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ABSTRACT In this paper, we present a compact model for semiconductor charge and quantum capac-
itance in III-V channel FETs. With III-V being viewed as the most promising candidate for future
technology node, a compact model is needed for their circuit simulation. The model presented in this
paper addresses this need and is completely explicit and computationally efficient which makes it highly
suitable for SPICE implementation. The proposed model is verified against the numerical solution of
coupled Schrödinger–Poisson equation for FinFET with various channel thickness and effective mass.

INDEX TERMS III-V, density of states (DOS), SPICE, FinFET, quantum capacitance.

I. INTRODUCTION
As the current CMOS technology with conventional silicon
channel is reaching to it’s scaling limits, several new mate-
rials and device architectures are being actively explored
for future generation [1]–[5]. Among them the III-V chan-
nel material with ultrathin-body and multigate architecture
is probably the most promising candidate, especially for
nMOSFETs [6]–[10]. The III-V materials because of their
lower effective mass offer higher channel mobility along with
the possibility of integration with the conventional silicon
CMOS technology [11]–[13]. The ultrathin-body and multi-
gate architecture offer superior electrostatic control [14]. If
III-V materials had to replace silicon, especially for logic
applications, it is necessary to analyze their performance
at circuit level. This requires a computationally efficient
compact model for circuit simulators.
Several performance metrics for circuits such as

switching delay (CV/I), transconductance, and dynamic
power consumption (CV2) depend directly on the gate
capacitance (Cg). Therefore, the analysis of Cg is very
important for any circuit simulation and development of
future technology generation. Typically in inversion regime,
the total Cg of a metal-insulator-semiconductor (MIS) system

can be modeled as a series combination of the insu-
lator capacitance (Cins = εins/tins) and inversion layer
capacitance (Cinv) [15]. The Cinv for an undoped fully
depleted ultrathin-body device comprises of the centroid
capacitance (Ccen) [16] in series with quantum capacitance
(CQ) [17], [18]. Of these, the CQ is proportional to the
density of state (DOS) and valley degeneracy. The III-V
materials have lower DOS (due to their lower effective
mass) and valley degeneracy as compared to the silicon.
This results in a much lower CQ and the overall Cg is then
limited by the CQ [18]. Therefore it is necessary to accu-
rately model the impact of low DOS on the total Cg in III-V
channel FETs.
Several different models have been presented in literature

which include the effect of CQ in total Cg. The formu-
lation presented in [19] is computationally expensive and
is not fit for the SPICE simulators. The models presented
in [20] and [21] are physical but require iterations and result
into a complicated formulation. Also these models do not
consider the effect of band non-parabolicity on Cg. In this
paper, we have presented a physics based model for CQ.
We have then developed a compact formulation of CQ by
utilizing this form of equation with suitable approximation.
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FIGURE 1. (a) Schematic diagram of the FinFET structure used in this
work, (b) Equivalent capacitance network for the device shown in fig (a).
Cins is the gate insulator capacitance and Cinv is inversion capacitance,
which is represented in terms of the contribution form centroid
capacitance (Ccen,i ) and quantum capacitance (CQ,i ) in each subband. The
subscript i represents the subband number.

The developed model is computationally efficient, simple
yet accurate without compromising much of the physics.
The model is also extended to include the effect of conduc-
tion band non-parabolicity on Cg without compromising the
computational efficiency. The proposed model is completely
explicit in terms of the applied gate voltage VG thereby
making it highly suitable for SPICE implementation.
This paper is organized as follows: Section II presents

the formulation and model description. Section III includes
the model verification and discussion regarding the same,
followed by conclusion in Section IV.

II. MODEL DESCRIPTION
Fig. 1 shows the device geometry considered in this work
along with the total Cg. The Cinv consists of parallel combi-
nation of the contributions from each of the occupied electron
subband in the channel. For each subband, the Cinv in turn
consists of a series combination of Ccen and CQ as shown
in fig. 1(b) [18]. Therefore, the Cinv can be written as,

Cinv =
∑

i

(
1

CQ,i
+ 1

Ccen,i

)−1

(1)

where CQ,i and Ccent,i is the quantum capacitance and cen-
troid capacitance associated with each subband respectively.
Here, we have neglected the effect of charge centroid which
can later be added using conventional method of introduc-
ing a correction factor to the oxide thickness [22], [23].
Therefore the total gate capacitance (Cg) is given by

Cg =
(

1

2Cins
+ 1∑

i CQ,i

)−1

(2)

Following the methodology described in [18] the quantum
capacitance for each subband can be written as,

CQ,i = q
∂ (−Qi)

∂
(
Ef − Ei

) (3)

where Qi is the contribution of ith subband to the total semi-
conductor charge (Qs), Ei is the energy level of ith subband
and Ef is the fermi energy. In order to get Qs for a two dimen-
sional (2D) system such as the FinFET structure discussed
in this work, 2D DOS should be considered. Considering
2D DOS, Qs can be formulated as,

Qs =
∑

i

Qi =
∑

i

∫ ∞

Ei

m∗‖q
π�2

1 + exp
(
E−Ef
kT

)dE (4)

where m∗‖ is the in plane electron effective mass.
Substituting (4) in (3) and differentiating (3) we get,

CQ,i =
m∗‖q2

π�2

1 + exp

(
Ei − Ef
kT

) . (5)

Eq. (5) along with (2) gives us the total Cg. But in order to
get the Cg as a function of the applied VG, it is necessary to
get the variation of CQ,i with respect to VG. Note that both
the subband energy level Ei and fermi level Ef appearing in
expression of CQ,i change with VG (considering bottom of
the conduction band Ec as the reference). Therefore, to get
the variation of CQ,i with VG we need to express Ef and
Ei as a function of VG. This has been derived analytically
in [20] and [21] which results in complex expression of
total Cg.
From (5) it can be seen that for a particular subband when

Ef � Ei the denominator is very large and CQ,i is negligible.
When Ef � Ei, the denominator can be approximated to
unity and CQ,i becomes constant and independent of VG.
Therefore, for both this extreme the exact relation of Ef vs
VG becomes unimportant for modeling of CQ,i. An accurate
form of this relation is only needed for a very narrow range
around Ei. Leveraging this fact, instead of modeling Ef as
a function VG for entire bias range, we treat each subband
separately and approximate the relation between Ef and VG
by a straight line (Ef ∝ VG) around the subband energy Ei.
Therefore, the above expression of CQ,i can be written in a
compact form as a function of VG as,

CQ,i =
Ai
m∗‖q2

π�2

1 + exp

(
Ei − (BiqVG)

CikT

) (6)

Here Ai, Bi, Ci are fitting parameters included in order to
provide the flexibility to fit various real data.
The value of subband energy required to find the quantum

capacitance can be derived as in [20]. However this approach
still requires an implicit equation to be solved iteratively.
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Since our model has a parameter to control the capacitance
inflection points, we can use the subband energy calculated
from an explicit expression for infinite quantum well [24]

Ei = i2π2
�

2

2m∗‖t2ch
(7)

where tch is the channel thickness and i is the eigennumber
of the subband.
Expression of CQ,i given by (6) along with (7) can be used

in (2) to obtain an explicit expression of Cg in terms of VG.
However due to the traditional problem of charge conserva-
tion it is preferable to have a charge based implementation
instead of a capacitance based which requires a continuous
model of semiconductor charge [25]. Solving (4), Qs as a
function of Ef can be written as,

Qs =
∑

i

m∗‖qkT
π�2

ln

[
1 + exp

(
Ef − Ei

kT

)]
(8)

Using the same form of approximations as for CQ
discussed above, a new compact expression of Qs is
derived as,

Qs =
∑

i

Di
m∗‖qkT
π�2

ln

[
1 + exp

(
(BiqVG) − Ei

CikT

)]
(9)

Eq. (9) gives a continuous model of charge valid for all the
regions of operation. The form of the model also ensures that
the derivatives are continuous. Differentiation of (9) gives
CQ and has the same form as derived earlier.
The model is derived assuming parabolic conduction band

structure, hence a constant value of effective mass is used.
But, the non-parabolicity of conduction band causes effec-
tive mass to vary with energy. This is particularly important
in case of III-V materials and changes the Cg in inver-
sion [26], [27]. The effect of non-parabolic band structure
could be modeled by modifying the effective mass as
follows:

m∗‖ = m∗
b (1 + 2αE) (10)

where m∗
b is the effective mass at bottom of the conduction

band, and α is known as non-parabolicity factor [28]. But,
modifying the effective mass will cause difficulty in analyt-
ical derivation of Qs and an explicit expression could not be
derived. This in turn will affect the computational efficiency
of the model. However, the presented model could still be
modified to include this effect. For a parabolic band struc-
ture approximation, the CQ doesn’t change with VG once
the Fermi level moves above a particular subband. This is
due to constant effective mass and thus constant DOS for
2D materials. But for non-parabolic bands, increase in VG
causes an increase in CQ even after the Fermi level moves
above the subband [29]. This effect could be modeled by

FIGURE 2. Normalized gate capacitance, Cg for different VG at VDS = 0 V
with insulator thickness, tins = 1 nm and m∗

b = 0.048m0, where m0 is the
free electron mass. Different curves are for different value of factor α. The
normalization of Cg is done with the insulator capacitance. It can be seen
that the effect of band non-parabolicity on Cg is similar to what described
by Ali et al. [29]. Note that only one subband is considered here.

modifying (9) as follow:

Qs =
∑

i

Di
m∗
b (1 + αVG) qkT

π�2

ln

[
1 + exp

(
(BiqVG) − Ei

CikT

)]
(11)

here the factor α is similar to the non-parabolicity factor
in (10) with unit V−1 and could be used to tune the effect
of non-parabolicity.
Equation (11) captures the effect of non-parabolicity in

band structure by making effective mass a function of VG.
The effect of including non-parabolicity in the model is
shown in fig. 2. It can be seen that the CG varies with VG
for non zero value of constant α, where as α = 0 gives a
constant plateau.
In the subsequent section we will verify the presented

model against the numerical simulation data. The simulation
assumes the parabolic band structure and hence the model
with value of α = 0 is used to match the results. However,
it is shown that the model could include the effect of non-
parabolicity through the factor α.

III. MODEL VERIFICATION
In this section, the Cg and Qs, derived from the model
described in Section II, are verified with the data obtained
from numerical simulation of the FinFET device (shown in
fig. 1). The simulation data are obtained from self-consistent
solution of coupled Schrödinger-Poisson equation [30]. The
simulation takes into account the finite barrier height at the
insulator/semiconductor interface. A barrier height of 3.4 eV
is considered in the simulation. The simulation therefore,
considers the wavefunction penetration into the insulator. It
also takes into account the difference in carrier effective
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FIGURE 3. Semiconductor charge, Qs vs VG at VDS = 0 V for device shown
in fig. 1(a) with insulator thickness, tins = 1 nm, in plane effective mass,
m∗‖ = 0.048m0 and channel thickness, tch = 7 nm.

FIGURE 4. Comparison of the presented model with the simulated gate
capacitance, Cg for different VG at VDS = 0 V with insulator thickness,
tins = 1 nm and in plane effective mass, m∗‖ = 0.048m0. Different curves
are for different channel thickness. The normalization of Cg is done with
the insulator capacitance. Different inflection points in Cg corresponds to
different electron subbands. Note that as only lowest two subbands are
considered while plotting the capacitance using the model, the third peak
in Cg for tch = 10 nm which corresponds to the 3rd electron subband is
not captured using the model. Reduction in the channel thickness causes
an increase in the subband energy which results in the shifting of the
inflection point toward higher VG values.

mass of the oxide and channel material. The SiO2 insulator
material with an effective mass of mox = 0.55m0, where
m0 is the free electron mass and an undoped channel is
considered.
Fig. 3 compares the semiconductor charge obtained from

the model to the numerical simulation data. The data cor-
responds to In0.53Ga0.47As channel with m∗‖ = 0.048m0. It
can be seen from fig. 3 that the proposed model provides
an excellent match to the simulation data.
Fig. 4 shows Cg versus VG for different channel thick-

ness with tins = 1 nm and m∗‖ = 0.048m0. Here only the

FIGURE 5. Gate capacitance, Cg versus VG at VDS = 0 V for devices with
channel thickness, tch = 5 nm and insulator thickness, tins = 1 nm for
different in-plane effective mass m∗‖. The normalization of Cg is done with
insulator capacitance. In-plane effective mass of 0.026m0, 0.048m0 and
0.082m0 corresponds to InAs, In0.53Ga0.47As and GaAs channel materials
respectively. Lower in-plane effective mass gives lower CQ and a greater
impact of CQ on Cg due to a series combination of Cins and CQ.

contribution from first two subbands is considered. Note
that, this is not a limitation of the model and the effect
from any number of subbands can be included. The step
like behavior of Cg is due to the 2D DOS appearing in CQ.
This also shows that for low effective mass material Cg is
mainly dictated by CQ and hence the CQ should be modeled
accurately.
Fig. 5 shows the impact of m∗‖ on Cg for tch = 5nm

and tins = 1 nm. With decrease in the effective mass, the
subband energy increases which shifts the capacitance inflec-
tion points towards the higher Vg values. Moreover with
lower effective mass, CQ decreases and its impact on total
Cg is more pronounced (due to series combination of Cins
and CQ) and hence overall Cg also decreases. Therefore, it
is extremely important that the model should be efficient
enough to capture the effect of quantum capacitance in low
effective mass regime.

IV. CONCLUSION
To summarize, we have presented a compact model of semi-
conductor charge and quantum capacitance for transistors
with low DOS III-V channel materials. It is shown that
for future III-V FETs quantum capacitance plays an impor-
tant role in deciding the total gate capacitance and the
proposed model accurately captures this effect. The pro-
posed model also has the flexibility to include the effect of
non-parabolicity in the band structure. The model is simple,
explicit and computationally efficient which is desired for
SPICE simulators. The accuracy of the model is also veri-
fied by comparing it with the numerical simulation data for
different channel thickness and in-plane effective mass.
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