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ABSTRACT A bilayer graphene-based electrostatically doped tunnel field-effect transistor (BED-TFET)
is proposed. Unlike graphene nanoribbon TFETs in which the edge states deteriorate the OFF-state
performance, BED-TFETs operate based on bandgaps induced by vertical electric fields in the source,
channel, and drain regions without any chemical doping. The performance of the transistor is evaluated
by self-consistent quantum transport simulations. This device has several advantages: 1) ultra-low power
(VDD=0.1V); 2) high performance (ION/IOFF>104); 3) steep subthreshold swing (SS<10mv/dec); and
4) electrically configurable between N-TFET and P-TFET post fabrication. The operation principle of the
BED-TFET and its performance sensitivity to the device design parameters are presented.

INDEX TERMS Bilayer graphene (BLG), tunnel field-effect transistor (TFET), electrostatically doping,
non-equilibrium Green’s function (NEGF).

I. INTRODUCTION
It has been experimentally challenging to realize a tunnel
FET (TFET) with high on-current and a steep subthreshold
slope simultaneously, especially with a low supply voltage
(VDD∼0.1V). The high current can be achieved by bring-
ing the transmission probability through the source-channel
tunneling barrier close to unity, which can be realized by
minimizing the effective mass of the channel material and
the screening length [1], [2] across the tunneling barrier.
Regarding the requirement of small effective mass, bilayer
graphene (BLG) is almost an ideal candidate. However,
despite its small effective mass, impressive mobility and ini-
tial promise for high performance electronic devices [3], [4],
the lack of an intrinsic band gap prevents graphene transistors
from switching off. Although sizable bandgaps were demon-
strated in graphene nano-ribbons (GNRs) [5]–[8], the edge
roughness and device-to-device variations due to the lack of
atomic level control in top down fabrication pose a tremen-
dous challenge for technology development [7], [9]–[11].
On the other hand, a tunable bandgap larger than

200meV can be created in BLG by an electric
field [12]–[14].
Here, BED-TFET as a high performance steep SS device

which enables VDD to scale down below 0.1V is proposed.
Accordingly, an excellent energy-delay product is obtained
in this device. Compared to previous bilayer graphene TFET
designs [13], [15], BED-TFET has the following advan-
tages: 1) Being electrostatically configurable post fabrication
between a P-TFET and a N-TFET. 2) Avoiding the experi-
mentally challenging chemical doping in 2D materials (i.e.,
bilayer graphene). 3) Being immune to threshold variations
due to dopant fluctuations which is critical for low threshold
voltages. 4) Avoiding dopant states within the bandgap which
deteriorates the OFF-state performance of the TFETs [16].
5) Providing an artificial heterostructure without interface
states.
The device structure is shown in Fig. 1(a). The left and

right regions are controlled by V1, V1’ and V2, V2’, respec-
tively, and act as the electrostatically doped source and drain
regions for the TFET. By adjusting V1. . . V2’, the proposed
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FIGURE 1. a) Physical structure of an electrically doped p-i-n BLG TFET. The
band diagram in the OFF state of BED-TFET as a b) N-TFET, c) P-TFET.

device is configurable between an N-TFET and a P-TFET as
shown in Fig. 1(b) and 1(c). The bandgap size of each region
is also tunable by the voltage difference (�V) between the
top and the bottom gates in that region. The induced band
gaps are denoted by EgC and EgD. Accordingly, an artificial
heterostructure can be made as long as the electric fields of
different regions are different,

−→
FD �= −→

FC. The fabrication of
BED-TFET requires the alignment of top and bottom gates,
which can be challenging. However, advanced workfunc-
tion engineering techniques [17] may be used to reduce the
number of gates, however, a detailed investigation of such
technique are beyond the scope of this paper.
One of the main advantages of the BED-TFET is its very

low energy-delay product. Fig. 2 benchmarks the energy-delay
of a 32 bit adder [18] based on different steep devices. The
benchmarking methodology is described in [18] for beyond-
CMOS devices. The BED-TFET has the least energy-delay
product among the studied devices. This is due to the steep
IV and high ION obtained in the BED-TFET even with a low
VDD of 0.1V. This shows the importance of low band gap
materials for low VDD steep devices. Notice that the parasitic
capacitances between the gates can be significantly reduced
by using a low-k dielectric (εS) between the gates [1] and
increasing the spacing (S); e.g., a 10nm air gap spacer can
reduce parasitic capacitances about 2 orders of magnitude
smaller than gate capacitance (εS/S � εox/tox). According to
Fig. 2, this parasitic capacitance doesn’t degrade the energy-
delay product of BED-TFET.

II. SIMULATION DETAILS
The Hamiltonian of BLG is represented using a pz orbital
nearest-neighbor tight-binding (TB) model, which contains
only in-plane and inter-plane hopping terms, γ0 and γ1 as
listed in Table 1. The material properties of the BLG under

FIGURE 2. Energy-Delay comparison of BED-TFET (pink dot) with Dielectric
Engineered (DE) WTe2 TFET (brown dot) [1], Nitride TFET (green dots) [19],
TMD TFETs (red dots) [2], [20], [21] and Si MOSFET (blue dots) [18], [22].

vertical field extracted from the bandstructure for the maxi-
mum Eg of 275 meV are also in Table 1. All the transport
characteristics of the BED-TFET have been simulated
using the self-consistent Poisson-Non Equilibrium Green’s
Function (NEGF) method through the Nano-Electronic
MOdeling (NEMO5) tool [23]–[31]. Applying a vertical
field to BLG opens up a band gap (Fig. 3).

FIGURE 3. Vertical electric field opens up a bandgap in BLG.

The BED-TFET shown in Fig. 1a) is composed of a bilayer
graphene layer sandwiched between two layers of 3nm thick
HfO2 with a relative dielectric constant of εr = 20. The
maximum field within HfO2 in current BED-TFET design
is about 3MV/cm which is less than the breakdown field
of HfO2 (∼8.5MV/cm) [32]. The three gated regions from
left to right have lengths of 25, 40 and 25 nm. �V in
the middle region is fixed to 2V to reach the maximum
bandgap (i.e., 275meV in BLG). Notice that, V1. . . V2’ are
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fixed throughout the device operation to achieve the desired
electrostatically doping. Only the gate voltages in the middle
region are swept to switch the device between ON and OFF.

TABLE 1. Bilayer graphene material properties: in-plane and inter-plane

hopping parameters γ 0 and γ 1, maximum bandgap Eg, electron effective

mass me*, in-plane and out-plane relative dielectric constant εin
r and εout

r .

FIGURE 4. The band diagram along the transport direction (left) and the
energy resolved current (right) in (a) ON state and (b) OFF state.

III. RESULTS AND DISCUSSION
All the results here are for BED-TFET with P-FET con-
figuration in Fig. 1(b); V1, V1’ and V2, V2’ are fixed
at 1.1V, -0.1V and 0.4V, -0.8V respectively to form the
electrostatically doped source and drain regions.
Fig. 4(a) shows the local band diagram along the transport

direction (left) and energy resolved current for the ON-
state (right) of the device. There is a tunnel window of about

FIGURE 5. a) Transfer characteristics of the BED-TFET with different
drain-to-source voltages VDS . b) SS-Id plot with different drain-to-source
voltages VDS . c) Output characteristics of the TFET at several gate voltages
Vg . d) ON/OFF ratio with source-drain voltage VDS for the BED-TFET. LC , LD
and S are kept at 40nm, 25nm and 0nm, respectively.

210 meV in the ON-state. Due to the small band gap at the
tunnel junction, the ON-current is high. In the OFF-state,
the middle region blocks the tunneling window as shown in
Fig. 4(b). Consequently, the OFF-current is mainly the result
of the thermionic electron and hole currents. The electrically
induced band gaps at the source and drain regions in con-
junction with the band gap of the channel make an effective
barrier height of about 350meV which is large enough to
reduce the thermal current at 300K to the desired range.
Fig. 5(a) shows the transfer characteristics of the BED-

TFET for different VDS values. Increasing |VDS| from
10mV to 100mV increases both the ON and OFF currents.
Fig. 5(b) shows that this device achieves a small SS value of
8 mV/dec and high I60 (the current value where SS becomes
60 mV/dec) value of 24 µA/µm for a VDS of -100mV. Notice
that this value of I60 is much higher than that of other 2D
material TFETs even with a VDD of 0.5V [21]. Notice that
increasing |VDS| from 10mV to 100mV does not deteriorate
the small SS. Fig. 5(c) plots the output characteristics of
the device. ID-VDS curves show that there is no late turn on
problem in BED-TFET and the linear region of ID-VDS starts
from VDS=0V. Moreover, the current saturates for |VDS| val-
ues above 50mV. Fig. 5(d) shows that an increase in |VDS|
decreases the ON/OFF ratio from 5 × 104 at VDS=-10mV
to 2 × 104 at VDS=-100mV, which is not substantial.
Here, tunnel thickness modulation rather than energy fil-

tering is used to achieve steep slope. However, unlike other
TFETs that operate with tunnel thickness modulation, the
bandgap is dictated locally by the vertical field which is
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FIGURE 6. LD, LC and LD are the gate length of the left/middle/right
region in Fig. 1(a) (doping region/channel/doping region), respectively.
The spacing between the gates is S. Transfer characteristics of the TFET
with different a) channel length LC (LD = 25nm, S=0nm), b) spacing
S (LC = 40nm, LD =25nm) and c) doping region length LD(LC = 40nm,
S = 0nm).

smaller at the source-channel interface than in the chan-
nel. Consequently, a larger current can be achieved in this
TFET. Notice that the energy filtering mechanism is not
effective in low bandgap materials since the small gap can
only block a small portion of the Fermi tail.
In the BED-TFET, several design parameters are identi-

fied to be critical for the device performance and fabrication:
1) the channel length LC, 2) the length of the electrostati-
cally doped source and drain regions LD, and 3) the spacing
between these gated regions S. In the transfer characteris-
tics demonstrated in Figs. 6a-c, LC, LD and S are kept at
40nm, 25nm and 0nm respectively, unless mentioned other-
wise. Fig. 6(a) shows that reducing LC to 40nm increases
the OFF-current. Below, the performance is not sensitive
to S as shown in Fig. 6(b) for S in the range of 0nm
to 20nm. Fig. 6(c) shows that a LD value below 25nm
can impact the OFF-state performance. The sensitivity to
LC and LD originates from the direct tunneling of carriers
through the channel potential barrier due to the small effec-
tive mass of the BLG. The optimized channel length is longer
than the ITRS requirements. Hence, to keep the footprint of
the BED-TFET small a vertical structure (e.g., conventional
vertical TFET structure [33]) could be used.

IV. CONCLUSION
In this work, the BED-TFET is proposed as a high per-
formance, ultra-low power, steep transistor to overcome the
problems associated with GNRs. The electrically tunable

band gap of BLG makes this transistor highly configurable.
The performance of this device is evaluated through rigorous
quantum transport simulations based on NEGF. It is shown
that with the right device design, the BED-TFET can achieve
ON/OFF ratios of more than 104, ON-current of 45µA/µm,
and a subthreshold swing around 10 mV/dec, all at a low
overdrive voltage of VDD=0.1V at room temperature.
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