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ABSTRACT This paper proposes a novel implementation of a ternary Spiking Neural Network (SNN)
and investigates it using a hierarchical simulation framework. The proposed ternary SNN is trained in an
unsupervised manner using the Spike Timing Dependent Plasticity (STDP) learning rule. A ternary neuron
is implemented using a Dual-Pocket Tunnel Field effect transistor (DP-TFET). The synapse consists of
a Magnetic Tunnel Junction (MTJ) with a Heavy Metal (HM) underlayer, allowing for the adjustment of
its conductance by directing a current through the HM layer. Further, we show that a pair of dual-pocket
Fully-Depleted Silicon-on-Insulator (FD-SOI) MOSFETs can be utilized to generate a current, which
reduces exponentially with increasing duration of firing events between pre- and post-synaptic neurons.
This current modulates the synapse’s conductance according to STDP. Furthermore, it is demonstrated
that the proposed ternary SNN can be trained to classify digits in the MNIST dataset with an accuracy
of 82%, which is better (75%) than that obtained using a binary SNN. Moreover, the runtime required
to train the proposed ternary SNN is 8× less than that required for a binary SNN.

INDEX TERMS Ternary neuron, STDP, ternary SNN, neuromorphic computing, BTBT.

I. INTRODUCTION
Spiking Neural Networks (SNN) aim to model the behav-
ior of the biological nervous system in an energy-efficient
manner. While SNNs have proven to be a suitable con-
tender to Artificial Neural Networks (ANN) due to their
high energy efficiency, their use is still not prevalent. This
is due to the lack of efficient training algorithms that effi-
ciently utilize the temporal information embedded in discrete
spikes. Unsupervised training algorithms like Spike Timing
Dependent Plasticity (STDP) are among the most popular
algorithms to train an SNN wherein the weight of the synapse
connecting the two neurons is modulated in accordance with
the time duration of firing events between the pre-synaptic
and post-synaptic neurons. The weight of the synapse is
potentiated (or depressed) when the firing event at the post-
synaptic neuron is observed after (or before) the firing event
at the pre-synaptic neuron.
The classification accuracy obtained by training an SNN

using STDP is still not at par with its ANN counterparts,

which are trained in a supervised manner using the gradient-
descent backpropagation algorithm. Moreover, the training
time for SNN is significantly longer in comparison to ANNs.
This is because no learning occurs in the network until some
spiking activity exists in the neurons. This is particularly
problematic in deep SNNs comprising multiple layers of
neurons. This is due to the decreased spiking probability
of neurons deep in the network, referred to as vanishing
forward-spike propagation. Thus, learning in deeper network
layers is time-consuming and often requires multiple training
epochs. A ternary SNN, comprising a ternary neuron that
generates a VDD/2 spike when its membrane potential crosses
a threshold, say vthresh1 and a VDD spike when it crosses a
higher threshold vthresh2, can lead to a substantial speedup in
training the SNN. This is due to the larger spiking probability
of a ternary neuron compared to a conventional spiking neuron.
Moreover, the ternary encoding of the rate-based spike train
is a more accurate representation of the input dataset than
the binary-encoded rate-based spike train. Fig. 1 compares
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FIGURE 1. Comparison of the reconstructed input image in the MNIST
dataset (a) Original image (b) Reconstructed image with binary spikes
(c) Reconstructed image with ternary spikes.

the reconstructed image from the MNIST dataset [1] using
a binary and a ternary spike. It can be observed that the
reconstructed image with ternary spikes is a more accurate
representation of the input image compared to its binary
counterpart.
Neurons and synapses constitute the two basic components

of an SNN. Numerous literary works comprise biologi-
cally plausible [2] or physiologically-inspired [3] models
of the biological neuron. A Leaky-Integrate-and-Fire (LIF)
neuron is frequently used due to its easy implementation
and great biological plausibility [4], [5], [6], [7]. A synapse
interconnects the two neurons and preserves the weight of
the connection. Static Random Access Memories (SRAMs)
can store this weight with finite accuracy. For instance,
32 transistors are required per synaptic element for stor-
ing the weight with 4-bit precision using an 8-T SRAM [8].
Non-volatile memories (NVM) like Phase Change Memories
(PCM) [9], Ferroelectric RAM (FeRAM) [10], memristors
[11], [12], [13], spintronic devices [14], [15], [16], float-
ing gate transistors [17], and others can also be used to
implement synapses.
In this work, a Ge-based Dual-Pocket Tunnel Field Effect

Transistor (DP-TFET) is employed to implement a ternary
spiking neuron. The ternary spiking neuron outputs a VDD/2
spike when the membrane potential of the neuron surpasses
a threshold, say vthresh1 and a VDD spike when it crosses a
higher threshold vthresh2. The weight of the interconnection
between neurons is stored as the conductance of a synapse
using a Magnetic Tunnel Junction (MTJ) with a Heavy Metal
(HM) underlayer. Further, a pair of dual-pocket FD-SOI
MOSFETs are employed to produce a current that tunes
the synapse’s conductance according to STDP. The paper
is structured as follows. Section II introduces a hierarchical
simulation framework to illustrate unsupervised learning in
the proposed ternary SNN using STDP. Section III presents
the implementation of STDP for training the ternary SNN. In
Section IV, the ternary SNN is trained to classify digits in the
MNIST dataset. Section V analyzes the impact of process-
induced variations on the ternary neuron characteristics.
Finally, Section VI concludes the work.

II. SIMULATION FRAMEWORK
In this section, a hierarchical simulation framework,
proposed in [18], is employed to illustrate unsupervised
learning in the ternary SNN using STDP. First, device-level

simulations of a Ge-based DP-TFET are performed in the
device simulator Synopsys Sentaurus [19]. Next, the synapse
is simulated in mumax3 [20] to determine how the synapse’s
conductance can be tuned by the application of a current
through the HM layer. Further, device-circuit co-simulation
involving a pair of dual-pocket FD-SOI MOSFETs is per-
formed in Synopsys Sentaurus to obtain a current, which
tunes the synapse’s conductance according to STDP. Finally,
the simulation results are collated to train a ternary SNN with
STDP to perform digit classification on the MNIST dataset.

A. TERNARY SPIKING NEURON
This section describes how the Ge-based DP-TFET can
implement a ternary spiking neuron. Fig. 2 shows the
cross-sectional view of the DP-TFET.
It comprises two pockets- one adjacent to the source,

called the source pocket, and the other at a controlled dis-
tance from the first (LI), called the channel pocket. The
source pocket is a thin n+-doped fully depleted pocket with
a concentration of NNP and length LNP. The channel pocket
is doped with p+ carriers with a concentration of NPP and
has a length LPP. The channel pocket can be fabricated
lithographically, while the source pocket can be fabricated
by a tilted implant after gate definition, followed by spike
annealing, as proposed in [22]. There might be an uncer-
tainty associated with the doping profile of the n+ pocket
formed after annealing in the direction underneath the gate.
More advanced fabrication techniques like Molecular Beam
Epitaxy (MBE) can also be employed for the formation of
highly doped delta layers in vertical device configuration.
Due to the stringent fabrication process employed, the impact
of process-induced variations on the device characteristics is
analyzed in Section V. The gate oxide used is HfO2. Table 1
contains other critical device simulation parameters.
In this work, Germanium is preferred over Silicon. This is

attributed to its smaller bandgap and the prevalence of a dom-
inant direct tunneling mechanism [23]. This leads to a higher
Band-to-Band Tunneling (BTBT) generating rate. The non-
local BTBT model is employed with fitting parameters taken
from [23]. We simulated a Ge-based TFET by simultaneously
employing the direct and indirect tunneling parameters, as
suggested in [23]. The characteristics of the Ge-based TFET
(illustrated in the inset of Fig. 3) is compared against the
results reported in [23] in Fig. 3.
Their reasonable similarity confirms the applicability of

the calibrated BTBT model. The simulations incorporated
the Shockley-Read-Hall (SRH) recombination model and
a concentration-dependent Philips unified mobility model.
Additionally, the Slotboom Band-Gap Narrowing (BGN)
model was enabled in the simulations.
A ternary inverter has been implemented using a DP-

TFET in [21]. Two tunneling regions exist in the DP-TFET
- one within the channel and another at the source-channel
junction. The tunneling region within the channel comprises
a larger tunneling width (see Fig. 4(a)) than at the source-
channel junction (see Fig. 4(d)). Thus, the within-channel
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FIGURE 4. Principle of operation of a ternary spiking neuron (a)-(c) Generation of a VDD/2 voltage spike, and (d)-(f) Generation of a VDD voltage spike.

FIGURE 2. The DP-FET used to implement a ternary spiking neuron [21].

TABLE 1. DP-TFET ternary neuron parameters.

tunneling current is much smaller in magnitude compared
source-channel tunneling current.
A summed voltage from the pre-synaptic layer of neurons

is applied as input to the gate terminal of the device. Fig. 5
shows the summer circuitry used to sum the pre-synaptic
stimuli and generate an input potential for the ternary neuron,

FIGURE 3. The transfer characteristics of a Ge-based TFET (depicted in the
inset) are contrasted between the simulation model and the findings
documented in [23]. The same simulation model is used in [18].

similar to the one used in [24], [25], [26]. The integration of
charge, however, is happening inside the DP-TFET ternary
neuron.
During the integration phase, the reset circuitry generates a

voltage of 0.3V, which is applied to the drain while the source
terminal is grounded. We now describe how the charge is
integrated inside the device and how the VDD/2 and VDD
spikes are generated. Fig. 6 shows the band diagram along
cutline BB’ showing a decrease in within-channel tunneling
width and an increase in band overlap with an increase in
the gate voltage (VGS). Consequently, an increase in the VGS
leads to a rise in the BTBT generation rate, resulting in an
increase in the within-channel tunneling current. In Fig. 4(a),
the band diagram along cutline BB’ at a gate voltage (VGS =
0.5V) is displayed, illustrating within-channel tunneling of
electrons. As a consequence, an accumulation of holes occurs
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FIGURE 5. Ternary neuron architecture showing how the pre-synaptic
stimuli are summed and the reset circuitry controlling the potential
applied onto the drain terminal.

in the channel pocket region (hump) within the floating body
of the device, leading to a gradual reduction in the height
of the potential barrier over time, as depicted in Fig. 4(b).
This causes a decline in the BTBT generation rate, and a
consequent decrease in the within-channel tunneling current
is observed. Simultaneously, due to thermionic emission,
the accumulated holes in the channel pocket region undergo
leakage into the source, causing an increase in the potential
barrier at the same region. At equilibrium, the rate of holes
leaking from the channel pocket region becomes equal to
the rate of holes accumulating in the same region. When the
current due to within-channel tunneling reaches a threshold
value (Ith1 = 5 × 10−8A/μm), the drain voltage is removed
with the help of a reset circuitry, causing a rapid decrease in
current. Note that the drain current has an initial overshoot
that crosses Ith1 when VDS transitions to 0.3V from 0V. The
reset circuitry removes the VDS at this stage and triggers
an external circuitry to generate a VDD/2 voltage spike. For
smaller gate voltage (for example, VGS=0.4V), Ith1 is never
reached, and meanwhile, there is an integration of holes in
the hump region in the device. Fig. 4(c) is shown only to
illustrate the integration of holes (charge) happening in the
hump region of the device with the evolution of the drain
current with time.
Once the neuron fires a VDD/2 spike, its drain voltage is

removed using the reset circuitry, and the neuron enters into
a refractory state. During the refractory period, its summed
potential is allowed to climb further due to incoming pre-
synaptic stimuli. VDS is re-applied by the reset circuitry after
a refractory period has elapsed. As long as the neuron’s
summed potential stays above the threshold potential (Vth1),
it does not fire another VDD/2 spike. However, it may fire a
VDD spike if it crosses a higher threshold potential, Vth2. In
the absence of the pre-synaptic stimuli, the summed potential
decreases with time. Now, after the refractory period has
elapsed, if it goes below Vth1, the neuron can fire a VDD/2
spike again when its potential crosses Vth1.
Once the accumulated potential resulting from the spik-

ing activity of pre-synaptic neurons (VGS) reaches 0.7V, the
onset of source-channel tunneling current occurs. The pres-
ence of a hump in the band diagram in the channel causes
the current flow through the device to involve two mecha-
nisms. First, BTBT of electrons from the source results in
an accumulation of electrons in the region between the two

FIGURE 6. Band diagram along cutline BB’ showing a decrease in
tunneling width and an increase in band overlap with an increase in the
gate voltage.

pockets. Subsequently, due to thermionic emission, the accu-
mulated electrons surmount the barrier and reach the
drain.
Fig. 4(d) displays the band diagram along cutline AA’

at a gate voltage (VGS = 0.7V) showing within-channel
tunneling of electrons. As a consequence, holes accumu-
late in the channel pocket region, gradually reducing the
potential barrier within the channel pocket region over time,
as depicted in Fig. 4(e). As the potential barrier reduces,
a greater number of electrons that had previously tunneled
due to source-channel tunneling can now reach the drain.
This leads to an increase in the current flowing through
the device. Additionally, the accumulated holes in the chan-
nel pocket region leak away into the source, causing an
increase in the height of the potential barrier. At equilib-
rium, the rate of holes leaking from the channel pocket region
becomes equal to the rate of holes accumulating in the same
region. At this stage, the current reaches a threshold value
(Ith2 = 1 × 10−6A/μm), and the drain voltage is removed,
causing a rapid decrease in current, as shown in Fig. 4(f).
At this stage, an external circuitry is triggered to generate a
VDD voltage spike. After the neuron has fired a VDD voltage
spike, the accumulated potential due to pre-synaptic stimuli
is reset to 0V . Such a reset circuitry has been employed
in prior literature [6], [24], [25], [26] as well (for a binary
neuron) and can be tailored for a ternary neuron as well.
The implementation of such a reset circuitry is beyond the
scope of this work. An external circuitry will be required to
generate the VDD/2 and VDD spikes. A control circuitry will
sense when the neuron has reached the threshold currents
Ith1 and Ith2 and trigger the external circuitry to generate the
VDD/2 and VDD spikes respectively. The design of such a
control circuitry is beyond the scope of this work.

B. SYNAPSE
The principle of operation of the synapse is described in this
section. Fig. 7 shows the cross-sectional view of the synapse.
It comprises a Magnetic Tunnel Junction (MTJ) with an HM
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FIGURE 7. The cross-sectional view of the synapse [18].

underlayer. The MTJ comprises a pinned ferromagnetic layer
and a free ferromagnetic layer. The two ferromagnetic layers
sandwich a tunneling oxide barrier (MgO). At the ends of
the free ferromagnetic layer, two pinned ferromagnetic layers
with opposing magnetization axes are present.
A Domain Wall (DW) is created by spin-orbit coupling

at the free ferromagnetic layer and the HM interface, which
induces Dzyaloshinskii-Moriya Interaction (DMI) [27], [28],
[29], [30]. When an in-plane current flows through the HM
underlayer, it deflects opposite spin-polarized electrons to
the top and bottom surfaces of the HM layer, generating
a transverse spin current [29], [30]. Consequently, an in-
plane current generates a Spin Orbit Torque (SOT), which
moves the DW in the free ferromagnetic layer. The Landau-
Lifshitz-Gilbert (LLG) equation expresses the magnetization
dynamics of the free ferromagnetic layer [27]. A shift in the
DW’s position leads to a modulation in the conductance of
the synapse. A detailed simulation model used to simulate
the movement of the DW as a result of the current passing
through the HM using Mumax3 [20] is explained in [18].
The Tunnelling Magnetoresistance Ratio (TMR) represents
the ratio of the maximum and minimum conductance of the
synapse. A TMR value of 604% is reported for the MTJ
in [31].

III. IMPLEMENTATION OF STDP
This section shows how a pair of Ge-based dual-pocket FD-
SOI MOSFETs can implement unsupervised learning in a
ternary SNN using STDP. Fig. 8 shows the pair of dual-
pocket FD-SOI MOSFETs, which produce a current based on
the correlation between spiking events in the pre- and post-
synaptic layer of neurons. This current exponentially reduces
in magnitude as the duration of spiking events between the
pre-synaptic and the post-synaptic neurons increases. This
current feeds into the HM layer in the FM-DW synapse.
A detailed description of the device-circuit co-simulation

framework employed to produce a current, which exponen-
tially reduces in magnitude as the duration of spiking events
between the pre-synaptic and the post-synaptic neurons
increases, is explained in [18]. The pair of dual-pocket FD-
SOI MOSFETs takes pre- and post-synaptic voltage spikes
as inputs to generate a current, which tunes the synapses’
conductance as per the STDP learning rule. A pre-synaptic

FIGURE 8. The pair of Ge-based dual-pocket FD-SOI MOSFETs that are
utilized to produce a current, which tunes the synapse’s conductance as
per the STDP learning rule [18].

VDD/2 voltage spike can result in a VDD/2 or a VDD post-
synaptic voltage spike. Similarly, a pre-synaptic VDD voltage
spike can result in a VDD/2 or a VDD post-synaptic volt-
age spike. We choose the VDD/2 voltage spike of magnitude
−0.6V and the VDD voltage spike of magnitude −0.7V. This
is because the BTBT generation rate reduces exponentially
with the applied voltage. Fig. 9 shows the current generated
by the pair of dual-pocket FD-SOI MOSFETs for differ-
ent pre- and post-synaptic firing events, which exponentially
reduces as the duration of spiking events between the pre-
synaptic and the post-synaptic neurons increases. A current
density (J = 1011A/m2) is necessary to displace the domain
wall in a CoFe strip with cross-section 160nm × 0.6nm by
1μm in 30ns [32]. This corresponds to a current of 9.6μA.
The peak current generated by the pair of dual-pocket FD-
SOI MOSFETs is around 8μA/μm. Thus, a gate width of
1−1.2μm for the MOSFETs would be sufficient to generate
this current.
If it is desired that the synapse be initialized to a fixed

value and the stored information be erased, the pair of dual
pocket FD-SOI MOSFETs need to be programmed via an
alternative path using pre- and post-synaptic spikes to set the
synapse to its maximum or minimum conductance states, as
desired.

IV. APPLICATION OF TERNARY SNN
In this section, the proposed ternary SNN is trained to per-
form digit classification in the MNIST dataset using STDP.
Results produced from the device- and circuit-level simula-
tions are utilized to tune the synapse’s weight based on the
interval of firing events between the pre-synaptic and post-
synaptic neurons. The ternary SNN consists of three layers.
The first layer contains 784 neurons, while the second (exci-
tatory) and third (inhibitory) layers comprise 800 neurons
each. The first layer neurons are completely interconnected
with the 800 excitatory neurons in the second layer through
excitatory synapses. Each neuron in the third layer is con-
nected one-to-one with the neuron in the excitatory layer
such that when an excitatory neuron fires, an inhibitory
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FIGURE 9. The current generated by the pair of dual-pocket FD-SOI
MOSFETs for different pre and post-synaptic spiking events plotted as a
function of the duration of firing events between the pre- and
post-synaptic neurons.

neuron fires in response. Lateral inhibition is implemented
wherein an inhibitory neuron firing event suppresses all other
excitatory neurons except the one it obtains a connection
from. The ternary SNN is trained by Diehl and Cook’s algo-
rithm [34]. LIF dynamics is utilized to model the neuron.
The LIF neuron’s membrane potential (v(t)) is governed by
the following equation:

τe
dv

dt
= −(v(t) − vrest) + I(t) (1)

where vrest signifies neuron’s resting potential, τe denotes
the excitatory neuron’s membrane time constant, and I(t)
signifies neuron’s input voltage at time t. A pre-synaptic
neuron spiking event, after being weighted by the excitatory
synapse, results in an increase in the post-synaptic neuron’s
membrane potential. When the membrane potential of the
neuron reaches the lower threshold value (vthres1), it emits
a VDD/2 spike and enters into its refractory state. At this
stage, its membrane potential is allowed to increase fur-
ther due to incoming pre-synaptic stimuli. However, in the
absence of incoming voltage spikes, the membrane potential
decreases with time due to the leaky nature of the neuron.
After the refractory period has elapsed, if the membrane
potential goes below vthres1, the neuron can fire a VDD/2
spike again. However, if it remains above vthres1, the neuron
can emit a VDD spike upon crossing the higher threshold
value (vthres2). After firing a VDD spike, the neuron’s mem-
brane potential is reset to vreset. Following the firing of a
VDD spike, the neuron enters into its refractory state, where
its membrane potential is clamped to vrest. After the refrac-
tory period, another LIF cycle begins. Tab. 2 lists a few key
variables that were employed in the simulation. The time
constants’ units are defined in terms of the time step (dt)
utilized in the simulation.
The network is trained using 80 images, selected at ran-

dom, from each class of digits in the MNIST dataset. A
binary spike train of length 350 × dt for each pixel in the

TABLE 2. System-level simulation parameters.

image is created using rate encoding of pixels in the image.
The frequency of firing activity at a particular pixel is pro-
portional to that pixel’s intensity in the image. This binary
spike train is further converted to a ternary spike train. A
sample window is defined comprising 35 time instances each,
and the spike count is summed across all 35 time instances
for each pixel in the image. This procedure results in the
generation of a ternary spike train of 10 time instances for
every pixel in the image based on the summed spike count
as follows:

Spike =

⎧
⎪⎨

⎪⎩

0 if Spike Count ≤ 2

1 if 2 < Spike Count ≤ 4

2 otherwise

(2)

The ternary spike train is now fed to the ternary SNN. At
the beginning of the training process, the synapse’s weights
are initialized with random values. When the network
receives the ternary spike train, the synaptic weights undergo
modulation through STDP. The synaptic weights slowly set-
tle to the desired values, and the training is stopped at that
point. The classification accuracy of 75% was obtained using
the binary SNN on the same benchmark dataset. However,
the proposed ternary SNN resulted in a higher classification
accuracy of 82%. This is because the ternary encoding of
the dataset is a more accurate representation of the dataset
than its binary counterparts since encoding involves some
loss of information. The classification accuracy obtained in
this work is compared against existing literature in Tab. 3. It
can be observed that the classification accuracy obtained by
training the ternary SNN on the MNIST dataset is lesser in
comparison to [18] and [34], despite employing a larger num-
ber of neurons in the network. This can be attributed to the
fact that only a subset of the MNIST dataset (80 randomly
selected images for each digit) is presented to the network
during training. On the other hand, in [18], [33], [34], the
entire dataset (60,000 images) was used to train the network.
This technique was adopted due to the limited computation
resources available. Moreover, our aim was to compare the
classification achievable with a ternary SNN and compare
it with a binary SNN and not to demonstrate the maximum
achievable classification accuracy. Thus, the accuracy drop
was due to only a subset of the dataset provided to train the
network.
Further, due to the smaller ternary spike train (10 time

instances) compared to the much larger binary spike train
(350 time instances), the inference time per image is
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TABLE 3. Comparison of classification accuracy by training different SNN
architectures on MNIST dataset.

observed to reduce 8 × for the ternary SNN compared
to the binary spiking neural network. Hence, the system-
level simulations demonstrate that the proposed ternary
spiking neural network can be more accurate and eas-
ier to train than the traditional binary spiking neural
network.

V. VARIABILITY ANALYSIS
The results presented in this work have been obtained while
considering ideal DP-TFET device characteristics with no
variability. We will now consider the device-to-device vari-
ability as there might be process-induced variations during
the fabrication process. These might impact the behavior
of the ternary spiking neuron and the classification accu-
racy achievable with the implemented ternary SNN. Some
of the parameters of the DP-TFET that are more susceptible
to process-induced variations are the length of the intrin-
sic region between the two pockets (Li), the doping of the
n+ pocket (NNP), the doping of the p+ pocket (NPP), the
thickness of the gate dielectric (tox) and the positional devi-
ation of the gate with respect to the source/drain regions.
We will analyze the impact of varying these parameters one
at a time while keeping the others fixed on the DP-TFET
ternary neuron characteristics.

A. IMPACT OF N+ POCKET DOPING (NNP)
We vary NNP from 1 × 1019 − 2 × 1019 cm−3 around its
nominal value of 1.5 × 1019 cm−3 while keeping the other
parameters at their nominal values (NPP = 3 × 1019 cm−3,
LI = 6nm, tox = 5nm). Fig. 10 shows the band diagrams
along cutline BB’ for different NNP. It can be observed
from the band diagram that with an increase in the NNP, the
sharpness of the band profile at the source-channel junction
increases. This causes an alignment of the Valence Band
(VB) in the source and the Conduction Band (CB) in the
channel at a smaller VGS compared to the case with a smaller
NNP. Thus, the neuron can fire a VDD spike at a smaller

FIGURE 10. Band diagram along cutline BB’ for different NNP
(NPP = 3 × 1019 cm−3, LI = 6nm, tox = 5nm).

accumulated potential (VGS) compared to the case with a
lower NNP.

B. IMPACT OF CHANGE IN LENGTH OF INTRINSIC
REGION BETWEEN POCKETS (LI)
We vary LI from 4-8 nm around the nominal value of 6 nm
while keeping the other parameters at their nominal values
(NNP = 1.5 × 1019 cm−3, NPP = 3 × 1019 cm−3, tox =
5 nm). Fig. 11 shows the band diagrams along cutline BB’
for different Li. It can be observed from the band diagram
that as LI decreases, the abruptness in the change of doping
in the channel from n-type to p-type increases, while it is
more gradual for a larger LI . Thus, a lower LI results in
an early reversal of the band profile while going from the
n+ pocket to the p+ pocket. Consequently, a neuron with
a lower LI will exhibit a delayed VDD spiking event (at a
higher VGS) compared to the one with a higher LI . It should
be ensured that a minimum distance is maintained between
the two pockets; otherwise, a very high VGS will be required
to cause source-channel tunneling. Such a high VGS might
not be achievable, and thus the affected neuron might never
fire a VDD spike.

C. IMPACT OF P+ POCKET DOPING (NPP)
We vary the doping concentration of the p+ pocket from
2.5 × 1019 − 3.5 × 1019cm−3 around the nominal value of
2.5 × 1019cm−3 while keeping the other parameters at their
nominal values (NNP = 1.5 × 1019cm−3, LI = 6nm, tox =
5nm). Fig. 12 shows the band diagrams along cutline BB’
for different NPP. It can be observed from the band diagram
that as NPP increases, the height of the barrier increases.
This causes an increase in band overlap and results in an
increase in the within-channel tunneling current. Due to this,
the neuron fires a VDD/2 spike for a smaller accumulated
potential (VGS) than the neuron with a lower NPP.
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FIGURE 11. Band diagram along cutline BB’ for different LI
(NNP = 1.5 × 1019 cm−3, NPP = 3 × 1019 cm−3, tox = 5nm).

FIGURE 12. Band diagram along cutline BB’ for different NPP
(NNP = 1.5 × 1019 cm−3, LI = 6 nm, tox = 5nm).

D. IMPACT OF CHANGE IN THICKNESS OF GATE
DIELECTRIC (TOX)
We vary tox from 4-6 nm around the nominal value of 5 nm
while keeping the other parameters at their nominal values
(NNP = 1.5×1019 cm−3, LI = 6 nm. NPP = 3×1019 cm−3).
Fig. 13 shows the band diagrams along cutline BB’ for dif-
ferent tox. It can be observed from the band diagram below
that with a decrease in tox, the tunneling width for within-
channel tunneling decreases, resulting in an increase in the
within-channel tunneling current. Consequently, the neuron
with a thinner tox fires a VDD/2 spike at a smaller VGS com-
pared to the one with a thicker tox. Also, it can be observed
that a neuron with a thinner tox can fire a VDD spike at a
smaller VGS compared to that with a thicker tox.

E. IMPACT OF CHANGE IN GATE ALIGNMENT
The results shown so far have considered an ideal alignment
of the gate electrode with respect to the source/drain regions.
However, due to process-induced variations, there may be a
misalignment of the gate, resulting in an overlap/underlap of
the gate with respect to the source/drain. An overlap/underlap
of up to 5nm is considered on the source and drain sides

FIGURE 13. Band diagram along cutline BB’ for different NPP
(NNP = 1.5 × 1019 cm−3, LI = 6 nm. NPP = 3 × 1019 cm−3).

around the ideal case while keeping the pocket parameters at
their nominal values (NNP = 1.5 × 1019 cm−3, LI = 6 nm.
NPP = 3 × 1019 cm−3, tox = 5 nm). Fig 14 shows the
band diagrams along cutline BB’ for different gate under-
lap/overlap with respect to the source/drain regions. It can be
observed that with a 5nm underlap of the gate with respect to
the source side, the gate no longer influences the n+ pocket
region, and there is no band bending with an increase in gate
voltage. The ternary neuron can never fire a VDD spike in
such a scenario. Hence, the gate underlap can be detrimental
to the functionality of the device, and this situation should be
avoided by allowing sufficient margins for process-induced
variations. As the gate underlap decreases from 5nm, the
gate regains control over the n+ pocket region, and the neu-
ron can fire a delayed VDD spike. A band profile similar to
the ideal gate alignment is obtained for a gate overlap with
the source region. Hence, the gate overlap is not expected
to impact the device functionality significantly. However,
the increased overlap capacitance can impact the dynamic
response of the device.
From a system-level standpoint, it can be inferred that

due to device-to-device variability, there can be an earlier or
delayed firing event between two neurons in adjacent layers.
For instance, suppose that a neuron in the pre-synaptic layer
was skewed such that it fired a VDD spike earlier than it was
supposed to (at a lower VGS) and a post-synaptic neuron was
skewed such that it is skewed to fire a VDD spike later than
it was supposed to (at a higher VGS), or vice-versa, then
change in the weight of the synapse connecting them would
be small as the two spikes would have been further apart
in time. This can lead to a slower training of the network
compared to the case when both neurons are nominal.

VI. CONCLUSION
This paper utilizes a well-calibrated device-to-system level
simulation framework to illustrate unsupervised learning in a
ternary SNN using STDP. We demonstrate the implementa-
tion of a ternary spiking neuron using a Ge-based DP-TFET.
Further, a device-circuit co-simulation framework shows that
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FIGURE 14. Band diagram along cutline BB’ for different gate electrode
underlap/overlap with respect to source/drain regions (NNP = 1.5 × 1019

cm−3, LI = 6nm. NPP = 3 × 1019 cm−3, tox = 5nm).

a pair of dual-pocket FD-SOI MOSFETs can be utilized to
produce a current, which tunes the synapse’s conductance
according to STDP. The proposed ternary Spiking Neural
Network (SNN) is trained to perform digit classification on
the MNIST dataset. An accuracy of 82% was achieved in
the classification, which is superior to the accuracy obtained
with a binary SNN (75%). Moreover, the inference time is
reduced by about 8× compared to a binary SNN. It must be
ensured that the process-induced variations do not result in
a large device-to-device variability to avoid training to slow
down. In particular, the two pockets should be fabricated at
a minimum controlled distance from one another, and the
gate underlap should be controlled to allow firing activity for
those neurons. Hence, the device-, circuit-, and system-level
results demonstrate that ternary spiking neural networks can
be a promising framework for brain-inspired computing.
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