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ABSTRACT Process variations (PV), including global variation (GV) and local variation (LV), have become
one of the major issues in advanced technologies, which is crucial for circuit performance and yield.
However, developing a mature and physics-based model is challenging and time-consuming. Thus, in this
work, we propose a machine learning (ML) based method for device modeling with PV and implement the
corresponding circuit simulation, which is demonstrated on advanced Nanosheet FETs (NSFET). Verified
by TCAD simulations, the artificial neural network (ANN)-based ML algorithm enables to capture PV,
e.g., dimension and work function variations (WFV), with high accuracy and improved efficiency. For
GV, the ANN surrogated NSFET-based ring oscillator (RO) simulation results show that the larger width
(Wsh) or height (Hsh) of the Nanosheet leads to the higher RO frequency and lower circuit delay. For LV,
the respective impacts of grain size and WF on circuit performance can be distinguished. The proposed
workflow, from ANN model training to circuit simulation based on the generated Verilog-A model, is
fully automatic, promising to shorten the procedure of device modeling and accelerate the development
of advanced technologies.

INDEX TERMS Nanosheet FETs, device modeling, artificial neural network, machine learning, process
variations.

I. INTRODUCTION
Over the past decades, in the development of the inte-
grated circuits (IC) industry, the feature size of transistors
has been aggressively scaled, especially for gate-all-around
Nanosheet FETs (NSFET). Although the scaled transistors
lead to significant progress in high-density integration and
performance, the process variations (PV) is challenging for
performance and yield, including global variation (GV) and
local variation (LV) [1], [2]. For the case of GV, the dimen-
sion variation is one of the prominent variability sources
in determining the performance of devices. For the case of
LV, work function variation (WFV) derived from the ran-
domly distributed grain sizes and orientations plays a crucial
role in statistical variability sources [3], [4], [5]. Moreover,

the interplay between GV and LV should be considered
to capture the device performance accurately. Given that
multiple variability sources are involved, obtaining a large
amount of sample device data from simulations or exper-
iments means a high computational or time cost. Hence,
the device model accommodated the powerful capability
of predicting PV more quickly and accurately is urgently
needed [6], [7].

Generally, industrial compact models of devices con-
sider the impacts of process variation by varying the model
parameters, e.g., PHIG (gate work function), U0 (low field
mobility), to reduce the model complexity. However, it is still
quite challenging for equation-based models to fully auto-
mate the model parameter extraction process while achieving
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a very high fitting accuracy [8]. Moreover, various emerging
devices may exhibit a difference in electrical characteristics
that the conventional compact models cannot sufficiently
capture. It requires high expertise and a long period to
develop the physics-based model equations for the new phys-
ical phenomena [9]. Therefore, with the more pronounced
variability source effects in the scaled devices, shortening
nanoscale device modeling with PV and achieving automatic
and precise parameter extraction is highly desired.
Recently, model creation based purely on data from exper-

iments or simulations has attracted lots of interest, mainly
due to their precision and ease of development [10], [11].
Data-driven models can be divided into parametric and
nonparametric models. Parametric models, i.e., linear regres-
sion, have prior forms with fixed parameters obtained by
physical knowledge. Nonparametric models, i.e., artificial
neural network (ANN), do not have a specific format. The
ANN model captures the inherent physical pattern from
the training data, which are particularly suitable for emerg-
ing devices, and can be applied to different technology
nodes [12], [13]. Moreover, the high-performance graphic
processing unit (GPU) servers and efficient development
frameworks for ANN training, i.e., TensorFlow [14] and
PyTorch [15], provide conveniences for the implementation
of ANN device modeling. For the reasons above, it is worth-
while to utilize the ANN-based methodology for emerging
device modeling and apply it to circuit simulation [16], [17].
In this work, we propose a machine learning (ML) assisted

device modeling method, where the ANN model is designed
to capture variability sources and bias conditions effects
efficiently. Verified by the calibrated TCAD simulation, the
trained and verified model shows that superior accuracy can
be achieved on the key figure of merits (FoMs) and their
correlations. Furthermore, the model is employed to the cir-
cuit simulation with PV and demonstrates its capability on
the NSFET-based ring oscillator (RO). The rest of this article
is divided into the following sections.
Section II introduces the proposed workflow, including

the design of experiments (DoE) for the device with PV
impacts, the ANN model development, and the TCAD sim-
ulation for the current-voltage (I-V) and capacitance-voltage
(C-V) characteristics of NSFET used to train and test the
model. Section III presents the fitting results of I-V and C-
V, the extraction results of FoMs and their variations with
GV, and the simulation results of RO with devices affected
by GV and LV. Our key conclusions are summarized in
Section IV.

II. DEVICE STRUCTURE AND METHODOLOGY
The schematic view of NSFET used in this work is illus-
trated in Fig. 1, indicating the random distributions of work
function (WF) and metal grains for gate materials. Table 1
lists the parameter values of the process variability sources
in this work. The variation of critical dimensions, including
width (Wsh) and height (Hsh) of the Nanosheet, are used to
implement GV. And the effects of WF acting as the major LV

FIGURE 1. The schematic of NSFET with global and local variations. The
grain size (GS) and work function (WF) are the key parameters.

TABLE 1. Summary of process variability source parameters.

are considered. The relevant LV parameters are all assumed
to be Gaussian distributions over the DoE space. It should
be noted that WFV depends on the mean value of WF and
grain size (GS). The variation range of GV parameters is
selected based on the data in [2], while the values and vari-
ation range of GS and WF are chosen according to the data
in [18] and [19], respectively.
Fig. 2 shows the flow chart for developing the ANN

model from TCAD simulations and its implementation for
circuit simulation. The proposed flow consists of initial data
preparation over the DoE space, model development, model
verification, and model application in the circuit. The first
step is to prepare data at the DoE space, in which the device
GV and LV sources are defined, DoE points based on GV
values are designed, and data at the DoE points are gener-
ated from TCAD simulation. The second step is developing
the model. To predict the I-V and C-V characteristics of
the device, we design the model structure and use data in
the first step to train the model. The third step is verifying
the trained model, where the FoMs are extracted and the
model is further optimized based on the error between the
results of the model and the TCAD. Finally, apply the model
in the circuit simulation, in which a Verilog-A model is gen-
erated for SPICE simulation, and the output waveforms can
be further analyzed.
The structure of the ANN model is shown in Fig. 3. Based

on the feed-forward neural network (FFNN), the model is
composed of one input layer with seven neurons, one output
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FIGURE 2. Flow chart for generating model using ML method and its application in circuit simulation.

layer with two neurons, and six hidden layers with 150, 150,
50, 30, 15, 30 neurons. The input features of the ANN model
are bias conditions, dimensions, and work function parame-
ters induced by GV and LV. By using these three types of
input data, the network is trained to obtain the variability
effects of NSFET on the ANN-based ML algorithm under
different conditions. For hidden layers, the number of lay-
ers and neurons in each layer can be adjusted. Each hidden
layer receives data from the previous layer and propagates
a calculation result to the next layer. With the conversion
function, multiple variables in the output layer of ANN can
be converted to obtain Ids and Cgs.

For a lower error rate, an activation function of rectified
linear unit (RELU) is used to prevent the vanishing gradient
problem that may appear due to the complexity of the algo-
rithm. Besides, the adaptive moment estimation (ADAM)
optimization function is employed for accurate error correc-
tion. The ADAM optimization function is an optimization
function which is suitable for processing stochastic data, and
it is applied to iteratively correct the learning process of the
algorithm through the set error rate [15], [20]. The normal-
ized root mean square error (NRMSE) is the indicator to
quantify the accuracy of ANN [21]. The ANN-based ML
algorithm is trained using the public release PyTorch 1.10.2
python library. The training process is repeated 46000 times
or more. The total time for training the ANN model and
saving the model results is 1 hour and 30 minutes. If the
time of saving data is excluded, generating the model takes
only 21 minutes.
Fig. 4 shows the Ids–Vgs and Cgs–Vgs plots for 3024

NSFET device samples caused by PV and bias voltages
at the device level, which are obtained through calibrated
TCAD. All the bias voltages and PV parameters shown in
Table 1 vary concurrently. The LV parameter values are ran-
domly selected from the Gaussian distributions, while the
GV parameters are assigned with the defined value. The
metal gate in the device is titanium nitride (TiN). The phys-
ical models incorporated in the TCAD simulation includes
the Shockley-Read–Hall (SRH) model to account for carri-
ers generation and recombination, and the density gradient
model to take the quantum confinement in nanoscale devices
into account. Besides, the mobility models, including the
high-field saturation model, the doping-dependent mobil-
ity model, and vertical field dependent mobility model, are

FIGURE 3. Artificial neural network (ANN) structure for the device
modeling with variability, where bias conditions are also
considered.

FIGURE 4. Ids–Vgs and Cgs–Vgs plots of NSFET with different variability
sources. (a)(c) for the training set and (b)(d) for the test set.

also applied in the TCAD simulations. The TCAD built-in
functions are utilized to generate Ids–Vgs and Cgs–Vgs plots.
Notably, in Fig. 4(c)-(d), the value of Cgs is discrete at low
Vgs because Cgs values increase with the enlarger of the
nanosheet effective width, and the differences are prominent
when Cgs values are small. After TCAD simulations, 70%
of the TCAD data is used to train the ANN model, and 30%
of the data is used to test it. Once the model development
process finishes, the ANN model is automatically converted
to a Verilog-A [22] model through a python script for cir-
cuit simulation at the SPICE level. To use a trained ANN
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model in Verilog-A, several steps should be taken. First of
all, the weights and biases of each layer in the ANN are
extracted from the trained and saved model. These extracted
values are then assigned to the corresponding variables in
the Verilog-A model. Then, the input and output variables
of the Verilog-A model are made consistent with the process
variation sources and electrical characteristics being studied
in this work. Next, the output value of each hidden layer
is calculated according to equation (1), where Ai is the out-
put of the current layer, Ai−1 is the output of the previous
layer, and W and B are the weight and bias connecting the
current and previous layer. Before the output of the cur-
rent layer is passed to its next layer, it is processed by
the RELU activation function. Finally, the output variable
values of the ANN-based Verilog-A model are converted to
the corresponding electrical characteristics through equations
(2) and (3).

Ai = W × Ai−1 + B (1)

Ids = Vds × 10y1 (2)

Cgs = C0 × y2 (3)

It is worth mentioning that the selection of the conver-
sion function is critical for achieving high I–V and C-V
model accuracy [8]. In this work, the conversion function
(2) and (3) is applied for the Ids and Cgs, where C0 is a
normalization coefficient (i.e., 10aF), and y1 and y2 are the
output variables from the relative neurons in the ANN out-
put layer. The conversion function (2) guarantees the zero
Ids when Vds = 0 V to avoid violating the physical conser-
vation law [8], [9], [10], and reduces the range of y1 even
when Ids vary by many orders of magnitude during TCAD
simulations of NSFET. The variation range of Cgs is in the
same order of magnitude, so y2 in (3) is not needed to be a
logarithmic scale.

III. RESULTS AND DISCUSSIONS
A. MODEL ACCURACY VERIFICATION AND STATISTICAL
ANALYSIS OF FOMS WITH THE ANN MODEL
Fig. 5 illustrates the ANN model prediction results for
NSFET under PV and bias voltage effects. The simulated
and the predicted Ids–Vgs plots for the training dataset are
shown in Fig. 5(a)-(b), and the Cgs–Vgs curves are shown in
Fig. 5(c)-(d). It can be observed that both Ids–Vgs and Cgs-
Vgs curves are in good agreement between simulation and
prediction. In addition, the performance of a well-trained
ANN model is also evaluated using a test dataset whose
data differs from the train set. The ANN testing results of
Ids–Vgs and Cgs–Vgs characteristics fit the TCAD data with
high accuracy, as shown in Fig. 5. The mean error of the
model fitting of Ids–Vgs / Cgs–Vgs characteristics is less
than 0.5%. The FoMs scatter plots of model prediction
results against TCAD simulations and the value of corre-
lation coefficients between key FoMs over the target DoE
space are shown in Fig. 6, respectively, where both GV
and LV dominate the device performance. To extract the

FIGURE 5. ANN model results (lines) versus targets (symbols) for NSFET
under different bias conditions. (a) I-V and (c) C-V of the training set,
(b) I-V and (d) C-V of the test set.

FoMs from the Ids–Vgs curves, a python script based on the
MLFoMPy library is utilized [23]. It should be noted that the
design of DoE space not only covers the interested range
of dimension variation but also suffer from LV effects at
each node in the space. Both distributions and correlations
of the training and test sets, including the effects of GV and
LV, achieve a good match between the TCAD data and the
extracted ANN data. The excellent agreement between the
full Ids-Vgs curves predicted by the ANN model and those
generated by TCAD simulations can guarantee that all rele-
vant FoMs are extracted with a high degree of accuracy. In
addition, Fig. 7(a) demonstrates the comparison results of
the standard deviation coefficient (σ /μ) for the training set.
Meanwhile, the μ and σ values of distributions for the test
set are shown in Fig. 7(b). They all indicate that the train
and test error rate is close to zero for all FoM distributions
and their correlations. The mean error of FoM extraction
results from the ANN model is less than 3%.
Fig. 8(a)-(b) shows the distribution variations of thresh-

old voltage (Vth) and on-state current (Ion) with GV in
the NSFET devices. The LV with different GS values are
selected from the Gaussian distribution shown in Table 1.
The work function of all the devices in Fig. 8 is 4.52eV.
For Vth, as the value of Wsh or Hsh becomes larger,
the mean and median value of Vth distributions decrease,
and the variation range of Vvth is smaller. For Ion, as
Wsh or Hsh increases, the mean and median value of Ion
distributions increase, and the variation range of Ion is nar-
rower. For subthreshold swing (SS) and off-state current
(Ioff), the variation of the σ /μ values for their distribu-
tions are shown in Fig. 8(c)-(d), indicating that the variation
range of SS and Ioff narrows down with the increment
of Wsh or Hsh. It is clear that the key electrical char-
acteristics improve and suffer less variation due to the
increased effective channel width and cross-sectional area
of NSFET.
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FIGURE 6. Comparison of scatter plots and correlations of the key
electrical parameters between the TCAD data and the results from the ML
approach. (a) training set (b) test set.

FIGURE 7. Results of TCAD simulation and ML-based prediction for the
mean value of key electrical parameters and standard deviation coefficient
for (a) training set and (b) test set.

B. ANN MODEL APPLICATION IN RO SIMULATION
The comparison of RO simulation results obtained using
the Verilog-A-based ANN model and TCAD mixed-mode
simulations are demonstrated in Fig. 9, where the defini-
tions of rising (tr), propagation (tp), and fall delay (tf) are
marked. It shows that a good agreement is achieved between
these two methods, and it suggests that the Verilog-A-based
ANN device model can be utilized to analyze the impacts of
GV and LV at the circuit level. The output waveforms are
produced during the circuit simulation when using the ANN-
based Verilog-A model with various GV and LV parameter
values. Fig. 10(a)-(b) present some waveforms under GV
effects, showing that waveforms shift right with the decre-
ment of Wsh or Hsh. Meanwhile, Fig. 10(c)-(d) illustrate
waveforms under LV effects, suggesting that waveforms shift
right as GS decreases or WF increases. Overall, it means
that the RO has a more extended period of oscillation with
reduced NSFET size, decreased GS, and increased WF. For
further analysis, the RO frequency and circuit delay are
extracted from the simulated waveforms mentioned above.

FIGURE 8. Variation of the FoMs distributions from ANN model results
with GV. (a)(b) on-state current (Ion) and threshold voltage (Vth)
distributions. (c)(d) off-state current (Ioff) in the logarithmic scale
Log10(Ioff) and subthreshold swing (SS) distributions.

FIGURE 9. Schematic view of (a) 13-stage RO and (b) Comparison of its
output voltage waveforms obtained from Verilog-A-based ANN model and
TCAD mixed-mode simulations, where the definitions of delay parameters
are also marked.

Fig. 11 presents the extracted distributions of RO
frequency with PV. Fig. 11(a)-(b) are the results under
GV effects, revealing that RO frequency is enhanced with
increased Wsh or Hsh. Similarly, RO frequency distributions
affected by LV are demonstrated in Fig. 11(c)-(d). It is evi-
dent that the distributions of RO frequency shift right when
WF decreases or GS increases. Since the RO frequency fRO
is calculated with the following function:

fRO = 1

2 × n× tp
(4)

where n represents the number of inverters in the RO circuit.
the shift of RO frequency is mainly attributed to the variation
of tp with GV and LV. The increased Wsh or Hsh, the
decreased WF, and the increased GS decrease the value of
tp, resulting in higher RO frequency. The detailed GV and
LV effects on tp are discussed in Section III-C.

C. GV AND LV EFFECTS ON CIRCUIT DELAY
Fig. 12 and Fig. 13 illustrate the change of circuit delay
when devices are under GV and LV. The average value of
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FIGURE 10. Output waveforms of 13-stage RO using ANN-based Verilog-A
model with (a)(b) global variation (GV) and (c)(d) local variation (LV).

FIGURE 11. Statistical distributions of frequency of the 13-stage RO using
ANN-based Verilog-A model with (a)(b) global variation (GV) and (c)(d)
local variation (LV).

tr and tf is defined as trf. For GV, the μ and σ variation of
trf and tp distributions generated from devices with various
Wsh and Hsh values are shown in Fig. 12. It can be seen
that as Wsh or Hsh increases, the μ and σ of the delay
distributions become lower. It is because that increasing Wsh
or Hsh leads to a higher drive current and less drive current
variation of NSFET, according to Fig. 8, which brings a drop
and minimizes variation in time delay. Fig. 13 presents the
distributions of trf and tp with the impacts of WF and GS.
It is apparent that from Fig. 13(a)-(b) and Fig. 13(c)-(d)
that delay distributions shift left as WF decreases or GS
increases, respectively. It can be attributed to the reduction
of the Vth of NSFET. When WF decreases or GS increases,
the Vth of NSFET becomes smaller [24], [25], [26], which
results in lower delay. Besides, the decreased WF leads to
less Vth variation of NSFET [25], thus slighter variation in

FIGURE 12. The average value (μ) and standard deviation (σ ) of statistical
delay distributions of the 13-stage RO using ANN-based Verilog-A model
with global variation (GV). (a)(b) The average of rising and fall delay (trf).
(c)(d) Propagation delay (tp).

FIGURE 13. Statistical delay distributions of 13-stage RO using ANN-based
Verilog-A model with local variation (LV). (a)(b) The mean value of work
function (WF) changes. (c)(d) The average value of grain size (GS) changes.

circuit delay. On the contrary, increasing GS values leads to a
broader Vth variation range [24], [26], thus severer variation
in circuit delay.

D. COMPARISON WITH OTHER DEVICE MODELS
There are two alternative data-driven methods for the
advanced technology and devices evaluation, including
the lookup table (LUT)-based model [27], [28], [29] and
the ANN-based model. The comparison of the key prop-
erties between the ANN-based model and the LUT-based
model is as follows.
In general, to achieve the same level of modeling

precision as the ANN model with the same input and output
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TABLE 2. Comparison with ANN models in reported works.

parameters, a LUT-based model may require a higher number
of bias sampling points, which is due to that the interpolation
relationships modeling capability of the LUT model may be
weaker than that of the ANN model [30], [31], [32]. Because
the advanced devices exhibit complex nonlinear relationships
in their electrical characteristics, and the ANN model can
automatically learn these complex characteristics from the
given set of training data and maintain high interpolation
accuracy [30].
Additionally, the variability evaluation capability of the

ANN-based model may be better than the LUT-based model,
because the advanced devices, such as NSFET, are suscep-
tible to the coupling effect of multiple process variation
sources, resulting in a nonlinear and complex interpolation
relationship. The ANN-based model requires less human
effort in model parameter extracting and fitting, as it can
automatically learn from the given set of data [8], [33].
Furthermore, to model the coupling effect of multiple pro-
cess variation sources and achieve the same level accuracy
as the ANN model, the LUT-based model requires data with
a fine grid-like structure, while the ANN-based model can
be trained on data with a coarser grid-like structure or even
scattered data [32]. Thus, modeling using ANN may require
fewer data points.
Despite the advantages, there also exists challenges in

ANN device modelling compared to conventional modeling
techniques. The physical implications of ANN models are
generally weaker compared to those of physics-based equa-
tion models, which can lead to the possibility of unphysical
behaviors [9]. And the prediction accuracy of ANN mod-
els may become worse beyond the range of the training
data [13], indicating that the DoE space is of great signifi-
cance. In addition, the training and testing of ANN models
may require lots of computational resources, imposing higher
requirements for the computational hardware.
Table 2 shows the comparison between key properties

of the ANN-bases model in this work and some reported
works [1], [6], [7], [8], [9], [10], [12], [32], in which the
number of hidden layers in the ANN is defined as Nhid, the
number of neurons is defined as Nneu. It can be noted that this
work is at an advantage over the reported works in some
aspects. First of all, although some reported works have
studied ANN-based device models, to capture the device
performance, the coupled effects of GV and LV are still
lacking. In this work, 4 GV and LV sources are considered

coherently from the DoE space that covers the interested
range of dimension variation, while other works only con-
sider 2 to 4 GV sources [6], [8], [12]. Besides, in this work,
the influence of GV ad LV on device FoMs distributions and
digital circuit performance parameters are presented, respec-
tively. For the reported works considering GV and LV [1],
[7], GV and LV effects are only studied at the device level.
Notably, the Ids and Cgs values of devices are directly treated
as the ANN model output in this work, making it possible for
the model to be converted to a Verilog-A-based FET device
model in the SPICE. And the FoMs values can be auto-
matically extracted from ANN or SPICE simulation results,
reducing the time cost to verify the model at the device level
and apply it at the circuit level.
Due to the increased number of PV kinds and PV sources,

the ANN model in this work unavoidably needs more data
samples to train. Thus, the ANN structure in this work is
more complex, including six hidden layers and 475 neurons
in total. Nevertheless, the ANN training and results-saving
time is only 1 hour and 30 minutes, which is less than
reported works which take more than 8 hours for ANN
training. Actually, generating the ANN model used in SPICE
takes only 21 minutes, with the data-saving process excluded.
Moreover, the accuracy of the ANN model can be guaranteed
with increased ANN complexity. The fitting error of Ids–Vgs
and Cgs–Vgs characteristics are within 0.5%, and the FoMs
extraction error is within 3%.

IV. CONCLUSION
This work proposes a ML-assisted device modeling method
to consider the multiple process variability source effects.
Including GV and LV, the ANN-based nanoscale device
modeling for circuit simulation with high efficiency and
accuracy is implemented. The model provides excellent
prediction capability in capturing variability sources of
the device, verified by the conventional TCAD simulation.
Besides, the Verilog-A model generated from trained ANN
is further applied to analyze the effects of GV and LV,
e.g., Wsh, Hsh, GS, and WF, on circuit performance via
SPICE simulation, where the variation of NSFET-based RO
frequency and delay distributions are investigated. Compared
to other device models, the ANN-based model has a better
capability of variability modeling which considers the cou-
pled effects of GV and LV, reduces modeling and evaluation
time for the advanced technology at the device and circuit
level, and achieves high accuracy that is excellent among the
ANN-based models in reported works. The proposed auto-
matic flow of device modeling can be extended to other kinds
of variability sources and emerging device technologies.
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