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ABSTRACT We develop a novel algorithm for characterizing Deep Sub-Electron Read Noise (DSERN)
image sensors. This algorithm is able to simultaneously compute maximum likelihood estimates of quanta
exposure, conversion gain, bias, and read noise of DSERN pixels from a single sample of data with
less uncertainty than the traditional photon transfer method. Methods for estimating the starting point
of the algorithm are also provided to allow for automated analysis. Demonstration through Monte Carlo
numerical experiments are carried out to show the effectiveness of the proposed technique. In support of
the reproducible research effort, all of the simulation and analysis tools developed are available on the
MathWorks file exchange (Hendrickson and Haefner, 2022).

INDEX TERMS Clustering algorithms, conversion gain, DSERN, expectation maximization, Gaussian
mixture, PCH, PCH-EM, photon counting, photon transfer, quanta exposure, read noise.

I. INTRODUCTION
Advances in image sensor technology have resulted in pix-
els with sufficiently low read noise; enabling the ability
to discern the presence of individual electrons without the
need for avalanche gain or electron multiplication [2], [3],
[4], [5]. Sensors with this property, aptly named Deep
Sub-Electron Read Noise (DSERN) sensors, open the door
to new applications for the CMOS sensor architecture in
ultra low-light imaging environments. With the first DSERN
sensors now commercially available, methodologies for char-
acterizing these devices has become an emerging topic of
interest [6], [7].
To date, three methods for characterizing DSERN sensors

have been developed including the Photon Transfer (PT)
method [8], [9], [10], Photon Counting Histogram (PCH)
method [6], and a third method based on constrained
Maximum Likelihood Estimation (MLE) [7]. The work
by Fossum & Starkey [6]–and subsequently Nakamoto &
Hotaka [7]–show promise that the PCH and constrained MLE
methods out-perform the traditional PT method in accuracy
and precision when applied to DSERN pixels.

While promising, both methods present challenges related
to numerical stability, computational cost, and/or autonomy.
In this correspondence we present a new method in the
form of the PCH Expectation Maximization (PCH-EM) algo-
rithm, which incorporates attributes of both the PCH and
constrained MLE methods to enable a fully automated char-
acterization technique for maximum likelihood estimation
of quanta exposure, conversion gain, bias, and read noise of
DSERN pixels.
Prior to presenting the PCH-EM algorithm we must, how-

ever, first develop a statistical model for the digital signal
produced by DSERN pixels.

II. THE PHOTON COUNTING DISTRIBUTION MODEL
We begin by deriving the Photon Counting Distribution
(PCD) as a model of the probability density for data gen-
erated by DSERN pixels. The number of free-electrons
generated in a DSERN pixel when exposed to a constant
rate of impinging photons can be modeled by the Poisson
random variable K ∼ Poisson(H). Here, H = Hγ + Hd
denotes the quanta exposure describing the expected number
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of free-electrons generated in the pixel per integration time,
which is further decomposed into Hγ (the expected number
of photoelectrons generated by interacting photons) and Hd
(the expected number of free-electrons generated by ther-
mal contributions, i.e., dark current). The act of sensing the
electron signal introduces a continuous read noise component
R ∼ N (0, σ 2

R), where σR is the input-referred analog read
noise in (e−). The pixel output signal in Digital Numbers
(DN) can thus be represented by the random variable

X = �(K + R)/g+ μ�, (1)

where g is the conversion gain in (e−/DN), μ is the bias
(DC offset) in units of (DN), and �·� denotes rounding to
the nearest integer.
To derive the PCD, we will model the act of quantization

(rounding) as a simple additive noise process so that X|K =
k ∼ N (μ + k/g, σ 2), where σ = (σ 2

R/g2 + σ 2
Q)1/2 is the

combined read and quantization noise in (DN). To avoid
confusion, we note that when characterizing an image sensor,
the quantity σ is commonly referred to as the read noise
with σg being its corresponding value in electron units. We
may now obtain the PCD by integrating the join density
fXK(x, k) = P(K = k)fX|K(x|k) w.r.t. k yielding

fX(x) =
∞∑

k=0

e−HHk

k!
φ
(
x;μ + k/g, σ 2

)
, (2)

where φ(x;μ, σ 2) = 1√
2πσ

exp(−(x − μ)2/2σ 2) is the

Gaussian probability density with mean μ and variance σ 2.
For notational purposes we will use X ∼ PCD(H, g, μ, σ 2)

to denote a PCD random variable with parameter θ =
(H, g, μ, σ 2) as described by (2).
From (2) we see that the PCD is an infinite mixture of

Gaussian components with g controlling the spacing between
each component, σ as the width of each component, μ the
location of the zeroth component, and H the relative heights
of the components. Figure 1 plots the PCD for various H
and σ 2 with μ = 0 and g = 1 fixed. From the figure we can
see how the parameter H controls the overall envelope of
the distribution, while σ determines whether the individual
peaks may be resolved. As shown in the right column of
Figure 1, as σ increases, the contrast of the individual peaks
is reduced. Typically, the term DSERN is assigned to pixels
where σ is small enough such that the peaks are clearly
resolved [3].

III. THE PCH-EM ALGORITHM
Looking back at (2), we can see that the PCD can be inter-
preted as the marginal density resulting from marginalizing
K out of the joint model (X,K):

fXK(x, k) = e−HHk

k!
φ
(
x;μ + k/g, σ 2

)
. (3)

This reflects real-world data in the sense that we are only
able to observe the pixel output X, while the number of free
electrons K is unknown. For this reason K is a hidden (latent)

FIGURE 1. Plots of the PCD for various H and σ2 with μ = 0 and g = 1
fixed.

variable in the PCD model. To see what impact hidden vari-
ables has on our approach for estimating θ , Appendix A
provides a derivation of the maximum likelihood estimator
for θ in the hypothetical scenario where K can be directly
observed. As one can see in the Appendix, the ability to
directly observe K rather unexpectedly results in a simple,
closed-form estimator for θ .
In the realistic scenario where K is hidden, maximum

likelihood estimation of θ becomes much less straightfor-
ward. To see why, we first denote x = (x1, . . . , xN), with
xn ∼ PCD(H, g, μ, σ 2), as a sample of N observed values
from a DSERN pixel. From this sample we may construct
a likelihood function

L(θ |x) := fX(x|θ) =
∑

K
fXK(x,k|θ), (4)

where we have used the shorthand notation k =
(k1, . . . , kN),

∑
K = ∑∞

k1=0, . . .
∑∞

kN=0, and fXK(x,k|θ) =∏N
n=1 fXK(xn, kn|θ). Denoting �(θ |x) = log fX(x|θ) as the

log-likelihood function our goal is to solve the density
estimation problem

θ̃ = argmax
θ

�(θ |x). (5)

Deriving the log-likelihood we find

�(θ |x) =
N∑

n=1

log
∞∑

k=0

e−HHk

k!
φ
(
xn;μ + k/g, σ 2

)
, (6)

which is problematic for deriving closed-form maximum
likelihood estimators due to the series inside the logarithm. In
situations like this, we can directly maximize �(θ |x) through
numerical methods such as gradient descent; however, this
may be undesirable as one must calculate derivatives of the
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likelihood function and carefully control step size to ensure
convergence.
A lesser-known, yet widely accepted, method for max-

imum likelihood estimation is that of the Expectation
Maximization (EM) algorithm [11]. Instead of maximiz-
ing the log-likelihood function directly, the EM algorithm
maximizes a related (often simpler) function to produce a
sequence of estimators that converge to those of the maxi-
mum likelihood estimators. The key to the success of this
method is that EM models the estimation problem as one
containing hidden variables. Throughout the remainder of
this section, we derive a custom-built EM algorithm for
characterizing DSERN pixels, which takes into account the
specific structure of the PCD in (2).

A. DERIVATION OF THE PCH-EM ALGORITHM
A.1. SUPPORTING THEORY
The key insight provided by the PCH-EM algorithm is that
the log-likelihood can be written in an alternative form only
made possible by knowing that the PCD model contains
hidden variables. This alternative form then allows us to
derive update equations that improve an initial estimate of
θ in such a way as to guarantee an increase in the log-
likelihood.
To derive this alternative form of the log-likelihood we

first call on the definition of conditional density to write

pK|X(k|x, θ) = fXK(x,k|θ)

fX(x|θ)
, (7)

which upon taking the logarithm and rearranging gives

�(θ |x) = �(θ |x,k) − log pK|X(k|x, θ), (8)

where �(θ |x,k) = log fXK(x,k|θ). Multiplying both sides
of this relation by pK|X(k|x, θ ′) and summing over K
we obtain the following alternative representation of the
log-likelihood function that holds for any θ ′ in the PCD
parameter space [12]

�(θ |x) = Eθ ′(�(θ |x,K)) − Eθ ′
(
log pK|X(K|x, θ)

)
. (9)

Denoting the expected complete-data log-likelihood as the
first term in (9), namely,

Q
(
θ |θ(t)

)
= Eθ(t) (�(θ |x,K)), (10)

the PCH-EM algorithm takes an initial estimate for
the parameter θ(0) = (H(0), g(0), μ(0), σ 2(0)) and iterates
between two steps:
1) The expectation (E) step to compute Q(θ |θ(t)) and
2) The Maximization (M) step, which maximizes Q to

update the estimate via

θ(t+1) = argmax
θ

Q
(
θ |θ(t)

)
. (11)

Updating the parameter estimate in this way it is guaranteed
in each iteration that [13]

�
(
θ(t+1)|x

)
≥ �

(
θ(t)|x

)
(12)

so that a local maxima of the log-likelihood is always
achieved. With the supporting theory we now present the
details of the E- and M-step in the PCH-EM algorithm.

A.2. E-STEP
The expectation step entails deriving Q(θ |θ(t)). Substituting
appropriate values into (10) yields

Q
(
θ |θ(t)

)
=

∑

K
pK|X

(
k|x, θ(t)

)
log fXK(x,k|θ), (13)

which upon further expanding gives

Q
(
θ |θ(t)

)
=

N∏

m=1

∞∑

km=0

pK|X
(
km|xm, θ(t)

)

×
N∑

n=1

log fXK(xn, kn|θ). (14)

Bringing the sum w.r.t. n to the outside results in a lot of
simplification. After interchanging the sums and substituting
the expression for fXK(xn, k|θ) we obtain

Q
(
θ |θ(t)

)
=

N∑

n=1

∞∑

k=0

γ
(t)
nk log

(
e−HHk

k!
φ
(
xn;μ + k/g, σ 2

))
, (15)

where γ
(t)
nk = pK|X(k|xn, θ(t)) and

pK|X(k|xn, θ) =
e−HHk

k! φ
(
xn;μ + k/g, σ 2

)

∑∞
m=0

e−HHm

m! φ
(
xn;μ + m/g, σ 2

) . (16)

Comparing the final expression in (15) to the com-
plete data log-likelihood of equation (39) in the Appendix
shows many similarities. The major difference between these
expressions is that the 1kn=k has been substituted for γ

(t)
nk . In

the case where K was known, the indicator function 1kn=k
can be interpreted as a degenerate probability distribution
centered on the known value for each observed kn. In com-
parison, in the PCH-EM algorithm we do not know K, so
this degenerate distribution is replaced with γ

(t)
nk , representing

the probability Kn = k given the observed data Xn = xn and
the current estimate of the parameter θ(t). For this reason,
the γ

(t)
nk are commonly referred to as membership probabil-

ities as they assign the probability of xn belonging to each
Gaussian component of the PCD.

A.3. M-STEP
Maximization of Q(θ |θ(t)) is a very similar process to maxi-
mizing the complete log-likelihood in (39). To maximize this
function, we solve for the critical point ∇θQ = 0. Solving
this system of equations is fairly straightforward yet tedious.
A proof can be found in Appendix B. Upon solving the
system, we obtain the collection of update equations

H(t+1) = A(t) (17a)

g(t+1) = B(t) − H2(t+1)

C(t) − x̄H(t+1)
(17b)
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μ(t+1) = x̄− H(t+1)

g(t+1)
(17c)

σ 2(t+1) = x̂− B(t) − H2(t+1)

g2(t+1)
, (17d)

where x̄ = 1
N

∑N
n=1 xn is the sample mean, x̂ =

1
N

∑N
n=1(xn − x̄)2 is the sample variance, and

A(t) = 1

N

N∑

n=1

∞∑

k=0

γ
(t)
nk k (18a)

B(t) = 1

N

N∑

n=1

∞∑

k=0

γ
(t)
nk k

2 (18b)

C(t) = 1

N

N∑

n=1

xn

∞∑

k=0

γ
(t)
nk k. (18c)

Again, comparing these update equations to the closed-
form maximum likelihood estimates in (41) shows many
similarities as is expected. To check and see if these update
equations make sense, notice that A(t), B(t), and C(t) have
the form of Monte Carlo estimators for expected values
w.r.t. X ∼ PCD(θ), e.g.,

A(t) ∼ Eθ

( ∞∑

k=0

pK|X
(
k|X, θ(t)

)
k

)
(19)

as N → ∞. Assuming we also have a good starting point so
that θ(t) → θ then produces the asymptotic approximations
for large N and large iteration number t

A(t) ∼ EK = H (20a)

B(t) ∼ EK2 = H2 + H (20b)

C(t) ∼ E(KX) = 1

g

(
H2 + (1 + μg)H

)
. (20c)

Likewise, the sample moments act as Monte Carlo estimators
for the exact moments as N → ∞ giving

x̄ ∼ EX = μ + H

g
(21a)

x̂ ∼ VarX = σ 2 + H

g2
. (21b)

Substituting these asymptotic approximations into the right
hand sides of (17) show that the updates are asymptotic to
the parameters they estimate, e.g., H(t+1) ∼ H, g(t+1) ∼ g,
and so on.
One additional benefit of the PCH-EM algorithm is that it

also provides a means for estimating (demarginalizing) the
hidden variable K via the membership probabilities. Since
γ

(t)
nk represents a probability distribution for Kn given Xn =
xn, we may estimate the hidden values kn via

k̃n = argmax
k

γ
(t)
nk (22)

and thus predict the number of free-electrons that generated
each observation xn.

A.4. FINAL ALGORITHM
With the derivation of the E- and M-step now complete,
the PCH-EM algorithm works by supplying a starting point
θ(0) = (H(0), g(0), μ(0), σ 2(0)), then:

1) E: Compute γ
(t)
nk by substituting θ(t) into (16).

2) M: Update θ(t) �→ θ(t+1) with (17).
3) Repeat until Q(θ(t+1)|θ(t)) − Q(θ(t)|θ(t−1)) ≤ ε.

IV. STARTING POINT ESTIMATION
As is the case with numerical optimization methods, one
of the challenges when working with the PCH-EM algo-
rithm is the need for a starting point. While the PCH-EM
update equations guarantee an increase in log-likelihood at
each iteration, the effectiveness of the algorithm in achiev-
ing a global maximum, as compared to a local maximum,
is sensitive to the initial starting point. Here we present a
method for extracting the starting point directly from the
original sample by relying on the properties of the PCD
Fourier transform.

A. PROPERTIES OF THE PCD FOURIER TRANSFORM
We begin by considering the magnitude of the PCD Fourier
transform F{fX}(ω) := E exp(−2π iωX)

|F{fX}(ω)| = exp
(
H(cos(2πω/g) − 1) − 2π2σ 2ω2

)
. (23)

The magnitude function in (23) is asymptotic to a Gaussian
curve near integer multiples of g in the sense that as ω → ng
(n = 0, 1, 2, . . . )

|F{fX}(ω)| ∼ an exp
(
−τ(ω − bn)

2
)
, (24)

with τ = 2π2(σ 2 + H/g2),

an = exp

(
−2π2

(
Hn2 − (Hn)2

g2
(
H/g2 + σ 2

)
))

, (25)

and

bn = Hn

g
(
H/g2 + σ 2

) . (26)

From this observation we expect to find local maxima (peaks)
in the magnitude function at ω ≈ bn. Figure 2 depicts a
graph of |F{fX}(ω)| showing the two most dominant peaks
at ω = 0 and ω ≈ b1 along with the approximate position
of the secondary peak (ω, |F{fX}(ω)|) = (b1, a1).

The existence of the secondary peak at ω ≈ b1 depends
on the values of quanta exposure and read noise. To see
why, we evaluate ∂ω|F{fX}(ω)| = 0, which given ω > 0
simplifies to

sinc(2πω/g) + (σg)2

H
= 0, (27)

where sinc x = sin x/x. In order for a secondary peak to exist,
this equation must have at least two solutions on ω > 0,
which occurs only when

(σg)2

H
< | min

x>0
sinc x| = 0.217 . . . (28)
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FIGURE 2. Graph of |F{fX }(ω)| versus ω showing the two most dominant
peaks at ω = 0 and ω ≈ b1 along with the approximate position of the
secondary peak (b1, a1).

In other words, the magnitude function at ω ≈ b1 is only a
peak if H is about five times larger than (σg)2. When this
is not the case, we cannot reliably extract the starting point
from the observed data. From the properties outlined here
we can extract the starting point as follows.

B. STARING POINT EXTRACTION PROCEDURE
Given a set of N observations x = (x1, . . . , xN) with xn ∼
PCD(H, g, μ, σ 2), we begin the process of extracting the
starting point θ(0) by creating a density normalized PCH via

f̃X(n) = 1

N

N∑

k=1

1xk=n, (29)

where n ∈ {min(x), min(x) + 1, . . . , max(x)}. The number
of bins in the density normalized PCH is denoted Nb =
max(x)−min(x)+1. Next, we evaluate the Discrete Fourier
transform (DFT)

F
{
f̃X

}
(ωn) =

∑

k

f̃X(k) exp(−2π i(k − 1)ωn), (30)

where ωn = (n− 1)/Nb.
The location of the secondary peak in the DFT magnitude

|F{f̃X}(ωn)| yields a single point, which encodes estimates
of a1 and b1, namely, (ωpeak, |F{f̃X}(ωpeak)|) = (b̃1, ã1).
Likewise, an estimate for τ is obtained via τ̃ = 2π2x̂, where
x̂ = 1

N−1

∑N
n=1(xn − x̄)2. Equating ã1, b̃1, and τ̃ with their

exact expressions yields a system of equations that can be
inverted to obtain initial estimates of H, g, and σ 2:

H̃ = b̃2
1τ̃ − log ã1

2π2
(31a)

g̃ = 2π2 H̃

b̃1τ̃
(31b)

σ̃ 2 = τ̃

2π2
− H̃

g̃2
. (31c)

TABLE 1. Simulation parameters.

The final starting points H(0), g(0), and σ 2(0) are then com-
puted by fitting the full model (23) to |F{f̃X}(ωn)| using
nonlinear least squares with H̃, g̃, and σ̃ 2 as starting values.

As for the starting value of μ, we obtain an initial estimate
via

μ̃ = x̄− H(0)

g(0)
. (32)

If the estimate μ̃ differs from the exact value of μ by approx-
imately 1/(2g), e.g., μ̃ ≈ μ±1/(2g), supplying this estimate
to the PCH-EM algorithm will result in slow convergence.
This can be mostly circumvented by first constructing the
autocorrelation function

R(t) =
∑

k

f̃X(k)fX
(
k − t|μ̃,H(0), g(0), σ 2(0)

)
(33)

and then extracting a correction factor

correction = argmax
t

R(t) (34)

to refine the initial estimate via

μ(0) = μ̃ + correction. (35)

V. IMPLEMENTATION AND EXAMPLES
To demonstrate the utility of the derived results, the start-
ing point algorithm as well as the PCH-EM algorithm were
implemented in MATLAB.1 This code can be freely down-
loaded from the MathWorks file exchange [1]. Using this
code we simulated the TPG jot presented in [6] with the
parameters in Table 1. A sample of N = 1000 observa-
tions for the simulated jot were generated according to (1),
namely, X = �(K + R)/g�, where K ∼ Poisson(H) and
R ∼ N (μR, σR).
The first step in the process is to generate the starting

point. The algorithm for generating the starting point requires
no user input and only accepts the raw sensor data. Figure 3
presents the result of the starting point algorithm showing the
simulated PCH DFT magnitude compared to the magnitude
of the exact PCD Fourier transform and the estimated fit
using our starting point algorithm.

1. For a comprehensive comparative analysis of PCH-EM, PT, and
constrained MLE methods see [14].
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FIGURE 3. Magnitude of PCH DFT (|F{f̃X }|) compared against the exact
PCD Fourier transform magnitude (|F{fX }|) and fitted magnitude.

FIGURE 4. Simulated PCH data (f̃X ) versus the exact PCD (fX ) and fitted
PCD generated by the PCH-EM algorithm.

TABLE 2. Estimated parameters for simulated jot.

The estimated starting point, along with the raw data
x = (x1, . . . , x1000), were then fed into the PCH-EM algo-
rithm. The algorithm converged in just two iterations, which
took approximately 0.042 seconds to complete running on
a Intel Core i7 processor. Figure 4 plots the simulated PCH
data along with the exact PCD (according to Table 1) and
fitted PCD generated by the PCH-EM algorithm parameter
estimate. Table 2 also shows the estimated parameters along
with their exact values and percent error. From these results
we can see that we were successfully able to estimate all
four parameters from just 1000 observations. In particular,
we were able to estimate the conversion gain with less than
1% error. From these estimates we were also able to esti-
mate the read noise σg yielding the value 6.2585 e−, which

FIGURE 5. Histogram of estimates for the hidden variable K compared to
the histogram of their exact values.

TABLE 3. Comparison of starting values and final parameter estimates to
exact value for N = 1000.

results in 4.67% error. For comparison, we generated a sec-
ond dark sample of M = 1000 observations according to
the PCD model Y = �(K + R)/g�, where K ∼ Poisson(Hd)
and R ∼ N (μR, σ

2
R). We then calculated the conversion gain

using the two-sample PT gain estimator described in [10]

g̃ = x̄− ȳ

x̂− ŷ
, (36)

where x̄ is the sample mean of the illuminated data, x̂ is the
sample variance of the illuminated data, and likewise for the
dark data. This estimator gave an estimate of the conversion
gain equal to g̃ = 0.0489 resulting in a substantially larger
error of 12.8%.
After the PCH-EM algorithm was complete, we took the

resulting membership probabilities and used them to estimate
the hidden variable K corresponding to each xn via

k̃n = argmax
k

γ
(t)
nk . (37)

These estimates are plotted as a histogram in Figure 5 along
with the exact values of kn, which were hidden from the
algorithm. As we observe from the figure, the PCH-EM
algorithm was able to demarginalize the hidden variable K
as indicated by the fact that the histogram of k̃n is in close
agreement with the histogram of the exact values. For this
dataset, 93.7% of the estimates k̃n agreed with the exact
values kn.
To evaluate the algorithm’s behavior for the chosen param-

eters, we repeated this experiment 10, 000 times at N = 1000
and again at N = 5000, observing the distribution of starting
and final estimates. Tables 3-4 compare the exact parameter
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TABLE 4. Comparison of starting values and final parameter estimates to
exact value for N = 5000.

FIGURE 6. Histograms of μ(0) for 10, 000 Monte Carlo experiments using
N = 1000 and N = 5000.

values to the estimated starting point and final parame-
ter estimates (± one standard deviation) for N = 1000
and N = 5000, respectively. From Table 3, we see all
parameters are approximately unbiased; however, we note
a couple of anomalies, in particular, high variance in the
starting values and final estimates of μ and increased vari-
ance in the final estimates of H compared to the starting
values. These anomalies disappear in the corresponding data
for N = 5000.

The source of the anomalies for the N = 1000 data comes
from the starting values for μ. Figure 6 plots histograms
of the 10, 000 starting values μ(0) for the N = 1000 and
N = 5000 runs. We can see that at N = 1000 the starting val-
ues are trimodal: one mode centered about the correct value
of μ and the other two modes centered approximately around
μ ± 1/g. We note the use of a logarithmic scale to enhance
the appearance of these additional modes. When the starting
values for μ were in one of these secondary modes the final
estimates for H would also be negatively affected. However,
we note that the estimates for g and σ 2 are quite robust and
yield satisfactory results even when a starting point for μ

ends up in one of these incorrect modes. These problems
are much less likely when increasing the sample size to
N = 5000. As one additional exercise, we also repeated the
experiment another 10, 000 times for N = 1000 but this time
we replaced the starting value for μ by the sample mean
of M = 1000 dark observations Y ∼ PCD(Hd, g, μ, σ 2).
When we did this the multi-modal behavior completely dis-
appeared from both the starting values and final estimates.
This suggests that when working with small N, the algorithm

is dramatically improved by estimating the starting value for
μ from an independent dark sample.

VI. CONCLUSION
In this work we have developed the PCH-EM algorithm
for estimating key performance parameters of DSERN pix-
els. A model for DSERN sensor data was derived in the
form of the PCD, which was in turn was used to derive
the PCH-EM algorithm from the principle of expectation
maximization. A method for estimating the starting point
for the PCH-EM algorithm was also discussed. These algo-
rithms were implemented in MATLAB and Monte Carlo
experiments validated the effectiveness of the algorithms in
estimating key performance parameters of DSERN pixels.
The specific parameters selected to demonstrate the methods
came from [6], however we encourage the interested reader
to download the provided source code and adjust the param-
eters to their specific device [1]. A useful feature of using
the provided Monte Carlo method is the ability to conduct
sensitivity analysis on potential experimental parameters,
e.g., sample sizes.
Future work on the PCH-EM algorithm can be further

extended to include two-samples: one captured under illu-
mination and another under dark conditions. Doing so would
allow us to separate out the effects of photon interactions
and dark current by estimating Hγ and Hd separately, which
may be of interest to the community. We also note from
our simulation results that the introduction of a dark sam-
ple stabilized initial estimates of μ so we might expect a
two-sample version of PCH-EM to be more stable compared
to the current one-sample method when working with small
sample sizes. Additionally, it is important to investigate the
performance of the PCH-EM algorithm at higher read noise
levels where peaks in the PCD are no longer discernible,
identifying areas where different methods are valid.

APPENDIX A
PARAMETER ESTIMATION WITHOUT HIDDEN VARIABLES
Suppose K is not hidden so that we could directly observe
the complete data (x,k) = ((x1, k1), . . . , (xN, kN)). With this
sample, a maximum likelihood estimator for the parameter
θ is very easy to obtain. The likelihood function takes the
form

L(θ |x,k) =
N∏

n=1

∞∏

k=0

(
e−HHk

k!
φ
(
xn;μ + k/g, σ 2

))1kn=k
,

(38)

which upon taking the logarithm yields the corresponding
log-likelihood function

�(θ |x,k) =
N∑

n=1

∞∑

k=0

1kn=k log

(
e−HHk

k!
φ
(
xn;μ + k/g, σ 2

))
.

(39)

Here, 1A denotes the indicator function which is equal to
one when A is true and zero otherwise. By the definition of
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the indicator function, the log-likelihood then simplifies to

�(θ |x,k) =
N∑

n=1

log

(
e−HHkn

kn!
φ
(
xn;μ + kn/g, σ

2
))

. (40)

The maximum likelihood estimate of θ then comes from
solving for the critical point ∇θ � = 0. Equating the appro-
priate derivatives to zero and solving the resulting system of
equations we obtain

H̃ = A (41a)

g̃ = B− H̃2

C − x̄H̃
(41b)

μ̃ = x̄− H̃

g̃
(41c)

σ̃ 2 = x̂− B− H̃2

g̃2
, (41d)

where x̄ = 1
N

∑N
n=1 xn, x̂ = 1

N

∑N
n=1(xn − x̄)2,

A = 1

N

N∑

n=1

kn (42a)

B = 1

N

N∑

n=1

k2
n (42b)

C = 1

N

N∑

n=1

xnkn. (42c)

So in the case where K is not hidden (it can be directly
observed), closed-form maximum likelihood estimators for
the PCD parameter are tractable.

APPENDIX B
DERIVATION OF PCH-EM UPDATE EQUATIONS
We begin with the expression for Q(θ |θ(t)) in (15) to write

Q
(
θ |θ(t)

)
=

N∑

n=1

∞∑

k=0

γ
(t)
nk

(
−H + k logH

− 1

2
log σ 2 − (xn − μ − k/g)2

2σ 2
+ C

)
,(43)

where C is a constant independent of θ . The update equations
are then derived by solving the system of equations ∇θQ = 0.
Taking the derivative of Q w.r.t. H, equating with zero, and
simplifying yields

N∑

n=1

∞∑

k=0

γ
(t)
nk (H − k) = 0. (44)

Because the γ
(t)
nk represent probabilities w.r.t. the index k we

have
∑∞

k=0 γ
(t)
nk = 1 so that

∑N
n=1

∑∞
k=0 γ

(t)
nk = N. Recalling

the definition of A(t) then leads to the solution

H(t+1) = A(t). (45)

Next we evaluate ∂Q/∂μ = 0, which after some simpli-
fication gives

N∑

n=1

∞∑

k=0

γ
(t)
nk (xn − μ − k/g) = 0. (46)

Expanding and simplifying we obtain an expression for μ

in terms of g, namely,

μ(t+1) = x̄− H(t+1)

g(t+1)
. (47)

To find the update equation for g we repeat the process
by evaluating and simplifying ∂Q/∂g = 0 to find

N∑

n=1

∞∑

k=0

γ
(t)
nk (xn − μ − k/g)k = 0. (48)

Substituting μ = x̄−H(t+1)/g then gives us an equation with
one unknown (unknown in g). Using the definitions of A(t)

(which equals H(t+1)), B(t), and C(t) we are able to write

C(t) − x̄H(t+1) + 1

g
H2(t+1) − 1

g
B(t) = 0. (49)

This equation is then easily solved for g yielding the update
equation g(t+1) and subsequently μ(t+1).
Lastly we evaluate ∂Q/∂σ 2 = 0 and simplify to obtain

N∑

n=1

∞∑

k=0

γ
(t)
nk

(
σ 2 − (xn − μ − k/g)2

)
= 0. (50)

Solving this equation for σ 2 gives

σ 2(t+1) = 1

N

N∑

n=1

∞∑

k=0

γ
(t)
nk

(
xn − μ(t+1) − k/g(t+1)

)2
. (51)

Expanding the trinomial term and simplifying we find after
much algebra

σ 2(t+1) = B(t)

g2(t+1)
− 2

C(t)

g(t+1)
+ x2 + μ2(t+1)

− 2μ(t+1) 1

N

N∑

n=1

∞∑

k=0

γ
(t)
nk

(
xn − k/g(t+1)

)
. (52)

The remaining double sum is equal to μ(t+1) (c.f. (46)).
Replacing μ(t+1) with the r.h.s. of (47) and performing some
algebraic manipulations then yields the final result.
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