the discharging time and A is a constant.
Substituting Eq. (4) into P = 1/Z yields,

Z = 1
kT5
2C1T + A

, where A = 1

VREF[n] − Vdata[n]
(5)

Therefore, VSG_T5 could be expressed as

VSG_T5(t = T) = 1
kT5
2C1T + 1

VREF[n]−Vdata[n]

+ |VTH_T5| (6)

The varying voltage during the discharging time, �VU, is
given by

� VU = VSG_T5(t = T) − VSG_T5(t = 0)

= VREF[n] − Vdata[n] − 1
kT5
2C1T + 1

VREF[n]−Vdata[n]

(7)

where kT5 is μ·COX ·(W/L)T5. Therefore, �VU is dependent
on kT5 involving the mobility of T5 [3]. Notably, T4 is
turned on continuously during programming; consequently,
the OLED can stay off to enhance the contrast ratio of
displays. In the emission stage, G[n] and SCAN1[n] are
high to turn off T1, T2, and T4, and SCAN2[n] is low to
turn on T3. Because VSG_T5 in this stage is identical to that
in the data input stage, the OLED current determined by
VSG_T5 can be expressed as

IOLED = kT5

2

(
VSGT5 − ∣∣VTHT5

∣∣)2

= kT5

2

[
VREF[n] + ∣∣VTH_T5

∣∣ − Vdata[n]

− �VU − ∣
∣VTH_T5

∣
∣]2

= kT5

2
(VREF[n] − Vdata[n] − �VU)2 (8)

According to Eq. (8), the OLED current is independent of
the threshold voltage of T5 and the IR voltage drop in the
power line. Moreover, as the mobility of T5 increases, kT5
and �VU also increase, which suppress the rise of OLED
current. As a result, the effect of the mobility variation of
the TFT can be ameliorated. Additionally, there is no image
flickering during programming by the turned-on T4.

III. PROPOSED GATE DRIVER OPERATION
SCAN1[n] and SCAN2[n] in Fig. 1(b) can be simply gener-
ated by common gate drivers with proper timing adjustment
of clocks. In contrast, the gate driver to produce the special
G[n] signal needs to be newly developed with its timing,
as shown in Fig. 2(a) and (b). Fig. 2(c) shows the left

FIGURE 2. (a) Proposed gate driver circuit and (b) its timing diagram.
(c) Block diagram of left side in dual-side driving configuration.
CK1–CK5 in timing diagram correspond to CK set for G herein.

side part of dual-side driving configuration for the pro-
posed driving scheme. One row stage is composed of two
gate driver circuits, including the proposed 6T1C gate driver
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TABLE 2. Design parameters of proposed pixel circuit.

for generating G[n], and a general gate driver circuit for
generating SCAN1[n] and SCAN2[n]. The time interval
between two pulses in G[n] can be adjustable by collocat-
ing different driving clocks, For this study, it was set to four
times the pulse width, therefore, five clocks CK1∼CK5 were
used. T1_G,T2_G, and C1_G compose the pull-down cir-
cuit, and T3_G to T6_G compose the pull-up circuit. Because
LTPS TFTs have stable electrical characteristics and almost
no threshold voltage shift after stress [13], the proposed gate
driver suppresses G[n] distortion through the dc stabilization.
The main operation can be divided into seven stages which
are described as follows. In stage (1), the first pulse of G[n-1]
from the previous gate driver is applied to Q[n] through
T1_G; therefore, Q[n] is discharged to VL + |VTH_T1_G|.
Meanwhile, because T3_G is also turned on by Q[n], P[n]
is charged to a high voltage near VH and then turns off
T5_G and T6_G. In stage (2), CK3 becomes low to dis-
charge G[n] from VH. Through C1_G coupling, Q[n] is
further decreased to VL + |VTH_T1_G| − �V and enhances
the driving capability of T2_G. Thus, G[n] is completely
discharged to VL and transferred to the [n]th row line and
the gate driver of the next stage. In stage (3), G[n] and Q[n]
are charged back to VH and VL + |VTH_T1_G| respectively
by CK3. In stage (4), the second pulse of G[n-1] from the
previous gate driver stabilizes the low level of Q[n], and
in stage (5), CK3 becomes low again, to discharge G[n].
Simultaneously, Q[n] couples to VL + |VTH_T1_G| − �V to
completely discharge G[n] to VL. Hence, the second pulse
of G[n] is applied to the [n]th row line and gate driver of
the next stage. In stage (6), G[n] returns to VH, and Q[n]
is boosted to VL + |VTH_T1_G|. In stage (7), CK1 is low, to
turn on T1G; consequently, Q[n] is charged to VH. In addi-
tion, P[n] is reduced by CK1 and turns on T5G and T6G,

which are responsible for stabilizing Q[n] and G[n], respec-
tively. After these main operations, Q[n] and G[n] might
have fluctuations caused by the clock feedthrough of CK3.
To avoid this, P[n] is held at VL + |VTH_T4_G| by CK1 to
turn on T5G and T6G continuously. The dc stabilization by
T5G and T6G forces Q[n] and G[n] at VH robustly to sup-
press the CK3 feedthrough. Consequently, the proposed gate
driver circuit can realize low levels of G[n] twice per frame
through the simple 6T1C structure and stabilize G[n] and
Q[n] through the dc driving of T5_G and T6_G.

IV. RESULTS AND DISCUSSION
Fig. 3 shows the measured transfer characteristics of the
driving TFT, which were fitted to establish TFT models

FIGURE 3. Measured I-V characteristics of LTPS TFT with
W/L = 4 µm / 15 μm at VDS = 1 V and 10 V.

FIGURE 4. Measured I-V characteristics of OLED.

(Rensselaer Polytechnic Institute model, LEVEL = 62) in
an HSPICE simulator. The sub-threshold swing, on/off cur-
rent ratio, threshold voltage, and field-effective mobility are
0.437 V/decade, 9.6×106,−1.25 V, and 85 cm2/V·s, respec-
tively. The luminance efficiency of standard fabricated OLED
device is 33.63 cd/A, and its electrical characteristics are
shown in Fig. 4. It was emulated by a diode-contacted
TFT of W/L = 5 µm/18 µm and a parallel capacitor of
0.5 pF. All the design parameters are listed in Table 2.
In general, the reference voltage for the driving TFT in
VTH compensation is applied and held by the data line or
extra reference line [10], [13], [14]. However, using refer-
ence voltage from data line causes a long scan time for
one row, and adding extra reference line reduces the aper-
ture ratio of pixels. In this study, although the reference
voltage of the driving TFT in the VTH compensation stage,
VREF[n], is provided by the VDATA line, the operation of
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FIGURE 5. Simulated transient waveforms of (a) nodes A, C (b) nodes B, D,
data line, and G[n] of proposed pixel circuit.

the VDATA line is not limited by compensation time because
VREF[n] can be held in the VTH compensation stage by
C2 instead of the VDATA line, or any reference line. As
a result, the compensation time of the proposed pixel circuit
is independent of display resolution; meanwhile, the aperture
ratio is not sacrificed. In real panel fabrication, it is diffi-
cult to observe how the proposed pixel circuit compensates
for the VTH variations or the mobility variations exactly
because the variation contribution from VTH ariations or
mobility variations is ambiguous. Thus, HSPICE simulation
is executed to investigate the performance of the proposed
pixel circuit with these two variations. Fig. 5 presents the
simulated waveforms of the proposed pixel circuit. At the
end of stage (1), VC and VD reach 7.16 V and −1.60 V
respectively when VDD and VSS are set to 8 V and −3 V.
T5 is in the “on” state during initialization, and remains on
throughout stage (2), discharging node C until VC reaches

FIGURE 6. Output characteristic and relative current error rates of
proposed pixel circuit as �VTH_T5 are ±0.3 V.

VREF[n]+|VTH_T5|. In addition, the voltage across OLED is
1.40 V (VD−VSS) in stage (1). This applied voltage reveals
the off state of OLED with its turn-on voltage of around
4 V. Although the OLED is off during initialization, a con-
stant current of up to 13.1 µA flows through T4 in stage (1).
The power consumption caused by this current is evaluated to
13.1 µA× 11V(VDD −VSS) × 3(R/G/B) × 3840 (columns)
= 1.66 W. Fig. 6 shows the OLED currents of the pro-
posed pixel circuit when threshold voltage variations of
T5 (�VTH_T5) are ±0.3 V and the mobility is unvaried.
The proposed pixel circuit maintains stable current despite
�VTH_T5, verifying the compensation of the threshold volt-
age variations. As for mobility variations, the proposed
pixel circuit executes mobility compensation through source-
gate voltage discharging of T5 (�VU) in the data input
period. The mobility variations (�µ) of the driving TFT
were modulated from +25% to −25%, and the threshold
voltage was unvaried. With constant VREF[n] = 1 V and
Vdata = −1.5 V, Fig. 7 shows the interdependence between
�VU and IOLED when the discharging time is set to 0.3 µs.
According to the simulation results, a −25% variation in
mobility induces a �VU of 0.2680 V, and a 25% shift in
mobility increases it to 0.2723 V. The corresponding IOLED
still slightly decreases with TFT mobility owing to the non-
linear relationship between TFT mobility and OLED current.
Namely, the proposed driving scheme cannot completely
compensate for the mobility variation. In spite of the partial
compensation for mobility variations, acceptable error rates
of less than 2 % shown in Fig. 8(a) indicate the effective
compensation for mobility variations in this work. Next, the
VDD of the proposed pixel circuit was changed from 8 V to
7.5 V to imitate the voltage drop in the power line induced by
parasitic loads. Fig. 8(b) displays the OLED current versus
VDD drop. Different data voltages were applied to investigate
the influence of a VDD drop at high, middle, and low gray
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FIGURE 7. �VU and IOLED when mobility of T5 shifts from −25% to + 25%.

FIGURE 8. (a) Relative current error rates of different Vdata when mobility
of T5 varies ± 25%. (b) OLED currents of different gray levels when VDD
drops 0.5 V.

FIGURE 9. Simulated waveforms of Q[n], P[n], and L[n] nodes.

levels. Maximum current errors at high and low gray lev-
els are 5.75% and 8.62% respectively, revealing an effective
suppression in the current fluctuation. These results verify
the compensation capability of the proposed pixel circuit
under variations in TFT characteristics and power supply in
AMOLED displays.
The proposed gate driver circuit was simulated with the

design parameters listed in Table 3. Five-phase nonover-
lapping clocks drive the proposed gate driver circuit with

FIGURE 10. (a) Simulated waveforms at G[n], L10[n], and L[n] nodes in RC
network. (b) Waveform of L[n] with different VTH variations of TFTs.

TABLE 3. Design parameters of proposed gate driver circuit.

a clock frequency of 62.5 kHz. The resistive and capaci-
tive loads of the row lines were set to 27 k� and 167 pF
to match the specifications of 15-inch LTPS UHD displays.
This work adopts the dual-side driving of gate driver for
loading reduction, which reduces half resistance and capac-
itance of a row line, becoming 13.5 k� and 83.5 pF. In the
simulation, the RC network comprises 20 stages of the RC
circuit to emulate the realistic resistive and capacitive line
loadings. Fig. 9 shows the simulated waveforms of Q[n],
P[n], and the farthest node in the RC network L[n]. The
output voltage swing ranges from −10 V to +20 V, and
the rising time and falling time are 1.161 µs and 1.164 µs,
respectively. According to the simulations, the two pulses of
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FIGURE 11. Simulated operations of proposed pixel circuit for array mode
(one column × three rows) with varying VTH of driving TFT at the same
gray level (VDATA = −2.5 V).

G[n] could be successfully produced for use in the proposed
driving scheme. Notably, because of the clock feedthrough
of CK1, P[n] has a slight drop occurring between the two
pulses of L[n]. However, this phenomenon does not affect
Q[n] and L[n] because T5_G and T6_G remain turned off
in this period. Fig. 10(a) plots the gate pulse in different
positions of the RC network to elucidate the loading effect,
where L10[n] denotes the tenth node in the 20-stage RC
network. In Fig. 10(b), L[n] is presented with more serious
VTH variations of ± 0.75 V in each TFT to the distortion. It
could be seen that L[n] of +0.75 V VTH variation is more
distorted than that of −0.75 V variation because the TFT
characteristics are near the depletion mode. Although varia-
tions in VTH influence the output signal, the proposed gate
driver works normally because the operation of the TFTs
in the linear region allows larger variations in characteris-
tics than does the operation of the driving TFT of the pixel
circuit in the saturation region. To further investigate the
array-mode operation of the proposed driving scheme, an
1×3 matrix with a �VTHT5 of ±0.3 V was simulated, as
shown in Fig. 11. The 6T1C gate driver circuit was applied
to drive the 5T2C pixel circuit, and the results show that
the proposed pixel circuits in different rows successfully
detect the variations in VTHT5 and maintain the correspond-
ing VA level in the emission step. Fig. 12 demonstrates five
types of G[n] and the corresponding Q[n] generated by the
proposed gate driver circuit with different driving clocks.

FIGURE 12. Five types of output signal using different driving clocks,
which means adjustment of time interval of two output pulses.

The proposed gate driver circuit can generate GTYPE1[n],
GTYPE3[n], and GTYPE5[n] through two-phase driving clocks
(CK and XCK); GTYPE2[n] is produced by the three-phase
driving clocks (CK1, CK2, and CK3). The time interval of
the two pulses in G[n] can be adjusted by adopting differ-
ent driving clocks while the gate driver structure does not
need to be modified. The proposed gate driver circuit could
be introduced to other driving schemes that require control
signals with pulses twice per frame.

V. CONCLUSION
A novel driving scheme including a new 5T2C pixel cir-
cuit and a concise 6T1C gate driver circuit is proposed
for use in AMOLED displays. With only three control
signals, the proposed scheme can support high-speed oper-
ation of the panel, compensate for threshold voltage and
mobility variations, and eliminate image flickering and
VDD I-R drops. In addition, the proposed gate driver cir-
cuit produces a special G[n] signal in which the time
interval of the two pulses can be adjusted by adopting
different driving clocks. The simulated results based on fab-
ricated devices verify the feasibility of the proposed driving
scheme.
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