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ABSTRACT The diffusion-drift electron transport description is combined with finite deformation the-
ory to model thermoelectroelastic behaviors in piezoelectric semiconductors under conditions when the
mechanical strains/displacements are not small so that the usual assumption of linearity cannot be justified.
The nonlinear treatment includes both kinematic and constitutive corrections as well as a proper treat-
ment of the electrostatic conditions at free surfaces. The theory is illustrated using numerical simulations
of various III-N devices of technological interest, including of conventional AlGaN/GaN HEMTs and
of semiconducting microelectromechanical structures that can require the nonlinear theory’s rotational
invariance even when the strains are small. Despite uncertainties in the values of the various material
coefficients, it seems likely that the nonlinear corrections are often substantial.

INDEX TERMS Drift-diffusion, finite deformation, gallium nitride, nonlinear theory, piezoelectric
semiconductors.

I. INTRODUCTION
Piezoelectric semiconductors such as CdS and ZnO have
received attention for many decades with the older lit-
erature primarily concerned with wave phenomena and
acoustoelectric interactions [1], while later work has empha-
sized lower frequency behavior and devices [2], including
in the area that has been called “piezotronics” [3], [4].
For the continuum modeling of such devices, almost all
work to date has utilized an amalgam of the linear the-
ory of piezoelectricity and diffusion-drift electron transport
theory. Because of their recent technological prominence,
the III-N materials (i.e., GaN, AlN, InN, and their alloys)
have been a main focus of electromechanical modeling [5],
with one study by the present author being on the char-
acteristics and reliability of GaN HEMTs with coupling
to heat generation/conduction included [6]. An important
potential limitation of most (though not all [7]) such simu-
lations is an underlying and often implicit assumption that
the mechanical deformations are “small” so that the govern-
ing equations linearize and reduce to the usual equations.
The goal of this paper is to discuss in systematic fash-
ion the general nonlinear continuum theory that is needed
when this assumption is not justified, and to illustrate it

with technologically relevant examples involving the III-N
materials.
It has long been recognized that in the presence of finite

(i.e., not necessarily “small”) mechanical deformation, a lin-
earized description is not valid, higher order terms must be
considered, and it becomes imperative that the entire theory
be carefully reformulated in a manner consistent with basic
principles of classical field theory [8], [9]. How to do this
for elasticity was a landmark achievement of Cauchy early
in the 19th century, but its proper formulation for situations
involving electromechanical coupling such as piezoelectric-
ity was not understood until Toupin’s pioneering paper of
1956 [10]. His work was subsequently extended in a variety
of ways by numerous authors, and most importantly for us
by Tiersten to encompass deformable semiconductors [11].
The present effort builds on the latter work, adding in
the consistent treatment of nonlinear electroelasticity to
third order [12], [13], providing a more modern approach
to the electrostatic boundary conditions, including the treat-
ment of carrier recombination, emphasizing applications
to the III-N materials, and generally seeking to make
the approach more accessible to semiconductor device
modelers.
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To use a nonlinear theory for quantitative studies it is obvi-
ously necessary that the materials being modeled (which we
assume to be of high quality) are well characterized, and that
means having reliable values for the theory’s various linear
and nonlinear material coefficients. With regard to the linear
coefficients, questions remain as to the “best” values, with
theoretical ones often still being used that have not been thor-
oughly checked experimentally (and especially in the case of
spontaneous polarization) [14]–[18]. For this paper we use
the same linear coefficient values as in [6] with most of these
being calculated ones obtained in [14]. Given that the lin-
ear coefficients have some uncertainty, it is no surprise that
the nonlinear ones are even less well known, with very few
experiments having been carried out to date [19], [20], and
with most available values being calculated ones obtained
using density functional theory [21]–[23]. Here we simply
use the nonlinear coefficient values from [21], make no
attempt to verify them or their derivation, and note only that
it is possible to accurately measure them experimentally as
has been done for certain strong piezoelectric materials like
lithium niobate used in frequency control applications [24].
With regard to all of the assumed material coefficients, both
linear and nonlinear, the reader should keep in mind their
provisional nature, and especially when considering quan-
titative details of the illustrative simulations presented in
Section IV.
The purpose of the present paper is to set out the nonlin-

ear theory needed to treat large displacement/strain situations
in piezoelectric semiconductors, and to apply it to various
GaN device problems with the goals of illustrating the theory,
assessing the sizes of the errors incurred by the lineariza-
tion, and to the extent possible (again given that many of
the nonlinear coefficients are not accurately known) gaug-
ing the importance of various nonlinear phenomena such as
electrostriction. More broadly, it is hoped that this general
framework might prove useful as a tool for analyzing other
practical semiconductor devices in which “extreme” elastic
states can serve a variety of electronic purposes such as
mobility enhancement via band structure distortion, or for
modeling semiconducting microelectromechanical (MEMS)
devices that undergo large mechanical motions.
The paper is organized as follows. We begin in the next

section with a detailed development of the nonlinear theory.
The numerical approach is next described in Section III with
emphasis on certain special issues that arise in the nonlinear
case. The theory is then illustrated in Section IV with several
technologically relevant examples, and the paper closes in
Section V with some final remarks.

II. SEMICONDUCTORS WITH FINITE DEFORMATION
As noted in the Introduction, the first correct development
of the equations of electroelasticity with finite deformation
was given by Toupin in a paper that is a milestone in the
history of modern classical field theory [10]. Because his
work employed variational methods that have difficulties
when dissipation is present, we here utilize a well known

alternative that focuses directly on the basic conservation
laws [11]–[13], [25]. For comprehensive coverage of the
general principles and methods of classical field theory being
used here, standard references should be consulted [8], [9].
Cartesian coordinates are used throughout, with vectors and
tensors generally expressed in indicial notation with the
Einstein summation convention assumed, and with indicial
commas used to indicate partial differentiation. Coordinate-
invariant notation is also used with vectors and tensors
denoted in bold.

FIGURE 1. Schematic showing a generic object before (blue) and
after (green) deformation with associated coordinates, displacement, and
line elements.

In general, the mechanical deformation of a material can
be described by the following mapping and its inverse:

yi = yi (X1,X2,X3, t) XL = XL (y1, y2, y3, t) (1)

where i,L = 1, 2, 3, and the vector field y = (y1, y2, y3)

gives the present position of the material in laboratory (or
Eulerian) coordinates while the vector field X = (X1,X2,X3)

defines the reference position in a material (or Lagrangian)
coordinate system as depicted in Fig. 1. As descriptions of
the deformation, (1)1 expresses how the present position y
of a generic material point that was initially located at X
evolves over time t, while (1)2 gives the material coordi-
nate X of a particular material point that is located at the
generic laboratory coordinate y at time t. In these expres-
sions we employ the standard convention in which the small
letters (both the quantity and its index) denote Cartesian
components in present coordinates, while the capital let-
ters denote reference coordinate components. Under most
circumstances it is reasonable to assume that away from
boundaries the deformation is smooth, meaning that the func-
tions defined in (1) are continuous and differentiable. This
allows us to define the deformation gradient and its inverse
by the respective two-point tensors:

FiL ≡ yi,L = ∂yi
∂XL

and XL,i = ∂XL
∂yi

(2)
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The determinant of the tensor F is the Jacobian J of the
transformation in (1), i.e.,

J = det (F) (3)

and as such it measures the volume change that accompanies
the deformation. Lastly, strain measures are defined based
on (2) that (i) vanish when the material is unstrained (i.e.,
when the deformation gradient is the identity matrix), and (ii)
are rotationally invariant so that they do not change when
the material is rotated in a fixed laboratory (or equivalently
the material is held fixed and the laboratory is rotated). The
standard quantities that meet these criteria are

SKL = 1

2

(
yi,Kyi,L − δKL

)
sij = 1

2

(
δij − XK,iXK,j

)
(4)

which are second-rank tensors called the Lagrangian
(referred to reference coordinates) and Eulerian (referred to
present coordinates) strains, respectively. Also note that to
avoid any confusion with electric field, as in [6] we use S
and s to denote strain rather than the conventional E and e.
If V is an arbitrary but fixed volume with surface S and

outward surface normal ni, then the conservation of mass of
the enclosed material can be written as:

d

dt

∫

V
ρ dV = 0 (5a)

where ρ is the mass density. Similar equations for the
conservation of charge in the electron and hole gases are

d

dt

∫

V
n dV = −

∫

S
ninv

n
i dS−

∫

V
R dV (5b)

d

dt

∫

V
p dV = −

∫

S
nipv

p
i dS−

∫

V
R dV (5c)

where R is the net recombination rate (which could include
photogeneration), n and p are the electron and hole densities,
and vni and vpi are the electron and hole velocities, respec-
tively. That linear momentum is conserved in the lattice and
in the electron and hole gases implies:

d

dt

∫

V
ρvi dV =

∫

S
tMi dS+

∫

V

(
PjEi,j + q (ND − NA)Ei

− qnEni − qpEpi
)
dV (5d)

0 =
∫

S
nip

n dS+
∫

V
qn
(
Ei − Eni

)
dV (5e)

0 =
∫

S
nip

p dS−
∫

V
qp
(
Ei + Epi

)
dV (5f)

where tMi is the mechanical stress traction vector, Ei is the
electric field, q(ND − NA)Ei and PjEi,j are the forces (per
unit volume) exerted by Ei on the ionized donor (ND) and
acceptor (NA) densities and on the polarization Pi, respec-
tively, −qnEni and −qpEpi are the respective net forces (per
unit volume) exerted by the electron and hole gases on the
lattice as they flow through, and pn and pp are the elec-
tron and hole gas pressures, respectively. The conservation

of energy for the collective lattice-electron-hole system may
be written as:

∂

∂t

∫

V

[
ρ

(
ε + 1

2
vivi

)
+ nεn + pεp

]
dV

+
∫

S
ρnjvj

(
ε + 1

2
vivi

)
dS+

∫

S
nniv

n
i ε
ndS+

∫

S
pniv

p
i ε
pdS

=
∫

S

(
tMi vi − nip

nvni − nip
pvpi − niqi

)
dS

+
∫

V

(
PiEj,ivj + ρEi

d (Pi/ρ)

dt
+ q (ND − NA)Eivi

−qnEivni + qpEiv
p
i − H

)

dV

(5g)

where qi is the heat flux vector and H is the power dissipated
in recombination. Having the left side of (5e) and (5f) be zero
and (5g) with no electron or hole kinetic energy terms means
that we have neglected electron and hole inertia, an assump-
tion that is almost always valid because of the very small size
of the electron mass. (Situations where electron inertia can
be important have been discussed in [26]). Finally, since this
work employs the electrostatic approximation, Maxwell’s
equations reduce to

∫

S
niDi dS =

∫

V
q (ND − NA − n+ p) dV (5h)

−
∫

S
ni� dS =

∫

V
Ei dV (5i)

where Di is the electric displacement vector, � is the elec-
trostatic potential, and Di = ε0Ei + Pi where ε0 is the
permittivity of free space.
When the field variables are differentiable, i.e., away

from boundaries, the divergence theorem allows the integral
forms in (5a-i) to be re-expressed as the following partial
differential equations [8], [9], [12], [13]:

ρ0 = Jρ
dn

dt
= (

nvni
)
,i − R

dp

dt
= (

pvpi
)
,i − R (6a)

ρ
dvj
dt

= τMij,i + PiEj,i − qnEnj − qpEpj + q (ND − NA)Ej (6b)

0 = pn,i + qnEi − qnEni 0 = pp,i − qpEi − qpEpi (6c)

ρ
dε

dt
+ n

dnεn

dt
+ p

dpεp

dt
− τMij vj,i + pnvni,i + ppvpi,i

− ρEi
d (Pi/ρ)

dt
= qnEni

(
vi − vni

)+ qpEpi
(
vi − vpi

)

(6d)

+ R

(
pn

n
+ εn + pp

p
+ εp

)
− H − qi,i

Di,i = q (ND − NA − n+ p) Ei = −�,i (6e)

where ρ0 is the material mass density in reference coordi-
nates, τMij is the mechanical stress tensor (which is related
to the mechanical traction vector by tMj = niτMij ), J

n
i ≡ nvni

and Jpi ≡ pvpi are the electron and hole number current
densities, d/dt ≡ ∂/∂t + vi∂/∂yi is the material derivative
following the lattice, vi ≡ ∂yi/∂t is the lattice velocity, and
dn/dt ≡ ∂/∂t+ vni ∂/∂yi and d

p/dt ≡ ∂/∂t+ vpi ∂/∂yi are the
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material derivatives following the electron and hole gases,
respectively.
For formulating boundary conditions it is useful to re-

write (6b) in terms of the electrostatic Maxwell stress tensor
τEij as

ρ
dvj
dt

= τMij,i + τEij,i − pn,j − pp,j

where τEij = ε0EiEj + PiEj − ε0

2
EkEkδij (7)

The last two term on the right hand side of (7)1 represent
the pressures exerted by the electron and hole gases on
the lattice. For a crude estimate, according to the Maxwell-
Boltzmann formula (see (22b)1 below) an electron density of
1020/cm3 will produce a pressure of about 0.4MPa, and since
we are interested in problems where the electromechanical
stresses are 1GPa and more, one is justified in following the
conventional (and always implicit) assumption of neglecting
the electron and hole pressure contributions to the lattice
deformation.
In addition to the differential equations in (6a-e) and (7)

the field theory must also specify boundary conditions. In
order to ensure their consistency with the differential equa-
tions, these conditions are derived from the same integral
forms in (5a-i) by applying them to a “Gaussian pillbox” that
is bisected by a surface of discontinuity and taking appro-
priate limits [8], [9]. In this way, the following boundary
conditions are readily derived:

[ψ] = 0 ni [Di] = σ ni
[
τMij + τEij

]
= 0

ni
[
Jni
] = 0 ni

[
Jpi
] = 0 (8)

where the brackets denote the jump in value across the
interface when going in the direction of the normal vec-
tor n and the electron and hole pressure terms in (7) have
been neglected in deriving (8)3. In the special case of exter-
nal surfaces, charge will accumulate over time and result in
these surfaces being neutralized; this assumption is also often
applied at internal surfaces, e.g., at III-N surfaces on which
silicon nitride is deposited by CVD methods, but in this case
the compensation is often not perfect [27]. To represent the
neutralization, we note that the total surface charge is

σtot = ni [ε0Ei] = σ − niPi (9a)

and since the neutrality requirement is σtot = 0, (9a) implies

ni [Di] = niPi (9b)

The equations in (6a-e), (7), (8) and (9b) are general
expressions of the governing physical principles, namely, the
conservation laws, electrostatics, and thermodynamics. But
they do not yet contain the specific material response func-
tions that express characteristics such as the elastic stiffness,
the piezoelectric coupling, or the electron mobility. These
functions, also called constitutive equations, are not arbitrary
but rather are constrained in form by the thermodynamics
and by various symmetry and invariance conditions whose

proper treatment in electroelasticity is due to Toupin [10].
Because the electroelastic and electron/hole pressure inter-
actions are non-dissipative in nature, many of these material
response functions are derivable from an electric Gibbs free
energy function � [28] and from electron and hole stored
energy functions, εn and εp [6], [11]. To this end, from (6d)
we write the second law of thermodynamics for our system
as [9], [10]:

ρ
d�

dt
+ n

dnεn

dt
+ p

dpεp

dt
+ Pi

dEi
dt

− τMij vj,i

+ pnvni,i + ppvpi,i = −ρηdT
dt

(10a)

where ρ� = ρε − ρηT − PiEi, ε is the stored energy in
the lattice per unit mass, and η is the lattice entropy per
unit mass. That the total stored energy can be split cleanly
into “lattice” and “electron gas” contributions is a basic
assertion of the theory developed in this paper. Combining
(6d) and (10a) gives the dissipation equation that governs
heat conduction

ρT
dη

dt
+ qi,i = qnEni

(
vi − vni

)+ qpEpi
(
vi − vpi

)

+ R

(
pn

n
+ εn + pp

p
+ εp

)
− H (10b)

where the first two terms on the right hand side are the
Joule heating associated with electron and hole scattering
that convert mechanical energy to thermal energy when there
is relative motion between the carrier gases and the lattice,
and the last two terms represent dissipation and entropy
production associated with recombination. From (10b), the
Clausius-Duhem inequality takes the form

ρ
dη

dt
+
(qi
T

)

,i

= − 1

T

⎡

⎢
⎣

qiT,i
T

− qnEni
(
vi − vni

)− qpEpi
(
vi − vpi

)

− R

(
pn

n
+ εn + pp

p
+ εp

)
+ H

⎤

⎥
⎦ ≥ 0

(10c)

where the right hand side is called the rate of entropy pro-
duction and the inequality represents the proscription on
decreasing entropy within the field theory [8], [9].
Using the identities vj,i = XL,id(yj,L)/dt and vni,i =

−(1/n)dnn/dt we can re-write (10a) as

ρ
d�

dt
+ Pi

dEi
dt

− τMij XL,i
dyj,L
dt

+ n
dnεn

dt
+ p

dpεp

dt

− pn

n

dnn

dt
− pp

p

dpp

dt
+ ρη

dT

dt
= 0 (11a)

And from the form of (11a) and the assumed clean separation
of lattice and electron gas energies we conclude that

� = �
(
yi,L,Ei,T

)
εn = εn (n,T) εp = εp (p,T)

(11b)
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Inserting (11b) into (11a) and applying the chain rule
leads to1

0 =
[
τMij XL,i − ρ

∂�

∂yj,L

]
dyj,L
dt

−
[
Pi + ρ

∂�

∂Ei

]
dEi
dt

+
[
pn

n
− n

∂εn

∂n

]
dnn

dt
+
[
pp

p
− p

∂εp

∂n

]
dpp

dt

− ρ

[
η + ∂�

∂T

]
dT

dt
(11c)

For the equality in (11c) never to be violated it must hold for
arbitrary values of the time derivatives, and so each quantity
in brackets must separately vanish, i.e.,

τMij = ρyi,L
∂�

∂yj,L
Pi = −ρ ∂�

∂Ei
pn = n2 ∂ε

n

∂n

pp = p2 ∂ε
p

∂p
η = −∂�

∂T
(12)

The expressions in (12) are the constitutive equations that
become explicit when functional forms for the energies
in (11b) are specified.
Now a crucial observation of finite deformation theory is

that � = �(yi,L,Ei, t) cannot be an arbitrary function of its
arguments because this would lead to violations of rotational
invariance, i.e., a material’s properties could change simply
as a result of it being rotated [10]. To guarantee against such
violations, a theorem of Cauchy [8], [9] requires that the
dependences on yi,L and Ei be through rotationally invariant
products of these terms. One such product is the Lagrangian
strain tensor SLM as defined in (4)1 and a similar invariant
involving the electric field is the product

WL ≡ yi,LEi (13)

No similar restrictions arise for εn and εp since they have
only scalar dependences (which are of course unchanged by
rotation). Based on the foregoing, we therefore restrict the
form of the electric Gibbs free energy of (11b)1 to be

� = � (SLM,WL, t) (14a)

A further application of the chain rule with (4)1 then leads
to the following replacements for the first two equations
in (12):

τMij = 1

J
yi,Lyj,MτLM − PiEj Pi = 1

J
yi,LPL (14b)

where τLM = ρ0
∂�

∂SLM
PL = −ρ0

∂�

∂WL
(14c)

are reference coordinate expressions for the total (or sec-
ond Piola-Kirchoff) stress tensor and the polarization vector.

1. For reasons of simplicity, entropy contributions associated with tem-
perature derivatives of εn and εp are neglected from (9c) because they
would lead to defining a separate temperature and entropy for the elec-
tron gas. Also, the temperature dependences in (11b)2 and (11b)3 produce
thermoelectric effects associated with the electron gas, and our treatment
requires that entropy carried by such current be negligible.

Inserting (14b)1 into (7) allows the governing momentum
balance equation to be put in the symmetrized form

ρ
d2yj
dt2

=
[

1

J
yi,Lyj,MτLM + τESij

]

,i

where τESij = ε0EiEj − ε0

2
EkEkδij (15a)

is the free-space Maxwell electrostatic stress tensor, and as
justified earlier the forces exerted by the electron and hole
gases on the lattice in (7) have been neglected. Similarly,
using (6e)2 and (14b)2, (6e)1 can be re-written as

[
−ε0ψ,i + 1

J
yi,LPL

]

,i
= q (ND − NA − n+ p) (15b)

One other standard convenience of diffusion-drift the-
ory comes from defining chemical potentials ϕn and ϕp

by [5], [9]

ϕn = ∂ (nεn)

∂n
ϕp = ∂ (pεp)

∂p
(16a)

with which (6c) can be re-written as

0 = ϕn,i + Ei − Eni 0 = ϕ
p
,i − Ei − Epi (16b)

Finally, in addition to the non-dissipative equations gener-
ated from (14c) with (14a) and (16a) with (11b)2 and (11b)3,
there are also a few dissipative constitutive equations that
arise from the demand that (10c) be satisfied under all cir-
cumstances. To lowest order these equations take the forms:

Eni = vi − vni
μn

Epi = vi − vpi
μp

qi = qi
(
T,j
)

(17a)

R = R (n, p) H = H (n, p) (17b)

where μn and μp being the electron and hole mobilities.
Since the relative motion of the electron and hole gases are
rotationally invariant, (17a)1 and (17a)2 need not involve
material coordinates; of course, one could make the mobili-
ties tensors if one wished to include a dependence on crystal
orientation. As in (13), to ensure the rotational invariance
of the heat conduction in (17a)3 we define a new variable
GK = yi,KT,j and (17a)3 in reference coordinates is then
written as:

qK = qK (GL) = −κKLGL (17c)

where the second equality is the linear (Fourier) approxima-
tion. The requirement that (10c) always be satisfied implies
that μn, μp, and κKL are all non-negative. In addition, we
should have:

H ≥
(
pn

n
+ εn + pp

p
+ εp

)
R = (

ϕn + ϕp
)
R (17d)

where the equality on the right follows from (16a).
The development so far has laid out the gen-

eral formulation of the nonlinear continuum theory
of piezoelectric semiconductors. In addition to the
usual electrical nonlinearities of a semiconductor that
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were already included in [6], i.e., those contained
in (6a), (11b)2, (11b)3, (16a,b), (17a)1, (17a)2, and (17b)1,
the present theory also includes nonlinearities that arise from
the electromechanics. These occur in five main areas as
highlighted below.
(i) Maxwell stress: Being quadratic in the electric field,

the free-space Maxwell stress exerted by the electrostatic
field on the lattice does not enter the linear theory. But
consistency demands that it be included in the nonlinear
theory as emphasized in (15a).
(ii) Kinematic nonlinearities: The second difference from

linear theory enters through the so-called kinematic nonlin-
earities associated with nonlinear terms in the Lagrangian
strain in (4)1 and in the reference forms for the electric field
in (13) and the temperature gradient in (17c). To display
these corrections explicitly, define a displacement vector as
(see Fig. 1)

ui ≡ yi − XLδLi (18a)

with which (5)1, (11), and (15c) become

SKL = 1

2

(
ui,LδKi + ui,KδLi + ui,Kui,L

)

WK = (
δKi + ui,K

)
Ei GK = (

δKi + ui,K
)
T,i (18b)

the first two terms in (18b)1 and the first terms in (18b)2 and
(18b)3 represent the ordinary linearized strain, electric field,
and temperature gradient, respectively, as used for example
in [6]. And the last terms in (18b)1, (18b)2, and (18b)3 are
the additional kinematic nonlinearities that enter the nonlin-
ear theory and are included in the calculations of this paper
(Section IV).
(iii) Constitutive nonlinearities: The third set of differ-

ences between the linear and nonlinear theories are referred
to as constitutive nonlinearities and they arise when higher-
order terms are included in the various constitutive equations,
and especially the electromechanical contributions that enter
via the function � in (14a). For this paper we include elastic
and electric terms consistently to third order using a “power
series” form [12], [13]:

ρ� (SKL,WK , n, T)

= ρcpT
[
1 − ln (T/T0)

]+ τ0
KLSKL − P0

KWK + λKWK (T − T0)

+ CKLMNSKL

[
1

2
S
MN

− αMN (T − T0)

]
− 1

2
χKLWKWL

− eKLMWKSLM − 1

2
bKLMNWKWLSMN − 1

6
χKLMWKWLWM

− 1

2
kKLMNDWKSNDSLM + 1

6
CKLMNDESKLSMNSDE (19)

where the last four terms on the right side are those beyond
what were included in [6] and represent the constitutive
nonlinearities. (Beyond these terms, in order to describe fer-
roelectric hysteresis, e.g., as seen in [29], a fourth-order sus-
ceptibility term would need to be included in (19). Also note
that with both pyroelectricity and piezoelectricity considered,

there can be both proper and improper coefficients; our for-
mulation considers only the latter [18], [30].) The material
constants CKLMN , CKLMNAB, χKL, χKLM , γ , eKLM , kKLMAB,
bKLMN , αMN , and λK are the second- and third-order elastic,
second- and third-order electric susceptibility, specific heat,
piezoelectric, first odd electroelastic, electrostrictive, ther-
mal expansion, and pyroelectric coefficients, respectively,
the quantities τ 0

KL and P0
K are the intrinsic (or built-in) stress

and polarization, respectively, and T0 is a reference tem-
perature. The components of the various material tensors
in (19) are not all independent, but instead are strongly
constrained by the need to match the symmetries of the
crystal. In particular, because the wurtzite III-N materi-
als of interest in this paper belong to the hexagonal point
group 6mm, the associated constraints on the various ten-
sor components imply that of the 9 coefficients αMN just
two are independent, and similarly the number of inde-
pendent coefficients among the χKL are two, among the
eKLM and χKLM there are three each, among the CKLMN
there are five, among the bKLMN there are six, among the
kKLMAB there are eight, and among the CKLMNAB there are
ten (see the Appendix for more detail) [30]. As noted in
the Introduction, many of the material coefficient values are
not well known, and this may include the linear ones that
we here assume to take the literature values used in [6].
For the nonlinear coefficients we use values taken mostly
from the density functional theory calculations of [21] and
summarized in Table 1. That these coefficient values are
not definitively established and could well have signifi-
cant errors should be kept in mind, and particularly when
considering the illustrative device simulations presented
in Section IV.

TABLE 1. Non-linear material coefficients [21]

By inserting (19) into (14c) we derive the following
expressions for the stress tensor and the polarization vector:

τKL = τ 0
KL + CKLMN [SMN − αMN (T − T0)] − eMKLWM

− 1

2
bKLMNWMWN − kMKLNDWMSND

+ 1

2
CKLMNDESMNSDE (20a)
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PK = P0
K − λK (T − T0)+ χKLWL + eKLMSLM

+ bKLMNWLSMN + χKLMWLWM

+ 1

2
kKLMNDSLMSND (20b)

Also, when (19) with (17a)1 and (17a)2 is inserted into (10b)
the following form for the heat equation results:

ρcp
dT

dt
+ qi,i = qn

μn

(
vi − vni

)2 + qp

μp

(
vi − vpi

)2
(21a)

where qi,i =
[

1

J
yi,LqL

]

,i
= −

[
1

J
yi,Lyj,MκLMT,j

]

,i

(21b)

and the right side of (21a) is the Joule heating arising from
the motion of the electron and hole gases relative to the
lattice.
Although electrical nonlinearities are not emphasized in

this paper, we nevertheless note that the simplest expres-
sions for the electron and hole energies εn and εp in (11b)2
and (11b)3 are those associated with the Maxwell-Boltzmann
distribution:

εn (n,T)

kBT
= ln

(
n

ni

)
− 1

εp (p,T)

kBT
= ln

(
p

ni

)
− 1

(22a)

The expressions for the electron and hole pressures and
the electron and hole chemical potentials that result from
inserting (22a) into (12)3 and (12)4 with (16a) are then:

pn = kBTn ϕn = EC − Ei + kBT ln

(
n

ni

)
(22b)

pp = kBTp ϕp = Ei − EV + kBT ln

(
p

ni

)
(22c)

where EC, EV , Ei, and ni have their usual meanings. That
the electron and hole pressures are proportional to the elec-
tron and hole densities, respectively, shows that the stored
energy functions in (22a) are those appropriate for linear
theory. For most real device problems, these expressions
are not sufficient and constitutive nonlinearities must be
added to account for high-density effects like those due
to Fermi-Dirac statistics and energy band non-parabolicity.
Because such corrections are well known [31], they are not
discussed further here, but are included in the simulations
of Section IV. Lastly note that in the Maxwell-Boltzmann
approximation, (17b) combined with (22a-c) yields H ≥
R[EG+kBT ln(np/n2

i )] which says that the dissipated energy
(per electron-hole pair) associated with recombination is
greater that or equal to the average band-to-band energy.
(iv) Carrier recombination: Being an ordinary nonlinear-

ity of semiconductors, carrier recombination merits further
attention only because it involves a special kinematic non-
linearity. To see this, consider a typical expression for the
recombination rate of the form:

R = np− neqpeq
τ

(23a)

where τ is the carrier lifetime. As is well known, equilibrium
statistical mechanics provides relationships neq = fn(ψeq,T)
and peq = fp(ψeq,T) and if no mechanical deformation is
present or such deformations are treated with linear theory,
then no more is needed and all is as in the conventional
case. But for nonlinear theory one must keep track of the
deformed states under both equilibrium and non-equilibrium
conditions, i.e., without or with electrical bias, current, and
recombination (and in both cases with all external forces
applied). If the solution for the deformed state in equilibrium
is given by yeq = yeq(X), then in present coordinates (23a)
will be replaced by

R (y, t)

= n (y, t) p (y, t)− neq
(
yeq (X (y, t))

)
peq

(
yeq (X (y, t))

)

τ
(23b)

where neq(yeq) and peq(yeq) are the solutions for the equilib-
rium densities. This gets further complicated if there is an
applied mechanical force that varies with time since then the
“equilibrium” solutions for the deformation and the carrier
densities will be quasistatic and will also vary with time.
(v) Boundary conditions: The boundary conditions in (8)

and (9b) are much like those of the linear theory (e.g., [6]),
though of course with extra contributions from constitu-
tive nonlinearities. As such, they deserve further discussion
only because a special type of kinematic nonlinearity can
arise, specifically when the electrostatic boundary condi-
tions (8)1 and (8)2 are applied at external boundaries where
the semiconductor or other materials about the air or vac-
uum. In the linear theory, the small size of the deformation
means that one can ignore the movement of these exter-
nal boundaries, but this is not true in the case of finite
deformations and then the treatment is no longer as straight-
forward as was emphasized in [12] and [13]. One way of
describing the difficulty is that there is no deformation in
the air/vacuum and therefore there is no mapping like (1)
with which to transform the electrostatic variables in the
air/vacuum into reference coordinates where the surface
position is known (and where only electrostatic variables
are of concern because they are the only field variables
that exist in the air/vacuum). Tiersten [12], [13] proposed
handling this conundrum by estimating these electrostatic
variables using Taylor expansions. But a much better way
is simply to apply the known electrostatic boundary con-
ditions at the unknown present position of the interface,
which then becomes part of the solution as discussed below.
And it is precisely for this reason that the equations to
be solved as given in (15a), (15b), and (21) have been
formulated in present coordinates rather than in reference
coordinates.
To summarize, when (6a)1, (6e)2, (11b)2, (11b)3, (16a),

(17a)1, (17a)2, (18b), (20a), (20b), (21b) and (23b) are
inserted into (6a)2, (6a)3, (15a), (15b), (16b), and (21a)
we obtain (in three dimensions) seven scalar PDEs in

326 VOLUME 5, NO. 5, SEPTEMBER 2017



ANCONA: NONLINEAR THERMOELECTROELASTIC ANALYSIS OF III-N SEMICONDUCTOR DEVICES

present coordinates in the seven unknowns ui, ψ , n, p,
and T . This full set of equations obviously applies only
to semiconductors; in solid insulators no electron transport
is allowed, in metals only heat conduction occurs, and in
the surrounding air/vacuum only electrostatics applies. These
differential equations, together with the boundary conditions
in (8) and (9b), can be used to formulate boundary value
problems appropriate to devices of interest, and their solu-
tion then allows the device properties to be understood and
engineered (as illustrated in Section IV). Because of the com-
plexity of the geometries, material properties, and governing
equations (especially in the nonlinear case), these solutions
almost always require numerical methods, and this aspect is
discussed in the next section.

III. NUMERICAL APPROACH
To obtain numerical solutions to the boundary value prob-
lems formulated within the nonlinear theory of Section II, we
employed the powerful COMSOL package [32] as we did
in our earlier work [6]. This general-purpose program uses
the finite element method on unstructured grids. The main
aspect in need of discussion is various assumptions, simpli-
fications, and “tricks” we invoke to keep the computational
burden manageable on a desktop computer.
One basic assumption taken for computational efficiency

is that we confine our study to “wide” devices for which a 2D
plane-strain treatment would seem appropriate. However, the
matter is not entirely straightforward because the strain fields
in III-N devices are usually three-dimensional as a result of
biaxial stresses that are imposed by heteroepitaxy. For linear
problems this is not a problem since one can simply subtract
off the known epitaxial strain field analytically [6], but such
a procedure will not in general be valid in the nonlinear case.
Nevertheless, for reasons of simplicity, we assume that the
deformation in the width direction is well approximated by
that produced solely by the epitaxy. Denoting the epitaxial
deformation in the plane of layer k by ξ (k)i (i = 1, 2), the
associated deformation gradient will be:

ξ
(k)
i,L ≡

{
akδiL/asub, i = 1, 2
0, i = 3

(24)

where ak and asub are the in-plane lattice constants of the
kth layer and the unstrained substrate, respectively. (The in-
plane strain will also induce a “Poisson ratio” deformation
in the 3-direction but this will be included automatically in
the plane-strain solution). The strain expression in (4)1, the
electric field expression in (11), and the temperature gradient
expression in (17) will then take the forms:

S(k)KL = 1

2

[(
ŷi,K + ξ

(k)
i,K

) (
ŷi,L + ξ

(k)
i,L

)
− δKL

]
(25a)

WL =
(
ŷi,L + ξ

(k)
i,L

)
Ei GL =

(
ŷi,L + ξ

(k)
i,L

)
T,i (25b)

where ŷi = yi− ξ (k)i . The expressions in (25) are completely
general, and the simplifying assumption enters only in the
taking of ŷi to be a pure 2-D plane-deformation with ŷ2 ∼=
ŷ1,2 ∼= ŷ3,2 ∼= 0.

A second simplification we employ arises from the fact
that the semiconductor equations generally require much
finer grids than do the mechanical and thermal variables,
e.g., to resolve very thin boundary layers in the carrier
density such as the accumulation layer at an AlGaN/GaN
interface. This issue is exacerbated by the fact that we do
not use the exponential-fitting (Scharfetter-Gummel) scheme
commonly employed in device modeling in order to stabi-
lize the discretization of the semiconductor nonlinearity, and
thereby relax grid requirements [31]. For these reasons, for
most problems we improve the computational efficiency by
following [6] in solving for the mechanical/thermal variables
over the full structure while restricting the electrical solutions
to much smaller “active” regions. This strategy is depicted
in Fig. 2 for the simulation of a conventional AlGaN/GaN
HEMT. Obviously one can check on the validity of such an
approach simply by varying the size of the “active” region
and looking for discrepancies in the solutions so obtained.

FIGURE 2. Schematic of an AlGaN/GaN HEMT and a depiction of the
simulation strategy.

Another numerical issue deserving comment is the exis-
tence of singularities in the solutions at corners. These
spurious singularities arise from the continuum treatment
of an ideal corner, and, being unphysical, are of no interest
unless they corrupt the overall solution or one is interested in
estimating the maximum field value. As discussed previously
in [6], these singularities can be handled by imposing a cut-
off distance (taken to be 1Å in [6]) and resolving the
behavior in the vicinity of the corner only outside of this
cut-off. In the present paper we used this approach as
well, but alternatively introduce tightly filleted corners when
appropriate in order to eliminate the associated singularity
entirely.
As noted in the previous section, in nonlinear electroelastic

theory one needs to be careful in applying the electrostatic
conditions at external boundaries. The neatest and most gen-
erally useful way of handling things is to solve the equations
in present coordinates with the unknown positions of the
external boundaries then becoming part of the solution. To
carry this out requires using a so-called Lagrangian mesh
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that follows the material. The COMSOL code [32] is espe-
cially convenient in this regard because it includes a built-in
implementation of the arbitrary Lagrangian-Eulerian (ALE)
technique [33] for producing useful grids for a wide variety
of applications in solid and fluid mechanics. In our usage,
we simply employ the full Lagrangian limit. Also, to avoid
the complications of contact problems (including limitations
of COMSOL), we do not consider the interesting situations
in which initially separate surfaces come into contact as
a result of large deformations.
With the foregoing “tricks” implemented, the simulations

generally run with reasonable efficiency and with good con-
vergence. For the latter, as is typical in device simulation
(and characteristic of a Newton iteration scheme), it is impor-
tant that one have a “good” initial guess. In our work this
is generally provided by continuation from purely electri-
cal solutions with no deformation or temperature. The main
threat to stability is the familiar one of semiconductor device
modeling associated with the strong electrical nonlinearity of
the semiconductor equations, and for this the key (as is well
known) is having a fine enough grid in regions in which the
potential varies substantially. As noted earlier, this issue is
exacerbated in our simulations because we have not imple-
mented the Scharfetter-Gummel discretization. Nevertheless,
as long as the device size is not too great, 2D simulations
are readily accomplished on a single-processor desktop com-
puter with run times that are not overly long. Furthermore, if
the approach were to be carried into an engineering environ-
ment, there are a number of obvious aspects that could be
optimized, e.g., implementing Scharfetter-Gummel or using
multi-core processing, to further improve run times. This
would also be needed if one wished to analyze devices in 3D.

IV. APPLICATIONS
This section discusses three areas of application of the non-
linear theory with two primary goals in mind. The first is
to examine the size of the nonlinear corrections and thereby
to assess the errors made by linear simulations in various
circumstances including those of conventional HEMTs. And
the second purpose is to illustrate the value of the nonlinear
formulation, especially for certain types of problems such
as those relating to MEMS devices in which large rotations
occur. For all of these illustrative simulations, again a main
caveat is that the values of the material coefficients, and
especially the nonlinear ones obtained from [21], could well
have significant errors.
(i) Conventional GaN HEMTs: As a first set of calcula-

tions, in this sub-section we compare linear and nonlinear
simulations of conventional GaN HEMTs for the purpose
of assessing the importance of the nonlinear corrections
in “ordinary” GaN device situations. To begin we treat
a microwave AlGaN/GaN device structure as depicted in
Fig. 2 with a gate length of 0.3μm, an Al fraction of 30%,
an AlGaN thickness of 20nm, a SiN passivation layer that
is 50nm thick, a lateral spacing between gates of 125μm,
and φm −�EC ∼= 0.81 [34]. (It should be noted that in [6]

FIGURE 3. Simulated (a) drain and (b) transfer characteristics of a GaN
HEMT comparing the nonlinear result with that computed with linear
theory.

φm −�EC was assumed to be 2.6eV simply in order to get
a threshold voltage of around 4V, that corresponded well with
measurement). The simulated drain and transfer characteris-
tics are shown in Figs. 3a and 3b, respectively, with results
from both linear and nonlinear theories included. From their
comparison it is clear that the nonlinear corrections are sig-
nificant, with the main impact being a threshold voltage shift
of about 0.5V. To understand the origin of this nonlinear
correction, a series of further simulations was carried out in
which each nonlinear term was turned on one at a time, and
the threshold voltage contributions from each were thereby
ascertained, with the results depicted in Fig. 4. Evidently
the shift arises mainly from constitutive nonlinearities, and
in particular from the third-order electroelastic effect and
from electrostriction. This also implies that errors in these
particular coefficient values would be most impactful on the
results. To see where in the device the aggregate polarization
and stress corrections are most important, in Figs. 5a and 5b
we plot the relative sizes of the respective nonlinear terms
as compared to the totals. Not surprisingly, these simula-
tions show that the nonlinear contributions are largest in the
strained AlGaN barrier, with the stress nonlinearities show-
ing more “leakage” into the GaN channel. The threshold
voltage shift of Fig. 3(bottom) is in part due to the AlGaN
effects and their influence on the polarization charge at the
interface, but the direct effect in the GaN on the channel
charge also contributes.
A second conventional device examined in simulation was

of a millimeter-wave AlN/GaN HEMT with a vertically
scaled barrier and with higher strains due to the greater lattice
mismatch between the binaries [35]. The simulated transfer
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FIGURE 4. Contributions of various nonlinear terms to the threshold
voltage shift seen in Fig. 3b. Constitutive nonlinearities are seen to
dominate in this situation.

characteristics for this device (with the device dimensions
remaining the same except for the AlN thickness being 7.5nm
and with φm −�EC ∼= 0.24 [34]) are shown in Fig. 6. Not
unexpectedly, the increase in strain is found to boost the
size of the nonlinear correction with the threshold voltage
now shifted by about 1.7V. The origins of this shift are
much the same as in the AlGaN/GaN HEMT described in
Figs. 4 and 5.

FIGURE 5. Logarithmic field plots of the relative contributions of the
nonlinear terms to (a) polarization and (b) stress in an AlGaN/GaN HEMT
with VD = 0.1 V. The variations on the left side of these plots arise from
the proximity of the source.

The contributions of nonlinearity to the threshold voltages
seen in the HEMT simulations in Figs. 3b and 6 are quite

FIGURE 6. Simulated transfer characteristics of a AlN/GaN HEMT
comparing the nonlinear result with that computed with linear theory.

large, again with the caveat regarding the accuracy of the
material coefficient values. Given their size, it seems safe
to say that nonlinearity cannot be neglected when modeling
conventional HEMTs. Furthermore, it would seem that prior
simulation work with linear theory, e.g., [5], [6], and [33],
was effective solely because the effect of the nonlinearity
in the HEMT problem is almost entirely restricted to the
threshold voltage (Figs. 3b and 6), which is of course a com-
posite quantity with many contributors that make it hard to
predict in an absolute sense. (The small nonlinear effect on
the current is also readily hidden in assumptions about the
mobility, as this too is a poorly known and hard-to-predict
quantity). This logic is also the reason why it would be
difficult to demonstrate experimentally that the nonlinear
corrections are indeed needed. Alternatively, one could say
that if a meaningful comparison could be made between the-
oretical and experimental threshold voltages, then it could be
turned around and used to measure some of the nonlinear
material coefficients. In any event, it is worth noting that
the nonlinear predictions in Figs. 3b and 6 are if anything
in closer correspondence with HEMT measurement than are
the linear results [36]. It is also possible that the values of
coefficients used in linear theory simulations — for example,
of φm−�EC, the spontaneous polarizations, and/or the linear
piezoelectric coefficients — have been chosen (incorrectly)
so as to compensate for the neglect of the nonlinear con-
tributions, an idea that has been suggested previously with
respect to nonlinear piezoelectricity [16], [17]. If so, then
when applied to more general device situations the incor-
rectness of the “effective” linear theory could well result in
errors whose significance would need to be assessed.
(ii) GaN reliability: The main application of our previous

work using the linear theory of semiconductor ther-
moelectroelasticity was in the area of GaN HEMT
reliability [6]. The specific motivation was observations by
various researchers [37], [38] that accelerated temperature-
bias stress testing of conventional AlGaN/GaN RF devices
often leads to the development of pits and cracks, and espe-
cially in the AlGaN layer at the drain side edge of the gate
electrode. An intriguing hypothesis proposed to explain this
phenomenon was that it might be triggered by piezoelectric
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stresses imposed during operation that add to the built-in
stresses of the heterostructure and push the AlGaN into
failure [37]. The thermoelectroelastic simulations performed
in [6] did not, however, support this plausible idea. Instead
it was found that the additional piezoelectric stress was not
especially large, and indeed was often significantly smaller
than the thermal stresses that were present simultaneously
due to the device’s power dissipation under high-voltage,
high-current conditions. Another observation from these sim-
ulations was that if an incipient crack developed at the drain
end of the gate, then the stress concentration would be such
that the crack would quickly propagate across the AlGaN
and terminate at the GaN interface with severe effects on
the device characteristics [6].

FIGURE 7. Logarithmic field plots of the relative contributions of the
nonlinear terms to (a) polarization and (b) stress in an AlGaN/GaN HEMT
with VD = 20V. The variations on the left side of these plots arise from the
proximity of the source.

Since the stress and strain levels in the HEMTs are very
high during accelerated-life-testing, nonlinear effects will
undoubtedly be significant, though probably not sufficient
to alter the qualitative conclusions reached earlier in [6]. In
any event, we explore the situation by first simulating the
current-voltage characteristics of an undamaged conventional
HEMT biased out to VD = 20 V and comparing results with
and without the nonlinear contributions. The I-V result (not
shown) is very much like that of Fig. 3a with the nonlinear-
ity reducing the current by just a few percent. Figs. 7a,b are
field plots like those of Figs. 5a,b showing the relative size
of the polarization and stress nonlinearities. The differences

are quite large, e.g., the maximum polarization nonlinearity
contribution increases from 2.2% to 74% and the maximum
stress nonlinearity contribution increases from 6.2% to 11%.

FIGURE 8. Simulated mechanical stresses in a GaN HEMT under
high-voltage ON-state biasing (VG = 0 and VD = 20 V) and showing the
stress concentration in the vicinity of a small crack situated at the gate
edge on the drain side.

As a second set of calculations we examined the situ-
ation of a small crack at the drain side edge of the gate
and compared simulations performed using the linear and
nonlinear theories. A result from the nonlinear simulation is
shown in Fig. 8 where we exhibit the principal stress field
around the crack. The peak stress at the crack tip is about
12GPa, whereas the same calculation in linear theory puts
the stress at about 13GPa. This is an appreciable correction,
however given the large uncertainty in the failure strength
of the AlGaN (assumed to be roughly 10GPa in [6]), it is
hard to say whether it is significant. It is also interesting
to note that Fig. 8 shows a slight upward displacement of
the transistor by about 7nm due to thermal expansion during
operation; we note that measurements of such displacements
under much milder conditions by atomic force microscopy
have been reported in [39].
(iii) Nanogenerator Device: A nanogenerator concept was

proposed in [40] in which the bending of a cantilever
composed of a piezoelectric semiconductor generated polar-
ization charges that caused electrons to flow in/out of
contacts. If at least one of these contacts is made recti-
fying then the design will act as an electron pump that can
be used to charge a capacitor or a battery. The intriguing
application for this device is that it might be used to harvest
electrical energy from incidental mechanical motions, e.g., if
the devices were embedded in clothing. In [40] the semicon-
ductor used was ZnO, but analogous devices composed of
III-N [41] and other [42] materials have also been investi-
gated. This sub-section discusses the numerical simulation of
GaN designs like that depicted schematically in Fig. 9, and
for the present paper this example serves as an illustration
of the application of the nonlinear theory to semiconducting
MEMS devices.
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FIGURE 9. Schematic of the AlGaN/GaN nanogenerator in which an
applied force produces electrical current flows.

Studies of the mechanics of cantilevers go back to
Bernoulli and Euler who considered long thin beams
(referred to as elastica) in which the bending is elastic with
the interesting combination of large displacements/rotations
but small strains, with the latter circumstance obviously
greatly simplifying the elasticity analysis. Our situation is
obviously more complicated since it involves a cantilever
composed of a strained layer heterostructure (see Fig. 9) in
which there are large built-in strains. In any event, because
our approach is entirely numerical there is no need to exploit
an approximation in which any component of the strain
is small and so no such assumption is made. We assume
the nanogenerator cantilever is of infinite width in order to
allow a two-dimensional plane-strain treatment. A similar
treatment using a two-dimensional plane-stress assumption
would model a narrow cantilever and probably better cor-
responds to most experiments, but this type of analysis is
not pursued here. To apply the mechanical force to bend the
cantilever, we exert a point load at the free end as might be
applied by an AFM tip, however we allow either sign so that
the load can pull up as well as push down. The cantilever
design has ohmic contacts at both ends so charge can flow
in and out as needed to maintain charge neutrality. As noted
earlier, a practical design would include a rectifying contact,
but this is not done here as it is irrelevant to the dynam-
ics. Also, from the point-of-view of applications the power
output will rise with frequency and so one would want to
cycle the cantilever as rapidly as possible, but this too is
immaterial from our perspective.

FIGURE 10. Snapshots of (a) electric potential, (b) on-axis stress,
and (c) electron density at the lowest point in cyclic motion of GaN
nanogenerator.

FIGURE 11. (a) The electric current per unit width generated by cantilever
versus time as computed using nonlinear and linear theories. The insets
show cantilever positions and on-axis stresses at two positions in the
cycle. (b) Generated electric current versus applied force (per unit width).
Range of validity of linear theory is evident in both plots.

A simulation of a full cycle of the cantilever is readily
carried out, and some sample snapshots of the fields inside
the device are shown in Figs. 10a-c. The electric potential
shows dramatic swings that arise from the changing polar-
ization charge, and it is these electrostatic shifts that result
in the desired current flows. The induced nanogenerator cur-
rent (per unit width) at a contact is plotted in Fig. 11a as
a function of time with the prediction of nonlinear theory
compared with that of linear theory. The period is 10μsec so
the frequency in this case is 100kHz. The insets indicate the
cantilever positions (and on-axis stresses) at two points in
the cycle. The comparison of the nonlinear and linear results
shows the significant size of the nonlinear corrections and
the range of validity of the linear approximation with the two
simulations agreeing over some range but not beyond. That
the linear theory works best under conditions of maximum
upward bending is due to the fact that in this condition
there is the greatest degree of cancellation of the built-in
strains by the flexural strains. Fig. 11b is complementary to
Fig. 11a and shows the generated current over a full cycle
as a function of the applied force (per unit width). Again
results of both nonlinear and linear calculations are shown
and the errors made by the latter are apparent.

V. FINAL REMARKS
We have presented a nonlinear theory capable of describing
electron and hole transport in piezoelectric semiconductors
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under conditions of large mechanical strains/displacements
for which the usual assumptions of linearity are not justified.
Both kinematic and constitutive nonlinearities are considered
with the imposition of rotational invariance being of critical
importance. Also receiving careful consideration is the treat-
ment of the electrostatic boundary conditions at free surfaces
that are undergoing finite deformation. Numerical simula-
tions of various III-N devices of technological interest are
used to illustrate the theory, and these included conventional
HEMTs under normal and accelerated-life-testing condi-
tions and semiconducting microelectromechanical structures.
Although the values of the various material coefficients are
uncertain, the nonlinear corrections are often large and are
surely non-negligible. In the case of conventional HEMTs
the primary effect is on threshold voltage, and given the
uncertainties in this quantity, it would not be surprising if
errors here were just never noticed. In the case of the MEMS
device, the critical need for the nonlinear theory comes from
the need to treat properly large rotations of the structure.
The technological importance of the III-N materials for

RF, power, and light-emitting devices is obvious, and appli-
cations in these areas is sure to grow in the coming years.
With this will come the continued need for engineering-
oriented modeling tools that are well-suited to design and
optimization, and the methods described in this paper rep-
resent a contribution toward this effort. This could occur
in the traditional way through their implementation in stan-
dard device modeling packages such as those from Synopsys
or Silvaco, or alternatively, with the spread of powerful
codes like COMSOL [32], implementation within a more
general computational framework is becoming increasingly
attractive.

APPENDIX
COEFFICIENTS FOR HEXAGONAL III-N MATERIALS
The III-N materials we consider are hexagonal crystals that
belong to the 6mm point group. The symmetries of this group
impose restrictions on the material coefficients in the various
tensors employed in this paper and these constraints greatly
reduce the number of independent coefficients. These matters
are discussed in [30] and the forms of the various tensors in
a coordinate system where the 3-direction points along the
c-axis are as given below with K and L varying from 1 to 3,
and A and B varying from 1 to 6 in the usual shorthand for
tensor indices of A ↔ KL with 1 ↔ 11, 2 ↔ 22, 3 ↔ 33,
4 ↔ 23/32, 5 ↔ 13/31, and 6 ↔ 12/21.

{αKL} =
⎡

⎣
α11 0 0
0 α11 0
0 0 α33

⎤

⎦

{χKL} =
⎡

⎣
χ11 0 0
0 χ11 0
0 0 χ33

⎤

⎦ (A1)

{eKA} =
⎡

⎣
0 0 0
0 0 0
e31 e31 e33

0 e15 0
e15 0 0
0 0 0

⎤

⎦ (A2a)

{χKA} =
⎡

⎣
0 0 0
0 0 0
χ31 χ31 χ33

0 χ15 0
χ15 0 0
0 0 0

⎤

⎦ (A2b)

{CAB} =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

C11 C12 C13
C12 C11 C13
C13 C13 C33

0

0
C44 0 0
0 C44 0
0 0 (C11 − C12)/2

⎤

⎥⎥⎥⎥⎥
⎥
⎦

(A3)

{bAB} =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

b11 b12 b13
b12 b11 b13
b31 b31 b33

0

0
b44 0 0
0 b44 0
0 0 (b11 − b12)/2

⎤

⎥
⎥⎥⎥⎥⎥
⎦

(A4)

{k1AB} =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0
0 k115 0
0 k125 0
0 k135 0

0 0 0
k115 k125 k135

0 0 0

0 0 k146
0 0 0
k146 0 0

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(A5a)

k146 = (k115 − k125) /2

{k2AB} =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

0
k125 0 0
k115 0 0
k135 0 0

k125 k115 k135
0 0 0
0 0 0

0 0 0
0 0 k146
0 k146 0

⎤

⎥⎥
⎥⎥⎥⎥
⎦

(A5b)

{k3AB} =

⎡

⎢⎢⎢⎢⎢⎢
⎣

k311 k312 k313
k312 k311 k313
k313 k313 k333

0

0
k344 0 0

0 k344 0
0 0 k366

⎤

⎥⎥⎥⎥⎥⎥
⎦

(A5c)

k366 = (k311 − k312)/2

{c1AB} =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

c111 c112 c113
c112 c122 c123
c113 c123 c133

0

0
c144 0 0

0 c155 0
0 0 c166

⎤

⎥⎥⎥⎥⎥
⎥
⎦

(A6a)

{c2AB} =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

c112 c122 c123
c122 c222 c113
c123 c113 c133

0

0
c155 0 0

0 c144 0
0 0 c266

⎤

⎥⎥
⎥⎥⎥⎥
⎦

(A6b)
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{c3AB} =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

c113 c123 c133
c123 c113 c113
c133 c133 c333

0

0
c344 0 0

0 c344 0
0 0 c366

⎤

⎥
⎥⎥⎥⎥⎥
⎦

(A6c)

{c4AB} =

⎡

⎢⎢⎢
⎢⎢⎢
⎣

0
c144 0 0
c155 0 0
c344 0 0

c144 c155 c344
0 0 0
0 0 0

0 0 0
0 0 c456
0 c456 0

⎤

⎥⎥⎥
⎥⎥⎥
⎦

(A6d)

{c5AB} =

⎡

⎢⎢⎢⎢⎢
⎢
⎣

0
0 c155 0
0 c144 0
0 c344 0

0 0 0
c155 c144 c344

0 0 0

0 0 c456
0 0 0
c456 0 0

⎤

⎥⎥⎥⎥⎥
⎥
⎦

(A6e)

{c6AB} =

⎡

⎢⎢
⎢⎢⎢
⎣

0
0 0 c166
0 0 c266
0 0 c366

0 0 0
0 0 0
c166 c266 c366

0 c456 0
c456 0 0

0 0 0

⎤

⎥⎥
⎥⎥⎥
⎦

(A6f)

c122 = c111 + c112 − c222, c166 = 1

4
(3c222 − 2c111 − c112)

c266 = 1

4
(2c111 − c112 − c222)

c366 = 1

2
(c113 − c123) , c456 = 1

2
(c155 − c144) (A6g)
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