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  Abstract—For the autonomous driving application, data 
movement has increased rapidly between a CMOS Image 
sensor (CIS) and the processor due to increase in image 
resolution. Advanced packaging techniques like 2.5D/3D 
integration have been proposed to reduce the data 
movement energy between memory and processor. In this 
work, we explore the use of such techniques to integrate a 
CIS and a backend accelerator on a silicon interposer. The 
data movement energy from CIS to the accelerator is thus 
reduced by 100× compared to using the conventional MIPI 
links. We perform thermal simulations to study the impact 
of the thermal coupling of CIS and accelerator and ensure 
a peak temperature increase of less than 5 °C. We also vary 
the distance between the CIS and the processor to study the 
trade-offs between energy savings and peak temperature. 
Next, we assume the 3D stacked CIS and accelerator to 
reduce the data movement further and obtain an energy 
efficiency of 45.81 TOPS/W. Now we observe a heat 
dissipation challenge with an increase in the peak 
temperature of more than 85 °C. Hence, we scale down the 
operational frequency and study the trade-off between 
performance degradation and reduction in peak 
temperature, while maintaining the accurate multi-object 
tracking on the BDD100k dataset for autonomous driving. 
 
Index Terms—3D-stacked CIS, advanced packaging, 
2.5D/3D integration, thermal modeling, near-pixel 
compute, hardware accelerator, autonomous driving 

 
I. INTRODUCTION 

Deep learning algorithms [1] for autonomous driving have 
advanced rapidly in recent years. Typically, a CIS captures an 
image and sends it to a backend processor for multi-object 
tracking using state-of-the-art algorithms like the QDTrack 
network [2]. For autonomous driving applications, such 
algorithms require processing a high-resolution image (e.g., 
1296×720 image in BDD100k dataset [3]) and hence are 
difficult to run in real-time. Due to the high resolution of the 
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images, large amounts of data movement from the CIS to the 
processor is required, which increases energy consumption and 
reduces the time for the backend processing. Conventionally, 
Mobile Industry Processor Interface (MIPI) links have been 
used to integrate CIS with a processor, which are slow and 
energy inefficient. Advanced packaging techniques such as 
2.5D/3D integration [5] have been used to efficiently transfer 
data from the memory to the processor by closely integrating 
them using Cu-Cu hybrid bonding (HB), µbumps, and through-
silicon via (TSV). These techniques reduce energy 
consumption by reducing the interconnect parasitics between 
memory and processor. In this work, a sparsity-aware backend 
accelerator is designed and integrated with the CIS using 
techniques like 2.5D/3D integration to reduce the data 
movement latency and energy. Although such close integration 
reduces the latency and energy of data transfer, it increases the 
thermal coupling between the processor and CIS, hence 
increasing the chip temperature. An increase in chip 
temperature can reduce the image quality by increasing the 
thermal noise in the CIS as well as decrease the performance of 
the pixel circuit. Prior works have been proposed on using 
advanced packaging techniques to integrate a CIS with a 
processor [6][7], however, they do not study the thermal impact 
of such processors running such deep learning algorithms. 
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Fig. 1. Schematic of the complete video processing pipeline. The CIS 
takes light intensity as the input which is converted to a digital image. 
Redundant frames are rejected by the Temporal Frame Filtering (TFF) 
network. The accepted frames are processed by the backend 
accelerator which runs the QDTrack network to perform multi-object 
tracking (modified from [4]). 
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Moreover, to reduce the energy consumption and latency of the 
system further, designing the accelerator in an advanced 
technology node is desired. This scaling increases the chip 
power density which results in an increase in the chip 

temperature. To prevent obstruction of light, the photodiode 
needs to be on top tier without any heat spreader. As a result, 
the 3D integration of such a near-pixel compute (NPC) [8] 
engine with CIS makes it difficult to dissipate the excess heat 
caused by running the accelerator. This further increases the 
chip temperature which results in a decrease in the operating 
frequency of the chip. Thus, a complete thermal-aware study is 
required to design such an NPC-based 3D stacked CIS.  

    This work extends our prior work done in the EDTM 2023 
conference [10] by redesigning the custom backend accelerator 
instead of using an off-the-shelf FPGA, and reevaluating the 
thermal impact of its 3D integration with the CIS instead of 
2.5D integration. The main contributions of this work are as 
follows:  

1. PE array-based backend accelerator with sparsity-
aware multiply-and-accumulate (MAC) units is 
designed.  

2. The accelerator is integrated with the 3D stacked CIS 
described in [9] using 2.5D integration on a silicon 
interposer. Evaluations and thermal simulations are 
performed for the complete system design.  

3. The accelerator is scaled to an advanced technology 
node (e.g., 7 nm) and integrated using more aggressive 
3D integration, and its thermal impact on performance 
is evaluated. 

4. Cut-off temperature of various components is 
evaluated, and the circuits are modified slightly to 

ensure a sufficient thermal budget for the 3D integrated 
design.  

The article is divided as follows: Section II describes the prior 
work for the autonomous driving algorithm and the 3D stacked 
CIS design. Section III describes the design of the backend 
accelerator and its integration with the CIS. Section IV 
describes the simulation methods and the results.  

II. BACKGROUND 
A. Algorithm for autonomous driving 

In this work, the BDD100k dataset [2] is used as the dataset 
for the autonomous driving problem, on which multi-object 
tracking is performed using the QDTrack network [3]. Fig. 1 
describes the complete image processing pipeline. The image is 
first filtered using a temporal frame filtering (TFF) network [4], 
and we call it frontend pre-processing to reduce the data volume 
to be transmitted to the backend processing (e.g., for multi-
object tracking). The TFF network is a 3-layer convolutional 
neural network that takes the current and the previous frames as 
the input and gives an output score. It rejects frames with scores 
less than a certain threshold to reject redundant frames without 
much degradation in accuracy. The accepted frames are then 
passed through the QDTrack network with a ResNet-50 
backbone, which segments the image and performs multi-object 
tracking on it. For performing accurate multi-object tracking, 
BDD100k dataset has been generated in [3] at 5 frames per 
second (FPS). The TFF network reject 40% of the frames, 
therefore, the backend processor needs to process data at 3 FPS 
or with a total latency of less than 333 ms. Prior work [4] shows 
that the TFF network performs frame dropping with a minimal 
drop in the multi-object tracking accuracy. This reduces the 
amount of data transfer from the CIS to the backend processor 
as well as reduces the operating frequency of the backend 
processor, hence decreasing the overall energy consumption of 
the system. 

B. Hardware for frontend and backend processing 
Fig. 2 shows the schematic of 3D stacked CIS [9] for frontend 
processing including the image capturing and the TFF network 
execution. The CIS takes light intensity as the input and 
converts it to a digital signal which is the input to the TFF 
network. The near-pixel compute (NPC) based engine runs the 
TFF network. The 3D stacked CIS comprises of 2-tier design, 
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Fig. 3. (a) PE array-based backend accelerator schematic. The NoC is 
decided by the dataflow, which in our case is kc-p dataflow from [11]. 
(b) Sparsity-aware 8b×8b MAC unit, with power gated multiplier and 
adder. The signal ‘is_sparse’ = 1 when weight = 0. ((a) modified from 
[11]).  
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Fig. 2. 3D stacked CIS. The top tier comprises photodiodes and the 
bottom tier comprises DCIM based near-pixel compute (NPC) engine 
and IWO-FETs based buffer memory to run the TFF network. The 
two tiers are integrated using Cu-Cu hybrid bonding. Note that, such 
close integration and absence of heat spreader results in an increase in 
peak temperature (modified from [9]). 
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where the top tier comprises photodiodes and its peripheral 
circuit, and the bottom tier comprises buffer memory and the 
NPC engine to run the TFF network. The top tier is designed in 
the 40 nm technology node considering the CIS availability in 
today’s foundry offerings (e.g., from TSMC [12]), and the 
bottom tier is designed in the 22 nm technology node for better 
performance and power efficiency. The two tiers are integrated 
using HB with a 3 µm pitch for global shutter operation, as 
described in [9]. The buffer memory comprises of back-end-of-
line (BEOL) Tungsten-doped Indium Oxide Transistors (IWO-
FET) based 2T-eDRAM cell [13] to store the previous frame, 
in the 22 nm technology node. Since, the TFF network needs to 
run at 5 FPS, the 2T-eDRAM cell needs to have a retention time 
of at least 200 ms, to avoid any refresh penalty. The wide 
bandgap of IWO-FET offers ultra-low leakage current and 
could satisfy such retention requirements in 2T-eDRAM cells. 
The NPC circuit comprises a digital compute-in-memory 
(DCIM) based design, similar to the prototype chip by TSMC 
[14].  
   This 3D stacked CIS is first assumed to be integrated with a 
backend FPGA using 2.5D integration [10] on a silicon 
interposer to reduce energy consumption due to data movement. 
The RC parasitics of the 2.5D links are modeled with a pitch of 
8 µm using models described in [15]. Thermal modeling is 
performed and a peak temperature of 84.8 °C of CIS is found 
(shown in Fig. 6(a) as baseline design), even with a heat 
spreader and active air cooling that covers the entire FPGA die. 
This high temperature is due to the high energy consumption of 
the FPGA die, which inhibits its potential for 3D integration 
with the CIS. As a result, an energy-efficient sparsity-aware 
backend accelerator is designed and integrated with the CIS that 
paves the way for a fully 3D integrated system, as described in 
the following section.  

III. DESIGN AND MODELING METHODOLOGIES 
A. Backend accelerator design 

The backend accelerator is a PE array-based accelerator 
designed using the MAESTRO tool [11]. Fig. 3(a) describes the 
PE array with a network-on-chip (NoC) and a shared L2 SRAM 
buffer. Since ResNet-50 takes nearly 70% of the computation for 
the QDTrack we use the kc-p dataflow where the parallelism is at 
the kernel and channel level and is observed to be efficient for 
ResNet-50. Next, a sparsity-aware PE is designed, where each PE 
can perform eight 8-bit MAC operations. For a sparsity-aware 
design, the PE is power gated with a ‘is_sparse’ signal, when the 
weight is 0, the PE is turned OFF. Since the ‘is_sparse’ signal is 

transmitted along with the weight, each weight is transmitted as a 
9-bit signal. Along with that, read/write for each weight only 
happens if the ‘is_sparse’ signal is ‘1’. Considering 90% weight 
sparsity of the QDTrack network [16], the total model size is just 
0.34 MB. Each PE has 2.3 kb of Register files for local storage, 
and the complete processor has a shared 3.66 MB L2 SRAM as the 
global buffer to store the weights of the network as well as the 
intermediate computation results. The PEs are connected through 
a NoC decided by the kc-p dataflow and the energy estimation is 
done by finding the capacitance of the NoC wires.  

B. 2.5D integration 
Next, 2.5D integration of CIS and backend processor (either 

off-the-shelf FPGA or our custom-designed accelerator) on a 
silicon interposer is modeled, as shown in Fig. 4, where the 
ASIC is the backend accelerator. RC parasitics of the 2.5D links 
are modeled as described in [15]. Additionally, parasitics due 
to µbump and bump pad are modeled. To find out the peak 
temperature, the complete system is modeled and simulated in 
Ansys mechanical APDL, as shown in Fig. 5(a). The air cooling 
is assumed at the top surfaces for each die stack. Table I 
provides the list of parameters used for thermal modeling. The 
power density and the area of each component are obtained 
from Cadence simulations. For C4 bumps, the area is kept same 
as other tiers in the stack, with the thickness of 50 µm. Although 
closer integration of CIS and backend processor reduces the 
2.5D link length and hence the parasitics, it might result in 
higher thermal coupling and higher peak temperature. 
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Fig. 4. (a) The backend accelerator comprises MAC+L1(SRAM) units 
and an L2 global buffer. Tx and Rx are simple inverter chain-based 
driver circuits. (b) The two chips are integrated on Si interposer using 
2.5D links (modified from [10]). 
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Fig. 5. Simulations are performed for the above schematics in Ansys 
mechanical APDL software, using the parameters described in the 
table I. (a) Schematic for 2.5D integrated design with 22 nm node 
backend processor (“Design 1”). (b) Schematic for 3D integrated 
design with 7 nm node backend processor (“Design 2”). 

TABLE I: MODELING SPECIFICATIONS 

Tier 1 Bulk
Tier 1 BEOL

HB Layer
Tier 2 BEOL

C4 Bumps
Interposer

Accelerator Bulk

Tier 2 Bulk

0.388×0.315×4 149 (25 °C) 
0.388×0.315×2 200, 200, 3
0.388×0.315×3 14.163
0.388×0.315×2 200, 200, 3

50 µm 0.3, 0.3, 2.5
2×2×1000 149 (25 °C) 

0.67×0.67×128 149 (25 °C) 

0.388×0.315×120 149 (25 °C) 
Accelerator BEOL 0.67×0.67×2 200, 200, 3

Package 2.5×2.5×1000 70, 70, 3

Tier Thickness (x, y, z) 
(cm×cm×µm)

Thermal Conductivity 
(x, y, z) (W/mK)

TIM 1×1×30 2.9  
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Therefore, we vary the distance between the two dies and 
calculate the peak temperature and the energy per bit (EPB) for 
transmitting the data from CIS to the backend processor. We 
restrict the maximum distance to 5 mm, as beyond 5 mm the 
energy consumption due to the interposer links is quite large. 
Due to the relatively high thermal conductivity of the silicon 
interposer, the variation of peak temperature within the above-
mentioned distance range is negligible (< 0.1 °C), we select 0.1 
mm as the distance between the two dies to minimize the EPB. 

C. Scaling to 7 nm and 3D integration 
To improve performance and reduce energy consumption, 

the NPC engine on the bottom tier of the 3D stacked CIS and 
the backend accelerator are both scaled to the 7 nm technology 
node. This also reduces the area of the NPC die to 2.1 mm2, 
creating an area imbalance with a 40 nm CIS die (10 mm2). This 
makes it difficult to integrate the two dies using HB. After 
performing scaling, the combined area of the NPC engine and 
the backend accelerator reduces to nearly 10 mm2. Since this is 
equal to the area of the top CIS tier, we integrate both the NPC 
engine and the backend accelerator on a single monolithic die 
at the 7 nm technology node and place them at the bottom tier 
to make a true 3D stack. The top tier comprising photodiodes is 
kept unchanged at 40 nm technology nodes as the photodiodes 
do not follow similar scaling laws as logic with advanced 
technology nodes. This reduces the overall form factor, 
removes the use of silicon interposer, removes the need to use 
a specialized process for HB with area imbalance, as described 
in [17], and reduces the energy consumption due to data 
movement even further. Now, the bottom tier comprises both, 
the NPC engine and the backend accelerator and is integrated 
with the top tier using HB. This further reduces the EPB for data 
transfer since the images only need to travel over the BEOL 
metal layers from the DCIM-based engine to the PE array-based 
accelerator.  Further, we still require the TFF network since it 
helps to reduce the number of frames to be processed by the 
larger backend QDTrack network. We maintain the 
heterogeneous design for the DCIM-based NPC engine and PE 
array-based backend accelerator, as DCIM is efficient for small 
neural networks like the TFF network while PE arrays are 
scalable for large networks like the QDTrack network. The 
2.5D integrated design is referred to as “Design 1” and the 3D 
integrated design is referred to as “Design 2”. 

However, since the photodiode tier needs to be on the top 
without a heat spreader, the system cannot have a heat sink, 
making it difficult to dissipate heat in such 3D integration. To 
reduce the temperature, we reduce the frequency of operation 
of the PE-based backend processor and evaluate its effect on the 
peak temperature and latency of the system. 

D. Temperature cut-off 

Next, we check the temperature cut-offs of each of the 
components for both 2.5D/3D designs. We simulate each circuit 
component in Cadence Virtuoso at a high temperature and 
check the functionality to obtain the peak temperature. The cut-
off for the digital components is assumed to be 85 °C. The cut-
off temperatures of each of the components are defined as 
follows: photodiodes at higher temperatures increase the 
thermal noise and decrease the retention time at the storage 
node capacitance. This reduces the dynamic range and degrades 
the quality of an 8-bit input image, we consider the temperature 
corresponding to the dynamic range of 50 dB as the cut-off 
temperature. For IWO-FETs-based buffer memory, an increase 
in temperature results in an increase in the leakage current and 
hence reduces the retention time. For IWO buffer memory, we 
require a retention time of 200 ms. Table III shows the cut-off 
temperatures for various components. Due to the small form 
factor of the overall system and high thermal coupling, the 
temperature is rather homogeneous throughout the system. As 
a result, we keep the overall temperature cut-off to be the lowest 
of all the above values which is 85 °C. 
 

   IV. Results and Discussion 
The sparsity-aware MAC is designed in Cadence Virtuoso using 

40 nm foundry PDK and energy and latency are extracted. The 
power-performance-area (PPA) is scaled to 22 nm and 7 nm 

technology nodes using NeuroSim projection [18]. Power 
consumption and latency of individual components are obtained 
from SPICE simulations and used along with the cycle-level 
data obtained from MAESTRO simulations [11]. The backend 
accelerator comprises 10k PEs along with the local L1 SRAM 
storage per PE, NoC, and L2 SRAM as a global buffer. Table 
III summarizes the design parameters and the output metrics for 
designs 1 and 2. The data transmission energy over 2.5D links 
reduces by over 117× as compared to conventional MIPI links, 
as shown in Table IV.  

TABLE III: PPA FOR THE BACKEND ACCELERATOR AT 
DIFFERENT TECHNOLOGY NODES 

 

Power consumption (mW)
Latency (ms)

Operating Frequency (MHz)
206.3 21.3
152.7 332.9

200 41

Design 1 Design 2

Area (mm2) 41.72 8.11
Frame rate (FPS) 6.5 3

Energy efficiency (TOPS/W) 10.30 45.81

Integration type

Technology node for backend 
processor and DCIM

2.5D 3D

22 7

 

TABLE II: CUT-OFF TEMPERATURES OF VARIOUS COMPONENTS
Cut-off temperature (°C)

Photodiodes

Digital components

125

85
IWO-FETs based buffer memory 95.8

 

TABLE IV: 2.5D LINK ENERGY CONSUMPTION 
MIPI Link 2.5D Links

Energy/Bit (pJ/bit) 12.5 0.11
Power Consumption (mW) 0.84 0.007  
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Next, we perform thermal simulations in Ansys Mechanical 
APDL. Table I summarizes the parameters used to perform the 
simulations. An ambient temperature of 35 °C is assumed, 
considering the elevated temperature during driving conditions. 
For design 1, the schematic described in Fig. 5(a) is used. 
Design 2 only requires the 3D stacked CIS on an organic 
substrate and the schematic is described in Fig. 5(b). Fig. 6 
shows the thermal map obtained for different configurations. 
Although the heat generation is maximum in the backend 
accelerator, similar temperature throughout the package is due 
to high thermal coupling in such closely integrated systems. For 
design 1, we obtain a peak temperature of 37.4 °C, with the 
temperature being nearly the same throughout the package, as 
shown in Fig. 6(b). In case of design 1, the temperature is higher 
at the edge closer to the CIS due to higher coupling. In case of 
design 2, the temperature is higher in the MAC+RF part due to 
its higher power dissipation. If running at the same frequency 
of 200 MHz as the 22nm, Fig. 7 (a) shows the thermal map of 

design 2 as shown in the schematic described in Fig. 5 (b), 
indicating an excessive heat dissipation problem in the 3D 
integration. Use of a heat spreader in design 2 will prevent light 
from entering the photodiodes. Hence, lowering the operating 
frequency is necessary to lower the peak temperature. Fig. 7 (b) 
describes the thermal map of design 2 operated at a lowered 41 
MHz to keep the peak temperature within 85 °C. The lower 
operating frequency results in an increase in the inference 
latency of the QDTrack network. Fig. 8 describes the obtained 
peak temperature for design 2 as a function of latency. From 
this curve, we can choose the operating frequency based on the 
thermal budget of the chip. For accurate multi-object tracking 
at 3 FPS, the latency should be less than 333 ms. This 
corresponds to an operating frequency of 41 MHz with a peak 
temperature of 85 °C. Table V summarizes the comparison of 
the designed accelerators in this work with other state-of-the-
art accelerators for CIS. The proposed 2.5D design can run at a 
high frequency of 175 MHz to achieve a frame rate of 14.7 FPS 
while the peak temperature only increases by 2.75 °C. The 3D 
design can perform accurate multi-object tracking by achieving 
frame rate of 3 FPS and keep the temperature under 85 °C. As 
compared to other state-of-the-art CIS, our 3D stacked CIS is 
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Fig. 6. (a) Thermal map for 2.5D integration of FPGA and CIS (from [10]). (b) Thermal map for the 2.5D integration of CIS and custom 
accelerator (“Design 1”) described in Fig. 5 (a). The backend accelerator is designed in 22 nm node.  

  
Fig. 8. The operating frequency is varied and a plot between the peak 
temperature vs. inference latency is obtained. Based on the required 
operating conditions with latency < 333 ms and peak temperature < 
85 °C, we chose the operating frequency to be 41 MHz. 
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Fig. 7. (a) Thermal map for 3D integration of CIS and custom 
accelerator (“Design 2”) described in Fig. 5 (b). The backend 
accelerator and the NPC circuit is scaled to 7 nm technology node and 
integrated together at the bottom tier using Cu-Cu hybrid bonding. 
The operating frequency is 200 MHz and the peak temperature is 
exceeding 250 °C. (b) Thermal map of “Design 2” when run at a lower 
frequency of 41 MHz to obtain peak temperature of 85 °C. 
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the only thermal-aware design capable of performing a complex 
task like multi-object tracking for autonomous driving, while 
achieving a high energy efficiency of 45.81 TOPS/W. 

V. CONCLUSION  
To enable the intelligence of the camera, integration of machine 

learning hardware with the CIS is preferred. A sparsity-aware PE 
array-based accelerator is designed to perform inference on the 
BDD100k dataset using the QDTrack algorithm for autonomous 
driving. The designed backend accelerator is 2.5D integrated with 
a CIS with NPC for efficient data transfer. The accelerator is 
further scaled to an advanced technology node and 3D integrated 
with the CIS design with lower power consumption. The thermal 
impact of integration is performed for both designs. Finally, we 
scale down the frequency to accurately perform multi-object 
tracking within the thermal budget. We see a trade-off in terms of 
the overall latency, power consumption, and peak temperature 
among the two designs. 

 
ACKNOWLEDGMENT 

The authors would like to thank Yandong Luo, previously at 
Georgia Institute of Technology, for evaluation codes and 
Qiucheng Wu at the University of California, Santa Barbara for 
inputs on the algorithm. 

REFERENCES 

[1] S. Grigorescu et al., "A survey of deep learning techniques for autonomous 
driving," Journal of Field Robotics (37), 362– 386, 2020. 

[2] J. Pang et al., "Quasi-dense similarity learning for multiple object 
tracking," IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), 2021. 

[3] F. Yu et al., "BDD100K: A diverse driving dataset for heterogeneous 
multitask learning," IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (CVPR), 2020. 

[4] W. Li et al., “Temporal frame filtering with near-pixel compute for 
autonomous driving,” IEEE International Conference on Artificial 
Intelligence Circuits and Systems (AICAS), 2022. 

[5] F. Sheikh et al., “2.5D and 3D Heterogeneous Integration: Emerging 
applications,” in IEEE Solid-State Circuits Magazine, 2021. 

[6] R. Eki et al., "A 1/2.3inch 12.3Mpixel with on-chip 4.97TOPS/W CNN 
processor back-illuminated stacked CMOS image sensor," IEEE 
International Solid-State Circuits Conference (ISSCC), 2021. 

[7] H. Xu et al., "Senputing: An ultra-low-power always-on vision perception 
chip featuring the deep fusion of sensing and computing," in IEEE 
Transactions on Circuits and Systems I: Regular Papers (TCAS-I), vol. 69, 
no. 1, pp. 232-243, 2022. 

[8] F. Zhou et al., "Near-sensor and in-sensor computing," Nature Electronics, 
3.11, 664-671, 2020. 

[9] J. Sharda et al., “Temporal frame filtering for autonomous driving using 
3D-stacked global shutter CIS with IWO buffer memory and near-pixel 
compute.” IEEE Transactions on Circuits and Systems I: Regular 
Papers, 2023. 

[10] J. Sharda et al., "Thermal Modeling of 2.5D Integrated Package of CMOS 
Image Sensor and FPGA for Autonomous Driving," IEEE Electron Devices 
Technology & Manufacturing Conference (EDTM), 2023. 

[11] H. Kwon et al., "MAESTRO: A Data-Centric Approach to Understand 
Reuse, Performance, and Hardware Cost of DNN Mappings," IEEE Micro, 
2020. 

[12] H. Sugo et al., "A dead-time free global shutter CMOS image sensor with 
in-pixel LOFIC and ADC using pixel-wis e connections," IEEE Symposium 
on VLSI Circuits (VLSI-Circuits), 2016. 

[13] H. Ye et al., "Double-gate W-doped amorphous indium oxide transistors 
for monolithic 3D capacitorless gain cell eDRAM," IEEE International 
Electron Devices Meeting (IEDM), 2020. 

[14] H. Fujiwara et al., "A 5-nm 254-TOPS/W 221-TOPS/mm2 Fully-Digital 
Computing-in-Memory Macro Supporting Wide-Range Dynamic-Voltage-
Frequency Scaling and Simultaneous MAC and Write Operations," IEEE 
International Solid- State Circuits Conference (ISSCC), 2022. 

[15] S. Jangam et al., "Electrical Characterization of High Performance Fine 
Pitch Interconnects in Silicon-Interconnect Fabric," IEEE Electronic 
Components and Technology Conference (ECTC), 2018. 

[16] Y. Zhang et al., "Data-Model-Circuit Tri-Design for Ultra-Light Video 
Intelligence on Edge Devices," ACM Asia and South Pacific Design 
Automation Conference (ASPDAC), 2023. 

[17] A. Elsherbini et al., "Enabling Next Generation 3D Heterogeneous 
Integration Architectures on Intel Process," International Electron Devices 
Meeting (IEDM), 2022 

[18] X. Peng et. al., "DNN+NeuroSim: An end-to-end benchmarking 
framework for compute-in-memory accelerators with versatile device 
technologies," IEEE International Electron Devices Meeting (IEDM), 
2019. 

[19] K. Bong et al., "A 0.62mW ultra-low-power convolutional-neural-network 
face-recognition processor and a CIS integrated with always-on Haar-like 
face detector," IEEE International Solid-State Circuits Conference 
(ISSCC), 2017 

[20] M. Lefebvre et al., "A 0.2-to-3.6TOPS/W programmable convolutional 
imager SoC with in-sensor current-domain ternary-weighted MAC 
operations for feature extraction and region-of-interest detection," IEEE 
International Solid-State Circuits Conference (ISSCC), 2021. 

[21] T.-H. Hsu et al., "A 0.8V intelligent vision sensor with tiny convolutional 
neural network and programmable weights using mixed-mode processing-
in-sensor technique for image classification," IEEE International Solid-
State Circuits Conference (ISSCC), 2022 

 
 
 

TABLE V: COMPARISON WITH OTHER STATE-OF-THE-ART NEAR-PIXEL COMPUTE BASED SENSORS 

*: FC: Fully-Connected layer, Conv: Convolution operation, Approx. Conv: Separable convolution, MaxPool: Maxpooling operation, ReLU: ReLU activation function, ISP: Image Signal Processor, Activation: 
Activation function, Haar: Haar-like filter

ISSCC’22 [21]ISSCC’21 [20]ISSCC’17 [19] ISSCC’21 [6] This WorkTCASI’22 [7]
Technology

Activation/weight precisions
Area (mm2)

Supply voltage (V)
Operating frequency (MHz)

Power consumption
Energy efficiency (TOPS/W)

Compute Paradigm

Array Size

180 nm CMOS65 nm CMOS65 nm CMOS 22 nm CMOS 22 nm CMOS180 nm

3b/1.5b8b/1.5b-/1.5b 8b/8b 8b/8b1b/1b
5.37416 62 8.74.7
0.8 V0.80.8/2.5 0.8 0.90.8

5-100 262.5 200-

80.4 µW 42-106 µW620 µW 278.8 mW 206.3147 nW-537 nW
-0.15-3.641.24 4.97 10.34.7-17.3

Near-PixelIn-PixelNear-Pixel Near-Pixel Near-PixelIn-Pixel

126×126160×128320×240 4056×3040 1296×72032×32
Processing type Mixed-SignalMixed-SignalMixed-Signal Digital DigitalAnalog

Compute density (TOPS/mm2) -3.7×10-6-63×10-60.03 0.02 0.055×10-7

Workload* Conv, FC, ReLU, 
MaxPoolConv, Haar

Approx. Conv, FC, 
Haar, MaxPool, 

Activation
ISP, Mobilenet_v1 Conv, ReLU, 

MaxPoolFC, Activation

Thermal-aware design NoNoNo No YesNo

Application Image 
ClassificationFace DetectionFace Detection and 

Recognition Object Detection Autonomous 
DrivingDigit Clasification

This Work
7 nm CMOS

8b/8b
8.7

0.75
41

21.3
45.81

Near-Pixel

1296×720
Digital

0.12

Conv, ReLU, 
MaxPool

Yes

Autonomous 
Driving
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