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ABSTRACT In this paper, we report the noise measurements in the RF frequency range for ultrathin body
and thin buried oxide fully depleted silicon on insulator (FD-SOI) transistors. We analyze the impact
of back and front gate biases on the various noise parameters; along with discussions on the secondary
effects in FD-SOI transistors which contribute to the thermal noise. Using calibrated TCAD simulations,
we show that the noise figure changes with the substrate doping and buried oxide thickness.

INDEX TERMS Thermal noise, high frequency noise, device modeling, RF, FDSOI, MOSFET, electrical
characterization.

I. INTRODUCTION
Ultra-thin body fully depleted (FD) silicon on insulator (SOI)
transistors are being used at 28 nm and below due to their
excellent electrostatic control [1]–[9]. Apart from digital
applications, FD-SOI transistors are also getting a strong
interest from RF circuit designers for high frequency appli-
cations [10], [11]. At RF frequencies, thermal noise becomes
an important factor in design of circuits as it decides the
noise floor for the signal. It is well known that thermal
noise is a function of the temperature and the conductivity
of the channel. FD-SOI transistors have higher thermal noise
compared to bulk transistors due to high lattice temperature
originating from poor thermal conductivity of the buried
oxide (BOX) [12]. Hence, careful analysis and measurements
of thermal noise in such devices is of utmost importance.
Although RF noise characterization for thick BOX FD-SOI
transistors has been presented [13]–[15]; there is no work
reporting the same for thin BOX FDSOI transistors. In this
work, we report the measured data for an FD-SOI transistor
with 8 nm thin channel and 25 nm thin BOX, and discuss the
impact of the drain and the front/back gate biases on the high
frequency noise. Fig. 1 shows the UTBB FD-SOI structure
used in this study. The dependence of noise on the back gate

bias is especially important as the back gate bias is often
used to tune the threshold voltage (Vth) in these devices.
Also, the substrate below the thin BOX plays an important
role at RF frequencies and shows significant impact on the
thermal noise. Hence, we also present an analysis of the
impact of substrate resistivity and BOX thickness on the
thermal noise.
This paper is organized as follows: the measurement setup

is described in Section II while the thermal noise and related
parameters are defined and discussed in Section III. The sec-
ondary effects inherent with FDSOI transistors are discussed
in Section IV and the results are presented in Section V.
Finally, the conclusions are drawn in Section VI.

II. MEASUREMENT SETUP
Fig. 2 shows the noise measurement setup used in this work.
It includes a vector network analyzer, a noise figure meter
(NFM) to measure noise power, a source-pull tuner to vary
the impedance seen by the DUT and a noise source. The
measurement setup is controlled by Keysight’s IC-CAP tool.
The low noise amplifier (LNA) is used before the NFM to
boost the weak noise signal, which increases the accuracy of
the measurement [16]. In this work, we have measured the

2168-6734 c© 2016 IEEE. Translations and content mining are permitted for academic research only.
Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 4, NO. 6, NOVEMBER 2016 See http://www.ieee.org/publications_standards/publications/rights/index.html for more information. 379



Kushwaha et al.: Characterization of RF Noise in UTBB FD-SOI MOSFET

Noise figure (defined later) keeping a fixed source impedance
of 50 �. The DUTs belongs to the 28 nm technology node
from CEA-LETI. We have performed the measurements on
two channel lengths (Lg = 50 nm and 100 nm). Other device
dimensions are: channel widthWg = 1μm, number of fingers
NF = 40, effective oxide thickness Tox = 1.2 nm, back gate
oxide thickness Tbox = 25 nm and silicon channel thickness
Tsi = 8 nm.

FIGURE 1. Schematic of ultra thin body and thin buried oxide fully
depleted silicon on insulator (UTBB FD-SOI) transistor. The Device under
test (DUT) is from 28 nm technology node fabricated at CEA-LETI.

FIGURE 2. RF Noise Figure Measurement Setup. A separate DC power
supply (not shown here) is used for applying back-gate bias through
substrate.

III. THERMAL NOISE AND RELATED PARAMETERS
Since noise is a random event with zero average, it is mea-
sured and analyzed by means of specific parameters that
highlight the device behavior accurately. One such parame-
ter is the Noise figure (NF), which is the ratio of the signal to
noise ratio at the input port to that at the output port. NF50
denotes the Noise Figure measurement performed with a
source impedance of 50 � (see (1)), and NFmin denotes the
minimum achievable noise figure (see (2)) for a device under
fixed bias conditions. NFmin and NF50 are given as [17]
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where Gs = (1/50)�−1 is the source admittance, kB is
the Boltzmann constant, T is the temperature, Sid is the
noise power spectral density and r = 4

15gm
with gm denoting

the trans-conductance. Rgs = Rg + Rs, where Rg and Rs
are the gate and the source resistances, respectively. Gate
capacitance Cgg = Cgs + Cgd, where Cgs is the gate-to-
source capacitance and Cgd is the gate-to-drain capacitance;
while ω(= 2π f ) is the frequency of operation in rad/second
and fT is the cutoff frequency. It should be noted that the
equations presented here for NF50 and NFmin do not take
the induced gate noise into account because it is not as
significant as the channel thermal noise for the frequency
range under consideration [16]. The noise resistance (Rn)
is an effective representation of the channel thermal noise
which is extracted from NF50 as [17]
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Gs

). Another important parameter is the

source side reflection co-efficient, �opt(= Zopt−Zo
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characteristic impedance of the system while Zopt(= 1
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) is
the optimum source impedance and Yopt(= Gopt + jBopt) is
the optimum source admittance which results in minimum
noise figure [16]. Gopt and Bopt are given as [16]
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IV. SECONDARY NOISE SOURCES IN FD-SOI TRANSISTOR
FD-SOI transistors have secondary noise sources which get
coupled with the channel thermal noise and result in higher
NFmin than expected from the channel thermal noise alone.
The majority carriers in the substrate also impact the device
performance at high frequencies [18], as they dictate the
substrate loss. The doping of the silicon substrate below the
BOX plays a major role in increasing (or decreasing [19])
this substrate loss and the channel noise [20]. FDSOI tran-
sistors with the high substrate resistivity (or lightly doped
substrate) are preferred for RF applications due to their
high integration capabilities along with the advantages of
lower noise and lower cross-talk [21], [22]. The depletion in
the substrate and the substrate resistance act as extra noise
sources (see Fig. 3). The substrate depletion and the substrate
resistance Rsub induced thermal noises also contribute to the
overall noise. Fig. 4(a) shows the calibration of current volt-
age characteristics from TCAD simulations against measured
data for a transistor with Lg = 100 nm. Fig. 4(b) shows the
NFmin vs. substrate doping obtained from calibrated TCAD
simulations. We can see that NFmin changes with substrate
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FIGURE 3. Schematic of the substrate network showing substrate induced
noise source in FDSOI transistor. Rsub is the equivalent substrate
resistance while Csub is the substrate capacitance. Vfg/Vbg are the applied
front/back gate voltages and Vd/Vs are the drain/source voltages. The
substrate coupling results in higher NFmin due to Rsub induced thermal
noise at the drain [20].

doping due to the substrate coupled thermal noise. Fig. 4(c)
shows the NFmin variation with BOX thickness which indi-
cates that as thickness decreases, the substrate coupling with
the channel increases, resulting in increased thermal noise.

V. RESULTS AND DISCUSSION
Fig. 5 shows the frequency dependence of NF50 for differ-
ent bias sweeps. The NF50 shown in Fig. 5(a) - Fig. 5(c) is
more or less constant with frequency whereas (1) predicts
a parabolic dependence [23], [24]. This is because the fre-

quency dependent term, (
f
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)2 S2
id

16k2
BT

2g2
mRnGs

, is smaller than

1 + RnGs for the measured device for the frequency range
used here. Inset of Fig. 5(a) shows NF50 as a function of the
front gate bias (Vfg). As Vfg increases, the total number of
charge carriers in the device increases. This results in higher
drain current and more carrier collisions in the channel which
in turn increases the overall noise (i.e., higher NFmin) [25].
Fig. 4(a) shows that, with increase in positive back-gate
bias (Vbg), the threshold voltage (Vth) decreases [26] which
results in higher drain current and higher thermal noise.
This increased thermal noise results in higher noise figure
as shown in the inset of Fig. 5(b). To the best of our knowl-
edge, the behavior of NF50 with changing back-gate bias
for thin BOX FDSOI transistors is being reported for the
first time. The inset of Fig. 5(c) shows that NF50 is nearly
constant with drain bias (Vds) as the noise does not change
with Vds in the saturation region due to the phenomenon of
velocity saturation [27]. A similar trend has been reported
by Adan et al. [28] for SOI MOSFETs.

It is well known that the accurate measurement of noise
parameters is difficult (see measured data in Fig. 6(a) and
Fig. 8(a)) for short channel devices [29]. Also, in our case,

FIGURE 4. (a) Drain current Ids vs front gate bias Vfg characteristic for
different back gate biases (Vbg) from the measurement as well as
calibrated TCAD simulations. Lines: TCAD data, Symbols: Measured data.
(b) NFmin vs substrate doping characteristic. The substrate depletion and
the substrate resistance Rsub induced thermal noises also contribute to
the overall noise, creating fluctuations in NFmin. (c) NFmin vs BOX
thickness characteristic. NFmin increases further with BOX thinning due to
an increase in the substrate coupled thermal noise.

the channel width of the measured device is small, mak-
ing measurements susceptible to other noise sources in
the measurement setup. Hence, we have also measured the
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FIGURE 5. (a) Measured NF50 vs. frequency characteristics for different
front-gate biases Vfg = 0.8, 1, 1.2, 1.4 V. Frequency is swept from 1 to
18 GHz with the step size of 1 GHz. Inset figure shows the NF50 vs Vfg
characteristics for two channel lengths Lg = 50, 100 nm. (b) NF50 vs.
frequency characteristics for different back-gate biases Vbg = −3, 0, 3 V.
Inset figure shows the NF50 vs Vbg characteristic for Lg = 100 nm. (c) NF50
vs. frequency characteristics for different drain biases Vds = 1, 1.2, 1.4 V.
Inset figure shows the NF50 vs Vds characteristic for Lg = 100 nm. Device
dimensions are: Wg = 1μm, NF = 40, Tox = 1.2 nm, Tbox = 25 nm,
Tsi = 8 nm.

S-parameters and have used these, along with the NF50 mea-
surements, to extract the noise parameters Rn, NFmin, Bopt,
Gopt and �opt as defined from (1) to (5). Fig. 6 shows

FIGURE 6. (a) Measured NFmin vs. frequency characteristics. (b) NFmin vs.
frequency characteristics from TCAD simulations. (c) NFmin vs. frequency
characteristics extracted from S-parameter measurement for an FDSOI
transistor (Lg = 100 nm) with highly doped substrate below the BOX.
Frequency is swept from 1 to 18 GHz with the step size of 0.5 GHz. Bias
conditions are: Vfg = 1.2 V and Vds = 1.2 V. Parameter values used to
calculate NFmin for the device are: Rgs = 37.47 � and Rn = 1.7, 2.02,
2.35 k� for Vbg = −3, 0, 3 V, respectively. Cgs = Cgg − Cgd , where Cgg and
Cgd are shown in Fig. 10(b).

the frequency dependence of the minimum noise figure for
Vfg = 1.2 V and Vds = 1.2 V for different back-gate biases
Vbg = −3, 0, 3 V. Fig. 6(c) shows that the NFmin extracted

382 VOLUME 4, NO. 6, NOVEMBER 2016



Kushwaha et al.: Characterization of RF Noise in UTBB FD-SOI MOSFET

FIGURE 7. (a) The top figure shows Gopt vs. frequency characteristics
while the bottom figure shows Bopt vs. frequency characteristics, both
from TCAD simulations. (b) The top figure shows Gopt vs. frequency
characteristics while the bottom figure shows Bopt vs. frequency
characteristics extracted from S-parameter measurements. Bias conditions
are: Vfg = 1.2 V and Vds = 1.2 V. Parameter values used to calculate the
noise parameters for Lg = 100 nm device are: Rgs = 37.47� and Rn = 1.7,
2.02, 2.35 k� for Vbg = −3, 0, 3 V, respectively. Cgs = Cgg − Cgd , where
Cgg and Cgd are shown in Fig. 10(b).

from S-parameter measurements increases with frequency as
expected [24], [30]. From (4) and (5), we can see that Gopt
(∝ f) and Bopt (∝ − f) are proportional to frequency. As a
result Fig. 7 shows an increase in the magnitude of Gopt and
Bopt with positive and negative slopes, respectively. Fig. 8
shows the variation in the magnitude and the phase of �opt
with changing frequency. These trends of NFmin, Gopt, Bopt
and �opt (magnitude and phase) are in good agreement with
TCAD simulations as well as with [16], [23], and [24].
Fig. 9(a) shows the behavior of the noise resistance

with front gate bias for three different back gate biases.

FIGURE 8. (a) Measured �opt vs. frequency characteristics. (b) �opt vs.
frequency characteristics from TCAD simulations. (c) �opt vs. frequency
characteristics extracted from S-parameter measurements. Bias conditions
are: Vfg = 1.2 V and Vds = 1.2 V. Parameter values used to calculate the
�opt are: Rgs = 37.47 � and Rn = 1.7, 2.02, 2.35 k� for Vbg = −3, 0, 3 V,
respectively. Cgs = Cgg − Cgd , where Cgg and Cgd are shown in Fig. 10(b).

The extracted Rn does not change significantly with fre-
quency because it depends on gm and Cgg (see (1) and (3)),
which are independent of frequency (see Fig. 10(a) and
Fig. 10(b)).
Although noise resistance Rn is defined in (3) in terms of

the device parameters, it can also be expressed as [16]:

Rn = Rgs + Sid
g2
m
Ids (6)

From Fig. 10(a), we observe that for higher Vfg (= 1.2 V),
the transconductance, gm(= Re(Y21)), does not vary much
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FIGURE 9. (a) Rn vs. Vfg characteristics for different back-gate biases:
Vbg = −3, 0, 3 V. (b) Noise power spectral density Sid from TCAD
simulations vs. frequency characteristics for different back-gate biases:
Vbg = −3, 0, 3 V. Bias conditions are: Vfg = 1.2 V and Vds = 1.2 V. Device
dimensions are: Lg = 100 nm, Wg = 1 μm, NF = 40, Tox = 1.2 nm,
Tbox = 25 nm, Tsi = 8 nm.

with back gate bias while Fig. 9(a) shows larger variation
of Rn with back gate bias. From (6), this larger sensitivity
of Rn with back bias can be attributed to the significant
change in Sid with Vbg [25] as shown by TCAD simulation,
in Fig. 9(b).

VI. CONCLUSION
High frequency noise characterization for ultra thin body and
thin BOX FDSOI transistor has been reported for the first
time. At high frequencies, substrate resistance induced ther-
mal noise gets coupled with the channel noise and results in
higher than expected NFmin. This noise coupling increases
with reduction in BOX thickness and results in higher NFmin.
We observe that thermal noise increases with positive back
gate bias due to an increase in the number of channel car-
riers and their collisions. Also, noise figure does not vary

FIGURE 10. (a) Real part of Y21 extracted from S-parameter
measurements, vs. frequency for different back-gate biases: Vbg = −3, 0,
3 V. Inset shows gm (DC measured data) vs. Vfg characteristics for different
back-gate biases: Vbg = −3, 0, 3 V. (b) Cgg and Cgd extracted from
S-parameter measurements vs. frequency characteristics for different
back-gate biases: Vbg = −3, 0, 3 V. Bias conditions are: Vfg = 1.2 V and
Vds = 1.2 V.

significantly with drain bias due to the dominance of the
velocity saturation phenomenon in the saturation region.
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