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ABSTRACT The artificial neural network (ANN)-based compact model has significant advantages over
physics-based standard compact models such as BSIM-CMG because it can achieve higher accuracy over
a wide range of geometric parameters. This makes it particularly suitable for design space exploration
and optimization. However, the ANN-based compact model using only one set of model parameters
(global-ANN) requires larger model sizes to achieve wider coverage and higher accuracy in order to
capture the unpredictable nonlinearities of emerging devices. This results in reduced simulation speed
and a trade-off between simulation accuracy, model coverage, and simulation speed makes it difficult to
utilize ANN-based compact models in a variety of ways. To solve this problem, we propose the first
ANN-based compact modeling flow using a binning method (binning-ANN) and we address the training
requirements and data sparsity issues that may occur due to the binning method in ANNs. In addition,
we develop a bin size optimization guideline for the binning-ANN. As a result, the binning-ANN not
only has higher accuracy, but also much better expandability than existing methods.

INDEX TERMS Artificial neural network (ANN), machine learning (ML), device modeling, compact
model, binning, emerging device, SPICE.

I. INTRODUCTION
Fast and accurate models of next-generation devices are very
important for circuit simulation and design optimization [1].
Industry-standard compact models such as the Berkeley
short-channel IGFET model (BSIM) have used physics-
based equations to describe electrical characteristics of
devices [2], [3]. However, developing a physics-based com-
pact model is very time-consuming because of the many
secondary effects such as short-channel effects and quantum
effects in emerging devices. In addition, since the standard
compact model is mainly an analytical model, it can only

predict the electrical characteristics over a very narrow
range [4]. A compact model should have wide model
coverage and allow the use of a wide range of design
parameters for simulation. An artificial neural network
(ANN) model is used to efficiently predict and analyze
nonlinear electrical characteristics according to the process
parameters of the device [5]. Due to these advantages, the
ANN-based compact model is suitable for iterative design
optimizations and parametric analysis because it effectively
predicts nonlinear electrical characteristics for geometric,
physical, material, and bias parameters [6].
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For iterative design space explorations and optimizations,
it is very important to design a compact model with high
accuracy, wide model coverage, and fast simulation speed.
However, we found a critical issue in previous studies
in which increasing the number of neurons and layers
of the ANN model increased the amount of computation
and slowed down the simulation speed [7], [8]. In general,
to predict the nonlinear electrical characteristics of many
devices with high accuracy, hyperparameters such as neurons
and layers of the ANN model must be increased, which
increases the simulation time. This is the first trade-off
between simulation speed and accuracy of compact models.
Another consideration is that the ANN model is only accurate
in the range for which it was trained. To use a compact model
for new devices according to changes in node technology,
the new devices must be added to the training data. If the
electrical characteristics of the new devices have similar
tendencies to the existing trained devices, transfer learning
can be used to achieve high accuracy with a small set of
training data and training times [9], [10]. However, when
new training data are added, the accuracy of the ANN model
decreases because the regression problem becomes more
complex. This is the second trade-off between accuracy and
coverage of compact models. For the first time, we present
the idea of using multiple sets of model parameters in an
ANN-based compact model as a method to address the
abovementioned two issues.
For several years, ANN-based compact models called

‘global models’ used only one set of model parameters for
all devices. Since it is very difficult to capture all nonlinear
characteristics in emerging devices with one set of model
parameters in the industry standard compact model, multiple
sets of model parameters are used to separate intervals with
similar characteristics to improve accuracy [11], [12]. This
is called the binning method. However, parameter extraction
of the standard compact model takes a lot of time, making
the binning method inefficient [8], [11], [13], [14]. Unlike
the standard compact model, adopting a binning method to
ANN-based compact models can be efficient because the
required time cost and modeling efforts are very small [8].
There are many studies on various training and preprocessing
methods to improve the efficiency of neural network models.
However, there is a lack of research on an efficient
ANN-based compact model framework that simultaneously
considers the ANN and the Verilog-A language. As shown
in Table 1, we introduce a technique to strengthen the model
by applying the binning method to the ANN-based compact
model. The contributions of this study are as follows.

1) We applied the binning method to data-driven ANN
models for the first time to maximize learning effi-
ciency.

2) We proposed a novel training method and a bin size
optimization flow using transfer learning to address
the increased training requirements and data sparsity
issues that may arise from the binning method.

TABLE 1. Type of compact models.

FIGURE 1. (a) The NSFET y-axis section, (b) The NSFET x-axis section.

3) Using Verilog-A, we constructed an ANN-based com-
pact model that uses multiple sets of model parameters
to address the inherent trade-offs between simulation
speed, ANN accuracy, and available device coverage.

In Section II, we propose a binning method to improve
the accuracy of ANNs in both trained and testing devices.
In Section III, we introduce the model integration method
using Verilog-A and show the unrestricted and fast model
expansion method using the binning method and transfer
learning. In Section IV, the performance of the proposed
binning method is evaluated for digital and analog circuits.
Section V summarizes the study and discusses future work.

II. BINNING METHOD IN ANNS
A. TECHNOLOGY COMPUTER-AIDED DESIGN (TCAD)
SIMULATION
As shown in Fig. 1, the device used for the ANN-based
compact model is a three-stacked Nanosheet FET (NSFET)
as a next-generation device. Simulations are conducted using
Synopsys Sentaurus TCAD. The NSFET simulation condi-
tions are the same as those of our previous studies [7], [8].
When Vds = 0.65V, 53 I-V points were uniformly extracted
from the range of Vgs = 0 ∼ 0.65V. The TIL (i.e., the
SiO2 (k = 3.9) thickness) was fixed at 0.5 nm and the
equivalent oxide thickness (EOT) was swept while changing
the THK (i.e., the HfO2 (k = 22) thickness). The inner spacer
length (Lsp), gate length (Lg), sheet width (Wsheet), and
sheet thickness (Tsheet) were swept. When extracting data,
sampling methods considering the distribution of data such
as Latin hypercube sampling (LHS) and Sobol sequence are
more effective than uniform sampling [15]. In the range of
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TABLE 2. NSFET dataset.

FIGURE 2. The ANN model architecture.

Table 2, 1,024 devices were generated using TCAD’s Sobol
sequence [16]. The total number of device data points is
54,272.

B. ANN MODEL
The algorithm and structure of the ANN model are similar
to those of previous studies [7], [8]. Early stopping was also
used to prevent overfitting. We used an NVIDIA Titan Xp
graphics card to accelerate the training of the ANN model.
The ANN model uses the hyperbolic tangent as an activation
function. As shown in Fig. 2, the model that predicts the
drain current according to geometric parameters and bias
parameters is trained. Since the ANN model should have the
ability to fit electrical characteristics such as Ids, Cgg, Cgd,
and Cgs while setting the size as small as possible for the
speed of SPICE simulation. The ANN model has two hidden
layers with 10 neurons to achieve a target accuracy greater
than 95%. As shown in Equation (1), the ANN model uses a
fixed MinMaxScaler because the formula can be changed as
the range of the dataset changes due to the binning method.

Xi = xi − minfixed(x)

maxfixed(x) − minfixed(x)
(1)

In this study, a mean square error (MSE)-based physics-
augmented loss function was used to perform optimized
analysis with the smallest error in the target operation region.
As shown in Equation (2), the SE calculation of each region

FIGURE 3. Feasible windows of the ANN-based compact model.

was multiplied by α, β, or γ to further reduce the errors in
regions with large weights.

Loss = 1

N

Ns∑

i=1

[
α × SE

(
Ioff

) + β

× SE(Itriode) + γ × SE(Isat)
]

(2)

(SE: square error, α: weight parameter of the off region, β:
weight parameter of the triode region, γ : weight parameter of
the saturation region) Both the global-ANN and the binning-
ANN used the same ANN structure and hyperparameters
(e.g., activation function, model size, learning rate) described
above.

C. OVERALL ANN-BASED COMPACT MODELING FLOW
WITH BINNING
The binning method used for compact models means divid-
ing an entire range of devices into smaller groups or “bins”
based on similar electrical characteristics to increase fitting
accuracy. The same method can be applied to the ANN-
based compact model. Fig. 3 shows the feasible windows
of the ANN model that can be designed according to the
range of devices used for training. In our previous study [7],
we analyzed the advantages and disadvantages of the single-
ANN model and the global-ANN model. The single-ANN
model refers to an ANN model that uses only one device
for learning and has the highest accuracy, but geometric
parameter sweep simulation is not possible. On the other
hand, the global-ANN model can be used for all devices
but has low model accuracy. The binning-ANN model is a
hybrid model that combines the advantages of both models. It
can have higher accuracy than the global-ANN by grouping
devices with similar electrical characteristics. Because the
training set of the model is divided into bins that are closer
to a single-ANN model, simulation accuracy improves, but
the number of ANN models that need to be trained increases,
ultimately increasing the modeling time and training data
required to create the model.
Fig. 4 describes the proposed ANN-based compact

modeling flow using the binning method. The device data is
generated by TCAD simulations or real devices. The key to
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FIGURE 4. The proposed ANN-based compact modeling flow with binning.

FIGURE 5. Data distribution of (a) 1,024 devices, (b) 64 devices.

improving model accuracy in the ANN-based compact model
with the binning flow is training data splitting. By splitting
the original training data to generate an easy regression
problem, the accuracy of the ANN model can be dramatically
improved without increasing the size of the model. The
divided ANN models are trained independently. After model
training, each model is evaluated with both training devices
and testing devices. If the accuracy of the integrated model
is higher than the target accuracy, we complete the compact
model. If not, the training data are divided into smaller bins,
and the process is repeated.

D. GLOBAL TO BINNING FINE-TUNING (GTBF) METHOD
The binning method in ANN can lead to two drawbacks.
First, the need to generate an ANN model for each bin
leads to increased training requirements as mentioned above.
Second, the method can lead to a data sparsity issue.
Fig. 5 shows the data distribution of (a) 1,024 device sets
and (b) 64 device sets divided into 16 equal bins with
the Wsheet as the binning parameter. As shown in Fig. 5,
increasing the number of bins is equivalent to decreasing

FIGURE 6. (a) The influence of the number of bins on model accuracy,
(b) The influence of binning weight parameter (WB) on model accuracy.

FIGURE 7. Block diagram of the global to binning fine-tuning method
(GTBF).

the bin size so that the density of training devices decreases
rapidly. Fig. 6 (a) shows the accuracy of the training
devices and testing devices according to the number of
bins. Since the ANN model is data-driven with multi-
dimensional inputs, it becomes more vulnerable to overfitting
when the number of training devices decreases due to the
binning method. To address these issues, we propose a
new training method. In the field of device modeling, there
are studies in which transfer learning is used to alleviate
the problem of insufficient training data [9], [10]. Fine-
tuning is one of the methods of transfer learning and is
an algorithm used to make small modifications to suit a
new purpose based on the existing ANN. Fig. 7 shows the
proposed global to binning fine-tuning method (GTBF) to
resolve the problem of overfitting. To design an optimized
binning-ANN, we maximize the accuracy of the training
devices while maintaining a higher accuracy of the testing
devices as compared to the global-ANN. Before training
the binning-ANN, the global-ANN with the original training
data is first trained. We use the global-ANN as an initial
binning-ANN and continue training with a very low learning
rate. The GTBF method has three advantages over normal
ANN training methods. First, because a global-ANN with a
relatively high density of training data is used as the initial
model, it can have higher accuracy for the testing devices
than normal binning-ANN. Second, fine-tuning can greatly
reduce the training requirements using a pre-trained ANN
model. Equation (3) is the training requirements for a normal
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binning-ANN training method and Equation (4) is the epoch
requirement for GTBF. As shown in Equation (5), because
the training is rapidly accelerated using transfer learning,
Tfine−tuning is mostly very small (WB < 0.3) compared to
Tglobal.

Tnormal = Nbin × Tglobal (3)

TGTBF = Tglobal + Nbin × Tfine−tuning (4)

Tfine−tuning = WB × Tglobal (5)

(Nbin: number of bins, Tglobal: epoch requirement for global-
ANN, WB: binning weight parameter in Fig. 6 (b))
As the number of bins increases, the difference between

Tnormal and TGTBF increases. The training requirements can
become less than 30% of normal binning-ANN. Lastly, and
most importantly, overfitting of the ANN model can be
prevented by continuously comparing the binning-ANN with
the global-ANN during training. As shown in Fig. 6 (b), the
GTBF method can be used as a condition to stop learning.
It prevents overfitting due to the data sparsity problem by
comparing the accuracy of the global-ANN and the binning-
ANN on testing devices at specific intervals. As the binning
weight parameter increases, the accuracy of the training
devices continues to increase, but the accuracy of the testing
devices increases and then decreases.

E. DECISION CRITERIA FOR BINS
There are two steps to design the binning-ANN model. The
first step is to select the parameters for binning. The inputs
of the ANN-based compact model are divided into fixed
parameters such as geometric, physical, material, temper-
ature, and process parameters which have fixed values in
DC, AC, and transient simulations, and variable parameters
such as voltage biases whose values continuously change
during the simulation. Continuity and smoothness may not be
guaranteed when the model parameters are changed at the bin
boundaries. To avoid convergence problems during SPICE
simulations, binning must be performed to the parameters
that are fixed. Among the geometric parameters, we selected
five key parameters of three-stacked nanosheet FETs [7].
Since the main idea of the binning method is to group devices
with similar characteristics into a same bin, it is advantageous
to apply the binning method using input parameters that
have a large dependence on the output. We analyzed this
dependence by finding Spearman correlation coefficients.
The Spearman correlation coefficient shows dependence
between two parameters in the data. As shown in Table 2,
we extracted the Spearman correlation coefficients between
the preprocessed input parameters and the output. Tsheet, Lg,
and Wsheet were used to create bins.
The second step is to select the proper number of bins and

the size of each bin. By dividing the input data into bins, the
range of training data that the ANN must fit will be reduced,
then the accuracy of the model will increase. Fig. 8 shows
a plot of the validation loss according to the number of
bins and training epochs. It shows that achievable accuracy

FIGURE 8. Validation loss according to the number of bins.

of the ANN model improves proportionally according to
the number of bins. The optimal binning method in a
practical situation is to set a small bin size in the critical
regions such as the regions with the minimum geometric
sizes, where the variability of the device is large and the
most utilized regions. Conversely, setting a large bin size
in the non-critical regions and infrequently used regions
will be helpful. We recommend employing the binning
method, considering careful design of experiments (DOE),
physics-domain expertise, data visualization, and importance
analysis.
However, if training devices cannot be extracted suffi-

ciently, each bin must be carefully split considering the
distribution and physical characteristics of the training
devices. To determine whether it is wise to split each bin
into new bins, we propose the decision criteria for bins using
the GTBF method and hierarchical analysis. Our aim is to
find the optimal bin size that maximizes the accuracy of the
training devices while preserving the accuracy of the testing
devices within each bin. Using the GTBF stopping condition
as previously mentioned, it is possible to find the accuracy of
the training devices with same accuracy of testing devices.
Therefore, we use the MSE of the training devices as a metric
for each bin. As shown in Fig. 9 (a), if the MSE of the ANN
model trained with the separated bins is smaller than that of
the ANN model trained with the original bin, the bin size
is reduced. On the other hand, if the training data for the
divided bins are insufficient to describe the region, the GTBF
stopping condition terminates earlier than before, resulting
in worse accuracy. Also, when separating bins, there may be
very few test devices, in which case GTBF stopping does
not work well. In the above two cases, the binning method
is terminated. Finally, using Algorithm 1, the optimal bin
sizes are determined as shown in Fig. 9 (b).

III. MODEL INTEGRATION AND EXPANSION
After completing the final compact model, the weights and
biases of the divided ANN models are integrated into one
compact model using ‘if’ and ‘include’ statements in the
Verilog-A language. The integrated compact model loads
the model parameters (weights and biases) according to
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FIGURE 9. (a) Decision criteria for binning, (b) Bin size optimization flow.

Algorithm 1 Optimal Binning-ANN Model Implementation
1. ANN Input: geometric parameters, bias parameters
2. ANN Output: electrical parameters
3. Select binning parameters with high Spearman correlation
coefficients
4. Define GTBF function
for 0 ≤ i ≤ Tglobal do

Train ANN
if i % specific interval==0 then
if MSEBinning(test) > MSEGlobal(test) then

break
else

continue
return MSEBinning(train) × #(train)
5. Optimize bin sizes using GTBF function

while true do
if GTBF(a,b) < GTBF(a)+GTBF(b) then

break
else if #(test(a)) or #(test(b)) is too small then
break

else
Divide (a,b) to (a), (b)

∗ (a,b) ≡ (a) ∪ (b)
∗ (a), (b) are data in bins
6. Complete binning-ANN

binning conditions. Binning conditions can be defined in
various ways, including defined geometric parameters, corner
cases, and the number of stacks of NSFETs. Since the
formulas used in the ANN-based compact models are the
same, differently trained ANN models can be integrated into
one compact model. Algorithm 2 is a verilog-A pseudo-code
that forms the ANN-based compact model with multiple sets
of model parameters.
The critical disadvantage of the ANN-based compact

model is that it is accurate only in the range of the training
devices. To use devices outside of the trained range, the
model coverage of devices must be expanded by adding
new data to the training data. Fig. 10 shows two different
model coverage expansion methods. Fig. 10 (a) shows the
conventional model coverage expansion method using only

Algorithm 2 Proposed Model Integration Method Using
Verilog-A
1. Define module (MOS) and terminal (D,G,S,B)
2. Define parameters (Nfin, Ids,Cgg,gd,gs,gb . . .)

3. Define weights, biases according to the condition
if (binning condition 1) then

define weights, biases of ANN1
else if (binning condition 2) then

define weights, biases of ANN2
· · ·
else

define weights, biases of ANNN

4. Calculate ANN I-V model
5. Calculate ANN C-V model
6. Add electrical characteristics to the MOSFET model

one set of weights and biases. To increase the range of
geometric parameters for the ANN-based compact model,
the new devices must be added to the training data and
the ANN must be retrained. During retraining, a new ANN
model can be designed quickly and efficiently using the
transfer learning method. Transfer learning is an algorithm
that can train a new model at high-speed using only a small
amount of additional training data based on the weights and
biases of an existing model. Transfer learning can help with
the problems of large training time and insufficient training
data, but it does not avoid the trade-off between the amount
of training data and model accuracy. In general, in ANN
models, the amount of training data has a linear relationship
with the size of the model [17]. A major drawback is that
the accuracy of the ANN model may be decreased by the
underfitting problem as new data are added at the same
model size. When the size of the model is increased to
solve the underfitting problem, the degradation of simu-
lation speed becomes a problem [7], [8]. This bottleneck
reduces the reusability of the existing model and makes
it difficult to expand the coverage of ANN-based compact
models.
In contrast, Fig. 10 (b) shows the proposed model cover-

age expansion method using the binning method through the
proposed Verilog-A code. In this method, the newly added
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FIGURE 10. Two model coverage expansion methods. (a) The conventional
model coverage expansion method using one ANN model, (b) The
proposed model coverage expansion method using multiple ANN models.

TABLE 3. ASAP7 dataset.

training data are used separately and independently from the
existing model for training. The problem of reusability of the
existing model is solved, and the accuracy of each model is
independent. Starting from the same model, the accuracies
of the two methods were compared when the range of sheet
width of three-stacked NSFETs was expanded by six times
and the range of sheet thickness by two times. The existing
ANN model was trained with 300,000 iterations, and the
other ANN models were trained with 30,000 iterations using
transfer learning. In the conventional method, the accuracy
of the ANN model tends to decrease as new training data are
added. On the other hand, with the proposed method, even
if new training data are added, the accuracy of the model
is maintained because each ANN model is independently
trained. This means that model expansion using the binning
method is free from any restrictions like underfitting and
retraining.

IV. CIRCUIT SIMULATION RESULTS AND DISCUSSION
SPICE simulation was executed to evaluate the simula-
tion accuracy and speed of the proposed binning-ANN
model. ASAP7 was used as the reference standard compact
model [18]. The training dataset was extracted by Sobol
sequence using HSPICE, and 1,000 devices were extracted
as shown in Table 3. For eight bias conditions, Vgs = 0.05V,
0.25V, 0.325V, 0.5V, 0.65V and Vds = 0.05V, 0.325V, 0.65V,

FIGURE 11. NMOS fitting results of the global-ANN and the binning-ANN.
(a) ID − VGS , (b) ID − VDS , (c) [Cgg, Cgd , Cgs]−VGS at VDS = 0.05V, and
(d) [Cgg, Cgd , Cgs]−VGS at VDS = 0.65V.

26 I-V points were extracted. For three bias conditions,
Vds = 0.05V, 0.325V, 0.65V, 26 C-V points were extracted.
The total number of training data points is 1,000×26×8 =
208,000 (I-V model), 1,000×26×3 = 78,000 (C-V model).
The BSIM-CMG model in ASAP7 is an analytical low-
fidelity device model so that the ANN was designed with
a small size because the nonlinearity and complexity of
electrical characteristics according to geometric parameters
are smaller than those of rigorous high-fidelity models such
as TCAD [6]. To compare the accuracy and speed of the
proposed model, the reference global-ANN model with the
same model size and the large global-ANN model with the
same accuracy were used as comparison groups. For the
reference global-ANN model and the proposed binning-ANN
model, the I-V model was designed with two layers, each
with 5 hidden neurons, and the C-V model had one layer with
10 hidden neurons. The large global-ANN model increased
the model size to have the same accuracy as the proposed
binning-ANN model. The I-V model was designed with two
layers, with 10 and 5 hidden neurons, and the C-V model
had 1 layer with 15 hidden neurons. The binning-ANN was
trained through the proposed learning method using GTBF
in Section II and integrated using the model integration
method in Section III. The global-ANN was converted to
the Verilog-A language in the same way as in previous
studies [7], [8]. Fig. 11 is the fitting result of the reference
global-ANN and the proposed binning-ANN using the device
that has the highest Ion among training devices. As shown
in Table 4, the binning-ANN shows better fitting accuracy
than the global-ANN at the same model size for training
devices.
Two circuit testbenches were used to compare the circuit

simulation speed and accuracy of each model. Circuit
simulation results were verified using 100 testing devices
according to the LHS uniform sampling method using
HSPICE. As shown in Fig. 12, the 17-stage ring oscillator
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TABLE 4. I-V, C-V fitting errors.

FIGURE 12. Circuit testbench schematics. (a) 17-stage ring oscillator,
(b) 2-stage op amp.

FIGURE 13. Circuit simulation waveform (a) 17-stage ring oscillator,
(b) 2-stage op amp gain, and (c) 2-stage op amp phase.

(RO) is used to compare the accuracy and simulation speed
of transient simulation and the 2-stage operational amplifier
(op amp) is used for AC simulation. Transient simulation was
performed from 0 to 1 ns using the 17-stage ring oscillator
and AC simulation was performed from 100Hz to 100GHz
in units of decades using the 2-stage op amp. Fig. 13 shows
Vout waveforms of the 17-stage RO and the 2-stage op amp
using the device that has the highest Ion among training
devices. The binning-ANN shows better simulation accuracy
than the global-ANN at the same model size. In addition,
Table 5 shows the circuit simulation performance results
according to three models for 100 testing devices. It shows
that the proposed binning-ANN has higher accuracy than
the reference global-ANN even on the testing devices. The
proposed binning-ANN also has faster simulation speed than

TABLE 5. Circuit simulation performances.

the large global-ANN. In the aspect of simulation accuracy,
the binning-ANN shows up to 29% higher gain accuracy
in AC simulation compared to the reference global-ANN of
the same size, and shows that phase margin, which requires
very high accuracy, can also be measured. In addition, it
shows 36% faster simulation speed in transient simulation
and 21% faster simulation speed in AC simulation compared
to the large global-ANN, while maintaining better accuracy.
The binning-ANN modeling method has superior simulation
speed and accuracy performance compared to the global-
ANN modeling method.

V. CONCLUSION AND FUTURE WORK
Existing ANN models require a larger model size to
achieve high accuracy over wide model coverage. However,
increasing the model size to improve the accuracy of
the model reduces the simulation speed. For design space
exploration and optimization, wide model coverage, high
accuracy, and fast simulation speed must be guaranteed at the
same time. In this study, we developed a method to achieve
higher accuracy by dividing the training data into bins
without increasing the size of the ANN model. Using this
divided ANN model, multiple sets of model parameters are
integrated into one compact model using the proposed model
integration method. The proposed binning-ANN model has
higher accuracy than the reference global-ANN with the
same size, and has faster simulation speed and even better
accuracy than the large global-ANN with the large model
size. In addition, the compact model can expand model
coverage with no restrictions. Because the model can be
expanded independently of the existing model, a very wide
range of device parameters, devices with various structures,
and corner case modeling can be applied with only one
compact model. Due to these advantages, the ANN-based
compact model using multiple sets of model parameters will
be the best option for emerging device modeling and design
technology co-optimization (DTCO). As a future work, we
plan to use the advantages of this model to conduct research
on design space explorations and optimizations of next-
generation devices.
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