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ABSTRACT In this paper, we conducted a simulation of an indium-gallium-zinc oxide (IGZO)-based
neuromorphic system and proposed layer-by-layer membrane capacitor (Cmem) optimization for integrate-
and-fire (I&F) neuron circuits to minimize the accuracy drop in spiking neural network (SNN). The
fabricated synaptic transistor exhibited linear 32 synaptic weights with a large dynamic range (∼846), and
an n-type-only IGZO I&F neuron circuit was proposed and verified by HSPICE simulation. The network,
consisting of three fully connected layers, was evaluated with an offline learning method employing
synaptic transistor and I&F circuit models for three datasets: MNIST, Fashion-MNIST, and CIFAR-10.
For offline learning, accuracy drop can occur due to information loss caused by overflow or underflow in
neurons, which is largely affected by Cmem. To address this problem, we introduced a layer-by-layer Cmem
optimization method that adjusts appropriate Cmem for each layer to minimize the information loss. As a
result, high SNN accuracy was achieved for MNIST, Fashion-MNIST, and CIFAR-10 at 98.42%, 89.16%,
and 48.06%, respectively. Furthermore, the optimized system showed minimal accuracy degradation under
device-to-device variation.

INDEX TERMS Spiking neural network, neuromorphic system, IGZO, synaptic transistor, integrate-and-
fire neuron.

I. INTRODUCTION
Neuromorphic computing systems for artificial neural
networks (ANNs) and spiking neural networks (SNNs)
have emerged as a promising solution to address memory
bottleneck originating from von Neumann architecture with
large-scale data [1], [2], [3]. Notably, SNN is well-suited
for neuromorphic systems due to its biologically plausible
mechanism mirroring the human brain and its potential for
highly efficient parallel computing [4]. To realize a hardware
SNN system, it is essential to implement: (1) artificial
synapses that can mimic the synaptic plasticity and (2) arti-
ficial neurons that can emulate the spike behaviors [5], [6].
Recently, various studies on artificial synapses and neurons
using indium-gallium-zinc oxide (IGZO), which has the
advantages of a moderate mobility, a low leakage current,
and a low-temperature process, have been actively proposed

to advance the SNN system [7], [8], [9]. Configuring an
SNN system using both IGZO-based artificial synapses and
neurons enables its fabrication through a low-temperature
process, offering several advantages such as application
on flexible or stretchable substrates and compatibility with
back-end-of-line (BEOL) process [10], [11]. However, recent
studies have primarily focused on developing either a
synapse or a neuron individually, and there is still a lack
of research on SNN systems that incorporate both synapses
and neurons [12].

In order to achieve a high-performance SNN system, it is
important to optimize the training method and system design
that consider the properties of synapses and neurons [13].
In the training methods for SNNs, there are mainly two
approaches: online and offline learning [14], [15]. For
online learning, the spike-timing-dependent plasticity or
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spike-rate-dependent plasticity are adopted as weight-update
rules [16], [17]. Online learning can offer a robust SNN
system by compensating for variations in synaptic devices
during real-time learning. However, achieving high accuracy
for complex datasets is still challenging [18], [19], [20], [21],
[22]. Therefore, offline learning utilizing backpropagation
algorithms has been studied as an alternative training
method [23], [24], [25]. Offline learning is advantageous
for achieving high accuracy for complex datasets because
ANN weights trained using backpropagation algorithms are
transferred to the SNN system [26]. However, the offline
learning method suffers from accuracy drop during the ANN-
to-SNN conversion due to the different neuron behaviors
in ANN and SNN [27]. While ANN neurons pass inputs
through an activation function and immediately produce an
output, SNN neurons based on integration and fire (I&F)
behavior must accumulate inputs until the membrane voltage
(Vmem) exceeds a membrane threshold voltage (VMTH) to
generate a spike to the next layer [28]. Therefore, depending
on the extent of Vmem change, information loss in SNNs can
occur in two forms: overflow and underflow loss. Overflow
loss occurs when voltage exceeding VMTH is not utilized
for subsequent spike generation. Conversely, underflow loss
occurs when an increase in Vmem is insufficient to reach
VMTH, thereby preventing the propagation of information
to the next layer [24], [29]. Especially, in deep SNNs with
many layers, such information loss can accumulate as spikes
pass through the layers, leading to error and performance
degradation [27], [30]. Given that the extent of Vmem change
is influenced by various factors including the conductance
range of synaptic devices, neuron spike characteristics, and
membrane capacitor (Cmem), it is imperative to design
hardware SNN systems based on the properties of synapse
and neuron.
In this paper, we simulated a hardware SNN system

consisting of IGZO-based synaptic transistors and I&F
neuron circuits. IGZO synaptic transistors were fabricated
and measured to model synaptic weights and device-to-
device variation. In addition, we proposed and verified
an I&F neuron circuit by HSPICE simulation using the
RPI polysilicon model, whose parameters were extracted
by fitting the characteristics of fabricated IGZO thin-film
transistors (TFTs). Subsequently, SNN simulations were
conducted using MATLAB to evaluate the performance on
three datasets: MNIST, Fashion-MNIST, and CIFAR-10. As
the Vmem change is influenced by Cmem, we investigated the
impact of Cmem on SNN performance and proposed a layer-
by-layer Cmem optimization method to minimize information
loss that occurs at each layer.

II. IGZO NEUROMORPHIC SYSTEM
A. IGZO SYNAPTIC TRANSISTOR
The neuromorphic system, which mimics the mechanism
of the human brain, is composed of synaptic devices
and neuron circuits. To implement the synaptic device,
we fabricated IGZO synaptic transistors consisting of the

FIGURE 1. (a) Cross-sectional schematic and (b) SEM image of the IGZO
synaptic transistor.

Al2O3/IGZO/Al2O3 gate stack and IGZO channel [31], as
illustrated in Fig. 1(a). First, the buffer oxide (SiO2) on
Si substrate was cleaned using ultrasonication. A 70-nm
titanium (Ti) layer was deposited using e-beam evaporator,
and dry etched to form the gate electrode. A 70-nm
Al2O3 blocking layer (BL) was deposited by atomic layer
deposition (ALD) at 150 ◦C using the H2O reactant and
trimethylaluminum (TMA) precursor. A 40-nm IGZO charge
trap layer (CTL) was deposited by RF sputtering using
the IGZO target (In:Ga:Zn = 1:1:1 at%). The CTL was
patterned by photolithography and wet etched. A 7-nm
Al2O3 tunneling layer (TL) was deposited by ALD at
150 ◦C. A 40-nm IGZO channel was deposited by RF
sputtering and defined by photolithography and wet etching.
Then, 70-nm Ti drain/source were deposited by e-beam
evaporation and formed by a lift-off process. Finally, the
devices were annealed at 250 ◦C for 0.75 h in an air
atmosphere. Each layer of the fabricated device was clearly
defined with channel width/length of 15/0.9 µm, as shown
in Fig. 1(b). All electrical measurements were performed
using a semiconductor parameter analyzer (4200 SCS &
4225 PMU, Keithley) in a dark box at RT.
The synaptic transistor can modulate the threshold voltage

(VTH) by controlling the amount of charge in the CTL via
Fowler-Nordheim tunneling between the channel and CTL.
Under a positive gate bias (program), electrons from the
channel can be trapped in the CTL. Conversely, under a
negative gate bias (erase), electrons in the CTL are de-
trapped to the channel. To investigate the electrical behavior
and uniformity of the synaptic transistor, we measured the
transfer curves of 15 devices with a gate double sweep
ranging from −20 V to 20 V, which exhibited clockwise
hysteresis and uniform hysteresis window (Fig. 2(a)). As the
representability of synaptic weights in the synaptic device
is important for the neuromorphic system, we measured the
synaptic weights of 15 devices using potentiation pulses.
The condition of the potentiation pulse (−20 V, 200 µs)
was chosen to achieve optimal linearity and dynamic range.
There is potential to lower the voltage of the potentiation
pulse by further optimizing the BL and TL in the synaptic
transistor. Before the measurement, one depression pulse
(20 V, 1 s) was applied to initialize the synaptic weight to
the first level, and then a series of potentiation pulses were
applied. All conductance values were read at VGS of 0 V
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FIGURE 2. (a) Transfer curves under ±20 V double sweep and hysteresis
window size (inset) of 15 synaptic transistors. (b) Synaptic weight
distribution (32 levels) of different 15 synaptic transistors.

FIGURE 3. Measured and simulated (a) transfer and (b) output curves of
the IGZO TFT.

FIGURE 4. (a) Schematic of the proposed I&F neuron circuit based on IGZO
TFTs. (b) Simulated output characteristic of the I&F neuron circuit.

and VDS of 1 V. The devices show highly linear conductance
modulation with 32 weight levels and a large dynamic range
(Gmax/Gmin) of about 846, as shown in Fig. 2(b).

B. IGZO I&F NEURON CIRCUIT
We proposed an IGZO-based neuron circuit that emulates
the I&F behavior widely used in SNNs [32]. The circuit
consists of n-type-only TFTs because IGZO is inherently
n-type material. There are four inverters, one reset TFT (T1),
three delay capacitors (CD), and one membrane capacitor
(Cmem), as shown in Fig. 4(a). The circuit operation was
verified by HSPICE simulation using the IGZO TFT library
based on the fabricated device’s electrical properties. The
IGZO TFT was fabricated using the same process as the
IGZO synaptic transistor, except for the deposition of IGZO
CTL. The mobility, VTH, and subthreshold swing of the
IGZO TFT were 9.6 cm2/V·s, 1.9 V, and 220 mV/dec,
respectively. We adjusted HSPICE RPI polysilicon model

FIGURE 5. (a) Schematic of spiking neural network with three fully
connected layers. (b) Hardware implementation of the SNN using
IGZO-based synaptic transistors and I&F neurons.

parameters based on the measured data to simulate the circuit
operation accurately. The measured and simulated electrical
characteristics of the IGZO TFT are shown in Fig. 3. All
transistors are 0.9 µm in length. The widths of pull-up
transistors (T2, T4, T6, and T8) and pull-down transistors
(T3, T5, T7, and T9) in the inverters are 1 µm and 35 µm,
respectively. The large width of 60 µm for T1 is used for the
fast discharge of Cmem. The values of VDD, VSS, and CD are
6 V, −0.2 V, and 500 fF, respectively. Fig. 4(b) shows the
simulated Vmem and Vspike when the constant current spikes
are periodically accumulated in Cmem. The neuron circuit
successfully generates a spike and resets Cmem when Vmem
exceeds the VMTH of 2.45 V. The voltage and width of the
spike are 3.8 V and 3.5 µs, respectively. The width of the
spike can be modulated by changing CD. When a spike is
generated, Vmem is reset to zero voltage through T1.

C. SNN SYSTEM CONFIGURATION
For the SNN simulation, we utilized a network that consists
of one input layer and three fully connected layers (256-
128-10), as shown in Fig. 5(a). The size of the input layer is
determined by the input image size of the dataset. The input
image is converted to a series of spikes based on left-justified
rate coding, where the number of spikes is proportional
to the grayscale of the image [33]. The number of time
steps is determined by the maximum grayscale of the input
image because each input neuron propagates one spike per
time step. The network layer can be configured in hardware
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FIGURE 6. (a) ANN training accuracy of each dataset according to epoch.
(b) Weight distribution change before and after synapse transfer.

utilizing IGZO-based synaptic transistors and I&F neurons,
as shown in Fig. 5(b). The spikes generated by presynaptic
neurons are converted to currents through the synapses,
and then these currents accumulate in the Cmem of each
postsynaptic neuron. It is assumed that each postsynaptic
neuron is connected to both inhibitory and excitatory synapse
lines to implement positive and negative weights.

III. RESULTS AND DISCUSSION
Fig. 6(a) shows the ANN training accuracy during 200
epochs for three datasets in the pre-defined software
(Python). The training parameters were as follows: ReLU
activation function, Adam optimization, a learning rate of
0.0005, a batch size of 400, and a dropout probability
of 10%. The trained ANN weights were normalized and
quantized based on the synaptic weight levels and then
rescaled to fit within the conductance range of the synaptic
weight. To prevent loss of accuracy, the positive and negative
weights from ANN should be implemented identically
in SNN, requiring the two synapse lines: excitatory and
inhibitory synapse lines. Before the weight transfer, all
synapses in the SNN system were initialized to the first
weight level. During the weight transfer process, synapses
in either inhibitory or excitatory lines were updated based
on the sign of the weight. The weight is described as the
following equation:

W = (GE − GI) (1)

GE and GI are the conductance of the excitatory and
inhibitory synapses, respectively. Fig. 6(b) shows the change
in weight distribution before and after weight transfer to
synapses. During the SNN simulation, the Vmem of a
postsynaptic neuron is determined by the following equation:

FIGURE 7. SNN accuracy results according to Cmem for three datasets
(identical Cmem).

Vmem(t) = Vmem(t − 1)

+ 1

Cmem

N∑

i

Wi × Vspike,i × Tspike,i (2)

Vmem (t) is the membrane voltage at time step t. N is the
number of presynaptic neurons. Since the extent of Vmem
change is affected by Cmem, selecting the optimal value of
Cmem is essential to enable proper information transfer across
the layers. For example, if Cmem is excessively large, it can
result in underflow, which suppresses spike generation in
the neurons and hinders information transfer to the output
neurons. On the other hand, if Cmem is too small, it can lead
to overflow, causing Vmem to significantly exceed VMTH.
Since Vmem is reset to 0 V regardless of how much it exceeds
VMTH, any voltage exceeding VMTH is not utilized for the
next spike generation. Furthermore, due to overflow, spikes
can be erroneously generated in neurons where spikes should
not occur. For these reasons, optimization of Cmem is crucial
to minimize the accuracy drop that occurs during the ANN-
to-SNN conversion.
Therefore, we first examined the impact of Cmem on SNN

accuracy and attempted to find optimal Cmem in our system,
assuming that neurons in all layers have identical Cmem. For
each dataset, SNN simulations were performed over a range
of Cmem from 0.5 pF to 15 pF, as shown in Fig. 7. For
the MNIST dataset, the accuracy drop is negligible for most
Cmem values. SNN accuracy even exceeds ANN accuracy
for Cmem of 7 pF, where the SNN and ANN accuracies
are 98.42% and 98.37%, respectively. The similar accuracy
between ANN and SNN might be due to the reason that it is
a simple dataset. However, for the Fashion-MNIST dataset,
SNN accuracy starts to decrease when Cmem exceeds 10 pF,
indicating that the dataset is sensitive to information loss
caused by underflow. The system shows the highest SNN
accuracy of 89.12% at Cmem of 6 pF, which is a 0.78%
drop compared to ANN accuracy. In the case of the CIFAR-
10 dataset, SNN accuracy is more sensitively affected by
Cmem, and the difference in accuracy between ANN and SNN
is relatively larger compared to other datasets. Specifically,
the SNN accuracy decreases to 38.03% when Cmem is 0.5
pF and further decreases to 18.31% when Cmem is 15 pF.
Although the system can achieve its highest SNN accuracy
of 43.76% at Cmem of 5.5 pF, there is still a large accuracy
drop of 9.34% compared to ANN accuracy. The more
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FIGURE 8. (a) Vmem according to the time step for the 55th neuron in
layer 1 (Cmem = 5.5 pF). (b) The number of generated spikes during 255
time steps for all neurons when a CIFAR-10 input image is used.

complex dataset shows greater sensitivity to Cmem, accom-
panied by larger accuracy drop during the ANN-to-SNN
conversion.
To investigate the reason for the large accuracy drop in

the CIFAR-10 dataset, we analyzed the Vmem change in the
neuron that actively generates the spikes during the image
classification. The Vmem irregularly fluctuates according to
the time step because the incoming synapse current varies
depending on the spikes generated by presynaptic neurons.
The neuron exhibits substantial overflow for most time steps,
with Vmem even reaching about twice VMTH at certain time
steps, as shown in Fig. 8(a). In addition, it can be observed
that neurons in layer 1 generate more spikes compared to
other layers, as shown in Fig. 8(b). Thus, the first layer in
SNN is more likely to experience overflow than other layers
because it directly receives spikes from the input image,
which exhibits the most active spike generation. However,
the previous Cmem optimization method that uses identical
Cmem for all layers has a limitation in that it does not consider
the different degrees of overflow or underflow in each layer.
To overcome this limitation, we introduced a layer-

by-layer Cmem optimization method that adjusts Cmem
individually for each layer. Fig. 9 shows the SNN accuracy
for three datasets as a function of Cmem for each layer. We
narrowed the adjustment range of Cmem from the first layer to
the third layer (16 pF-8 pF-6 pF), considering the decrease in
the number of generated spikes as the layer becomes deeper.
Regarding the MNIST dataset, SNN accuracy remains nearly
identical regardless of the change in each layer’s Cmem.
When using Cmem of 16/6/3 pF for layers 1/2/3, the system
can achieve the highest SNN accuracy of 98.47%. For the
Fashion-MNIST dataset, using large Cmem for both layers
2 and 3 (>4 pF) leads to accuracy drop due to underflow,
and the accuracy drop becomes more severe as Cmem of
layer 1 increases. The accuracy decreases up to 85.38%
when using Cmem of 16/8/6 pF for layers 1/2/3. Therefore,
it is crucial to select appropriate Cmem for layers 2 and

3 to prevent underflow because these layers receive fewer
spikes compared to layer 1. When using Cmem of 8/2/2 pF
for layers 1/2/3, the system can achieve the highest SNN
accuracy of 89.76%, which is close to ANN accuracy. For
the CIFAR-10 dataset, increasing Cmem of layer 1 leads
to improved accuracy, possibly due to the suppression of
overflow. It is noted that accuracy starts to decrease when
the Cmem of both layers 2 and 3 exceeds 4 pF. Therefore,
configuring smaller Cmem as the layers become deeper is
beneficial in minimizing the accuracy drop. Notably, setting
Cmem as 16/8/1 pF for layers 1/2/3 results in the highest SNN
accuracy of 48.06%, which represents a 4.3% improvement
compared to the identical Cmem configuration of 5.5 pF.

To analyze the effect of layer-by-layer optimization on
the CIFAR-10 dataset, we quantitatively compared the extent
of overflow occurring in all neurons within each layer. The
metric for comparison was calculated using the following
equations:

Voverflow =
{
Vmem − VMTH, if Vmem > VMTH
0, otherwise

(3)

Overflowtotal =
⎛

⎝
M∑

i

N∑

j

T∑

k

Voverflow

⎞

⎠/(N ∗M) (4)

M is the number of input images used for inference. N
is the total number of neurons in a layer. T is the total
number of time steps. Overflowtotal represents the cumulative
overflow per neuron through all time steps when using M
input images. The values of Overflowtotal were calculated
according to Cmem configuration using 100 input images in
the CIFAR-10 dataset, as shown in Fig. 10. When using
the identical Cmem (5.5 pF), layer 1 exhibits the highest
Overflowtotal of 38.42, while layers 2 and 3 show much
lower Overflowtotal of 1.06 and 0.12, respectively, indicating
that substantial amount of overflow still occurs in layer 1.
As expected from the neuron behavior in Fig. 8(a), using
identical Cmem for all layers is not enough to mitigate the
overflow of layer 1, which receives the highest number of
spikes among the three layers. In contrast, with optimized
Cmem (16/8/1 pF), the Overflowtotal of layers 1 and 2
decreased to 6.34 and 0.17, respectively, which is attributable
to the increased Cmem of layers 1 and 2. For layer 3,
employing Cmem of 1 pF is advantageous for minimizing
information loss because increasing Cmem of both layers 1
and 2 diminishes spike propagation to layer 3, which could
result in underflow. These results indicate that layer-by-layer
Cmem optimization can reduce information loss by adjusting
Cmem in a way that minimizes either overflow or underflow
in each layer.
Fig. 11 represents the result of SNN accuracy according to

the time step between identical and optimized Cmem for three
datasets. It is noteworthy that the SNN system can achieve
ANN close accuracy for the MNIST and Fashion-MNIST
datasets using optimized Cmem. In addition, an improvement
in accuracy can be observed for the CIFAR-10 dataset
after time step 150. Table 1 summarizes the SNN accuracy
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FIGURE 9. SNN accuracy result according to the Cmem for each layer using (a) MNIST, (b) Fashion-MNIST, and (c) CIFAR-10 datasets.

FIGURE 10. Calculated Overflowtotal for three layers with respect to Cmem
configuration.

FIGURE 11. SNN accuracy results according to the time step for three
datasets.

according to the Cmem configuration for three datasets. Using
Cmem of 16/8/1 pF for layers 1/2/3 not only reduces the
accuracy drop for the CIFAR-10 dataset but also maintains

TABLE 1. Accuracy of spiking neural network according to Cmem.

ANN close accuracy for other datasets. This result suggests
that solely one Cmem configuration can achieve high SNN
accuracy for three datasets without the need for different
Cmem configurations for each dataset. We expect that Cmem
optimization, aimed at reducing information loss, will be
more critical in deeper networks to minimize accuracy drop.
Finally, we investigated the impact of the weight variation

on SNN accuracy, where the variation can be attributed to
the device-to-device variation in synaptic transistors. The
standard variation at each weight level of the synaptic
transistor was extracted, and random Gaussian variation
was applied to all synapses in SNN. The simulations
were conducted 20 times for each dataset. Compared to
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FIGURE 12. SNN accuracy for three datasets under device-to-device
variation of IGZO synaptic transistors (Solid line indicates the SNN
accuracy without the variation).

the accuracy without variation, accuracy with variation
for MNIST, Fashion-MNIST, and CIFAR-10 decreased by
0.11%, 1.02%, and 1.2%, respectively, as shown in Fig. 12.
Despite the weight variation, the SNN system can operate
well with little performance degradation.

IV. CONCLUSION
In summary, we performed a simulation of the IGZO-based
neuromorphic system for SNN with MNIST, Fashion-
MNIST, and CIFAR-10 datasets. The simulation utilized an
offline learning method and models based on the fabricated
IGZO synaptic transistors and simulated I&F neuron circuit.
Since information loss can occur due to overflow or under-
flow depending on Cmem, we optimized the Cmem of neurons
to minimize the accuracy drop using identical Cmem for
all layers. However, simulation results showed a significant
accuracy drop (9.34%) for the CIFAR-10 dataset, primarily
due to substantial overflow in layer 1. To address this issue,
we introduced a layer-by-layer Cmem optimization method,
which adopts different Cmem for each layer, considering
the different degrees of overflow or underflow in each
layer. This approach reduced the accuracy drop for the
CIFAR-10 dataset from 9.54% to 5.04% and made ANN
close accuracy for the MNIST and Fashion-MNIST datasets,
suggesting that effective reduction of information loss is
possible by layer-by-layer Cmem optimization. Further, we
investigated the impact of synaptic weight variation, and
our SNN system maintained high accuracy with little
accuracy degradation (less than 2%). Based on the results,
we expect that the IGZO-based SNN system could be
a promising candidate for high-performance neuromorphic
systems.

REFERENCES
[1] J. Tang et al., “Bridging biological and artificial neural networks

with emerging neuromorphic devices: Fundamentals, progress, and
challenges,” Adv. Mater., vol. 31, no. 49, 2019, Art. no. 1902761,
doi: 10.1002/adma.201902761.

[2] M. Davies et al., “Advancing neuromorphic computing with Loihi:
A survey of results and outlook,” Proc. IEEE, vol. 109, no. 5,
pp. 911–934, Apr. 2021, doi: 10.1109/JPROC.2021.3067593.

[3] A. Shrestha, H. Fang, Z. Mei, D. P. Rider, Q. Wu, and
Q. Qiu, “A survey on neuromorphic computing: Models and hard-
ware,” IEEE Circuits Syst. Mag., vol. 22, no. 2, pp. 6–35, May 2022,
doi: 10.1109/MCAS.2022.3166331.

[4] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, and
B. Kay, “Opportunities for neuromorphic computing algorithms and
applications,” Nat. Comput. Sci., vol. 2, no. 1, pp. 10–19, 2022,
doi: 10.1038/s43588-021-00184-y.

[5] S. Choi, J. Yang, and G. Wang, “Emerging memristive artificial
synapses and neurons for energy-efficient neuromorphic com-
puting,” Adv. Mater., vol. 32, no. 51, 2020, Art. no. 2004659,
doi: 10.1002/adma.202004659.

[6] J.-Q. Yang et al., “Neuromorphic engineering: From biological to
spike-based hardware nervous systems,” Adv. Mater., vol. 32, no. 52,
2020, Art. no. 2003610, doi: 10.1002/adma.202003610.

[7] Y. Jang, J. Park, J. Kang, and S.-Y. Lee, “Amorphous
InGaZnO (a-IGZO) synaptic transistor for neuromorphic comput-
ing,” ACS Appl. Electron. Mater., vol. 4, no. 4, pp. 1427–1448, 2022,
doi: 10.1021/acsaelm.1c01088.

[8] R. A. Martins et al., “Emergent solution based IGZO memristor
towards neuromorphic applications,” J. Mater. Chem. C, vol. 10, no. 6,
pp. 1991–1998, 2022, doi: 10.1039/D1TC05465A.

[9] Y. Zeng et al., “Solution-processed InGaZnO-based artificial neuron
for neuromorphic system,” IEEE Trans. Electron Devices, vol. 70,
no. 4, pp. 2170–2174, Feb. 2023, doi: 10.1109/TED.2023.3247363.

[10] J. C. Costa et al., “Flexible IGZO TFTs and their suitability for space
applications,” IEEE J. Electron Devices Soc., vol. 7, pp. 1182–1190,
Jul. 2019, doi: 10.1109/JEDS.2019.2931614.

[11] W. Lu et al., “Monolithically stacked two layers of a-IGZO-
based transistors upon a-IGZO-based analog/logic circuits,” IEEE
Trans. Electron Devices, vol. 70, no. 4, pp. 1697–1701, Feb. 2023,
doi: 10.1109/TED.2023.3247364.

[12] D. V. Christensen et al., “2022 roadmap on neuromorphic computing
and engineering,” Neuromorphic Comput. Eng., vol. 2, no. 2, 2022,
Art. no. 022501, doi: 10.1088/2634-4386/ac4a83.

[13] N. Rathi et al., “Exploring neuromorphic computing based on spiking
neural networks: Algorithms to hardware,” ACM Comput. Surv.,
vol. 55, no. 12, p. 243, 2023, doi: 10.1145/3571155.

[14] M. Bouvier et al., “Spiking neural networks hardware implementations
and challenges: A survey,” J. Emerg. Technol. Comput. Syst., vol. 15,
no. 2, p. 22, 2019, doi: 10.1145/3304103.

[15] J. K. Eshraghian et al., “Training spiking neural networks using lessons
from deep learning,” Proc. IEEE, vol. 111, no. 9, pp. 1016–1054,
Sep. 2023, doi: 10.1109/JPROC.2023.3308088.

[16] N. Rathi, P. Panda, and K. Roy, “STDP-based pruning of con-
nections and weight quantization in spiking neural networks for
energy-efficient recognition,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 38, no. 4, pp. 668–677, Apr. 2019,
doi: 10.1109/TCAD.2018.2819366.

[17] M. Kumar, S. S. Bezugam, S. Khan, and M. Suri, “Fully unsu-
pervised spike-rate-dependent plasticity learning with oxide- based
memory devices,” IEEE Trans. Electron Devices, vol. 68, no. 7,
pp. 3346–3352, Jul. 2021, doi: 10.1109/TED.2021.3077346.

[18] N. Zheng and P. Mazumder, “A low-power hardware architec-
ture for on-line supervised learning in multi-layer spiking neural
networks,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2018,
pp. 1–5, doi: 10.1109/ISCAS.2018.8351516.

[19] Y. Guo, H. Wu, B. Gao, and H. Qian, “Unsupervised
learning on resistive memory array based spiking neural
networks,” Front. Neurosci., vol. 13, Aug. 2019, Art. no. 457670,
doi: 10.3389/fnins.2019.00812.

[20] Y. Hao, X. Huang, M. Dong, and B. Xu, “A biologically plausible
supervised learning method for spiking neural networks using the sym-
metric STDP rule,” Neural Netw., vol. 121, pp. 387–395, Jan. 2020,
doi: 10.1016/j.neunet.2019.09.007.

[21] S. G. Hu, G. C. Qiao, T. P. Chen, Q. Yu, Y. Liu, and
L. M. Rong, “Quantized STDP-based online-learning spiking neural
network,” Neural Comput. Appl., vol. 33, no. 19, pp. 12317–12332,
2021, doi: 10.1007/s00521-021-05832-y.

[22] L. Ma, G. Wang, S. Wang, and D. Chen, “Simulation of in-situ
training in spike neural network based on non-ideal memris-
tors,” IEEE J. Electron Devices Soc., vol. 11, pp. 497–502, Sep. 2023,
doi: 10.1109/JEDS.2023.3311763.

[23] T. Kim, H. Kim, J. Kim, and J.-J. Kim, “Input voltage mapping
optimized for resistive memory-based deep neural network hard-
ware,” IEEE Electron Device Lett., vol. 38, no. 9, pp. 1228–1231,
Sep. 2017, doi: 10.1109/LED.2017.2730959.

234 VOLUME 12, 2024

http://dx.doi.org/10.1002/adma.201902761
http://dx.doi.org/10.1109/JPROC.2021.3067593
http://dx.doi.org/10.1109/MCAS.2022.3166331
http://dx.doi.org/10.1038/s43588-021-00184-y
http://dx.doi.org/10.1002/adma.202004659
http://dx.doi.org/10.1002/adma.202003610
http://dx.doi.org/10.1021/acsaelm.1c01088
http://dx.doi.org/10.1039/D1TC05465A
http://dx.doi.org/10.1109/TED.2023.3247363
http://dx.doi.org/10.1109/JEDS.2019.2931614
http://dx.doi.org/10.1109/TED.2023.3247364
http://dx.doi.org/10.1088/2634-4386/ac4a83
http://dx.doi.org/10.1145/3571155
http://dx.doi.org/10.1145/3304103
http://dx.doi.org/10.1109/JPROC.2023.3308088
http://dx.doi.org/10.1109/TCAD.2018.2819366
http://dx.doi.org/10.1109/TED.2021.3077346
http://dx.doi.org/10.1109/ISCAS.2018.8351516
http://dx.doi.org/10.3389/fnins.2019.00812
http://dx.doi.org/10.1016/j.neunet.2019.09.007
http://dx.doi.org/10.1007/s00521-021-05832-y
http://dx.doi.org/10.1109/JEDS.2023.3311763
http://dx.doi.org/10.1109/LED.2017.2730959


PARK et al.: SIMULATION AND OPTIMIZATION OF IGZO-BASED NEUROMORPHIC SYSTEM FOR SNNs

[24] S. Hwang et al., “System-level simulation of hardware spiking neural
network based on synaptic transistors and I&F neuron circuits,” IEEE
Electron Device Lett., vol. 39, no. 9, pp. 1441–1444, Sep. 2018,
doi: 10.1109/LED.2018.2853635.

[25] G. Srinivasan, C. Lee, A. Sengupta, P. Panda, S. S. Sarwar,
and K. Roy, “Training deep spiking neural networks for energy-
efficient neuromorphic computing,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), 2020, pp. 8549–8553,
doi: 10.1109/ICASSP40776.2020.9053914.

[26] A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper
in spiking neural networks: VGG and residual architectures,” Front.
Neurosci., vol. 13, p. 95, Mar. 2019, doi: 10.3389/fnins.2019.00095.

[27] L. Deng et al., “Rethinking the performance comparison between
SNNS and ANNS,” Neural Netw., vol. 121, pp. 294–307, Jan. 2020,
doi: 10.1016/j.neunet.2019.09.005.

[28] E. Chicca et al., “A VLSI recurrent network of integrate-and-fire
neurons connected by plastic synapses with long-term memory,” IEEE
Trans. Neural Netw., vol. 14, no. 5, pp. 1297–1307, Sep. 2003,
doi: 10.1109/TNN.2003.816367.

[29] B. Han, G. Srinivasan, and K. Roy, “RMP-SNN: Residual membrane
potential neuron for enabling deeper high-accuracy and low-latency
spiking neural network,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2020, pp. 13558–13567.

[30] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu,
“Conversion of continuous-valued deep networks to efficient event-
driven networks for image classification,” Front. Neurosci., vol. 11,
Dec. 2017, Art. no. 294078, doi: 10.3389/fnins.2017.00682.

[31] J. Park, Y. Jang, J. Lee, S. An, J. Mok, and S.-Y. Lee, “Synaptic
transistor based on In-Ga-Zn-O channel and trap layers with
highly linear conductance modulation for neuromorphic comput-
ing,” Adv. Electron. Mater., vol. 9, no. 6, 2023, Art. no. 2201306,
doi: 10.1002/aelm.202201306.

[32] E. M. Izhikevich, “Which model to use for cortical spiking neu-
rons?” IEEE Trans. Neural Netw., vol. 15, no. 5, pp. 1063–1070, Sep.
2004, doi: 10.1109/TNN.2004.832719.

[33] S.-T. Lee and J.-H. Bae, “Investigation of deep spiking neural networks
utilizing gated Schottky diode as synaptic devices,” Micromachines,
vol. 13, no. 11, p. 1800, 2022, doi: 10.3390/mi13111800.

VOLUME 12, 2024 235

http://dx.doi.org/10.1109/LED.2018.2853635
http://dx.doi.org/10.1109/ICASSP40776.2020.9053914
http://dx.doi.org/10.3389/fnins.2019.00095
http://dx.doi.org/10.1016/j.neunet.2019.09.005
http://dx.doi.org/10.1109/TNN.2003.816367
http://dx.doi.org/10.3389/fnins.2017.00682
http://dx.doi.org/10.1002/aelm.202201306
http://dx.doi.org/10.1109/TNN.2004.832719
http://dx.doi.org/10.3390/mi13111800


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


