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ABSTRACT This study reports AlGaN/GaN high-electron-mobility transistors (HEMTs) fabricated by the
Stepper Lithography on a 4-inch wafer for Ka-Band applications. Small gate length (LG) of 100 nm was
achieved through a 2-Step Photolithography Process and the gate region of the AlGaN/GaN HEMT was
defined by using two lithography steps to form gamma-shaped gates. The 4-inch AlGaN/GaN HEMT
wafer demonstrated high electrical performance uniformity with respect to the maximum drain-source
current density (IDSS), the peak extrinsic output transconductance (Gm), and the threshold voltage (Vth).
At VDS = 20 V, the AlGaN/GaN HEMT exhibits an IDSS of 1004.2 mA/mm, a Gm value of 363.6 mS/mm,
a maximum output power density (POUT (MAX)) of over 10 W/mm, and a power gain of 8.8 dB with a
maximum 51.1% Power-added efficiency (PAE) at 28 GHz in Continuous Wave (CW) mode. The results
show the potential of AlGaN/GaN HEMT fabrication with high yield and outstanding RF performance
using Stepper Lithography for 5G applications.

INDEX TERMS 5G, high uniformity, output power, stepper lithography, small gate length.

I. INTRODUCTION
Gallium Nitride, with its outstanding characteristics by
forming 2-Dimensional Electron Gas (2DEG) through piezo-
electric and spontaneous polarizations using AlGaN/GaN
heterojunction, was used for power high-electron-mobility
transistor (HEMT) devices with multi-gigahertz frequency
range in the year of 2005 by Eudyna Corporation in
Japan [1]. Later, with its high mobility, high bandgap and
high thermal conductivity features [2], the GaN HEMT
devices became popular worldwide for RF applications
due to the inherent material properties which include

high breakdown voltage, high current density, low ther-
mal resistance, and low substrate parasitic capacitances
[3], [4]. GaN-based HEMTs outperform Si and GaAs-based
devices [5] owing to their higher output power characteristics
and higher thermal resistance. With the increasing demands
of RF power devices at Ka-Band and beyond for applica-
tions such as 5G, military radars, satellites, and networks for
advanced communication systems, it is essential to reduce the
GaN high frequency device manufacturing cost by increas-
ing the device yield and to improve the device DC and RF
performance.
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Traditionally, researchers fabricate small gate length (LG)
devices with the E-beam Lithography System [6], [7],
[8], [33]. However, for mass production of the GaN HEMT
for 5G commercial applications, the E-beam Lithography
Process is complicated, high cost, and time consuming.
Therefore, it is essential to develop more efficient and eco-
nomical methods with higher yield to meet the industrial
needs.
Over the past few decades, Steppers, also known as

the Step-and-Repeat Lithography System, have been widely
adopted for large scale commercial application of III-V
semiconductor integrated circuits for its’ simple and direct
process steps and capability to utilize a fine reticle with less
particles [9], [10], [11]. However, for the conventional step-
per process, it is difficult to achieve submicron gate lengths
to reduce gate resistance, increase cut-off frequency, and
switching speed for high frequency applications.
To scale down the LG with the Stepper, a 2-Step

Photolithography Process is introduced in this study. High
performance Ka band HEMT devices on a 4-inch SiC
wafer with excellent wafer uniformity using the Stepper
Lithography is realized by the approach in this paper.

II. DEVICE FABRICATION
To provide high 2DEG density for the device for high
RF power operation, wafers with AlGaN/AlN/GaN layers
grown on top of the SiC substrate by the metal organic
chemical vapor deposition (MOCVD) system were used.
The epitaxy of the SiC wafer includes a 0.3 μm Fe-GaN
buffer layer with doping concentration of 1×1018 cm−3, a
0.9 μm i-GaN buffer layer, a 0.8-nm AlN layer, and a 17-nm
AlGaN barrier layer to realize the heterojunction structure. A
2DEG density of 1.3×1013 cm−2 and an electron mobility of
2300 cm2/V·s were obtained based on the Hall measurement
of the structure.
Standard fabrication steps of source/drain ohmic contact

formation, device isolation, gate Schottky contact formation,
passivation and contact via hole formation were processed.
After the wafer cleaning process by Acetone (ACE) and
Isopropyl alcohol (IPA), the wafer was then immersed in a
10% Hydrochloric acid (HCl) solution to remove the native
oxides.
Transfer length method (TLM) was used for the extrac-

tion of RC. The contact resistance was 0.35 �·mm, and the
contact resistivity is 2.6×10−6 �·cm2, as shown in Fig. 4.
The Ti/Al/Ni/Au ohmic contact was then deposited by the
E-gun evaporator (E-gun) and then annealed at 850 ◦C for
30 s in N2 ambient for alloying.
Device isolation was defined by Boron implantation.

The gate formation process is shown in Fig. 1. A 150-nm
thick SiNx film was first deposited with Plasma-Enhanced
Chemical Vapor Deposition System (PECVD) on the wafer.
Then, the first stepper lithography process was done and
Position 1 was defined after ICP etch. To ensure the 1st

nitride etch reach the barrier layer, the SiNx layer was etched
with CF4 plasma [12]. The second photolithography step

FIGURE 1. 2-Step Photolithography Process shown with its cross section
of AlGaN/GaN HEMTs.

FIGURE 2. SEM image of the gate cross section with gate length of 100 nm.

begins with a shifted gate mask, which is the patterning of the
2nd photoresist layer. Finally, a small opening in the etched
SiNx (Position 2) is defined by the 2nd stepper lithography
process. Gate formation was completed by the deposition
of Ni/Au stack metal using E-gun. SiNx passivation layer
was grown by the PECVD to protect the wafer surface [13]
after gate metal deposition. To reduce the skin effect at high
frequency operation, 2μm thick metal interconnects were
evaporated on the device contact pads.
The SEM image of the gate is shown in Fig. 2. The bottom

of the gate is firmly deposited on the 100 nm opening and the
top LG distribution is defined by the lateral etching of SiNx
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layers [14]. The charges accumulated on the SiNx surface
edges may deflect the incoming ions, leaving a trapezoidal-
shaped top gate [15].

III. RESULTS AND DISCUSSION
The IDS-VGS, IDS-VDS and pulsed IDS-VDS, and the transfer
characteristics in semi-log scale at VDS=10 V and 1 V of
the 2×25 μm AlGaN/GaN HEMT with a LG of 100 nm, a
source-drain spacing (LSD) of 2.250 μm, a gate-drain spacing
(LGD) of 1.425 μm, and a gate-source spacing (LGS) of
0.725 μm, as shown in Fig. 3 (a), (b), and (c) respectively.
With the 2-Step Photolithography Process, a maximum

drain-source current density of 1004.2 mA/mm and a peak
extrinsic transconductance of 363.6 mS/mm were measured.
The AlGaN/GaN HEMT DC performance shows the poten-
tial of using the proposed lithography method to realize high
RF performance Ka band transistors.
The IDS-VDS curves for the 100-nm device with and

without pulsed biases (VGS, Q =0V, VDS, Q=0V) have been
measured and shown in Fig. 3 (b), which show little current
dispersion. The pulsed IDS-VDS measurement has a pulse
width of 200 ns and a duty cycle of 0.1%. The applied
pulse width of 200 ns is shorter than the time constant
of most traps, therefore could eliminate thermal and trap
effects [36].
Fig. 3 (d) shows the transfer characteristics in semi-log

scale at VDS=10 V and 1 V of the 2×25 μm AlGaN/GaN
HEMT. In this study, drain induced barrier lowering (DIBL)
is defined as �Vth/�VDS with Vth defined as the gate voltage
at IDS=1 mA/mm. A DIBL value of 15 mV/V is further
extracted from VDS=10 V and 1 V, showing an increased
DIBL due to smaller gate length and smaller gate-to-channel
aspect ratio compared to the 150 nm devices [35].
DC mapping for 2×25 μm devices was done to confirm

the high wafer uniformity of the 4-inch wafer fabrication
with the Stepper lithography, and is shown in Fig. 5. The
IDSS, Gm and Vth mapping results were shown in Fig. 4(a),
(b), and (c), respectively. More than 85% of the AlGaN/GaN
HEMTs on the wafer exhibited an IDSS value between
910 to 1000 mA/mm. More than 90% of the AlGaN/GaN
HEMTs on the wafer exhibited a Gm value between 310 to
350 mS/mm and more than 95% of the AlGaN/GaN HEMTs
on the wafer exhibited a Vth value between −4.0 to −3.4 V.
The high uniformity is attributed to both the reproducibility
of the Stepper Lithography [10] and the simplicity of the
2-Step Photolithography Process.
The device off-state breakdown voltage is measured as

shown in Fig. 10. The three terminal breakdown voltage
measurement were done on a 2-step photolithography HEMT
device with 2×25 μm gate width, LSD=2.25 μm. The
device shows a breakdown voltage at IDS=1 mA/mm of
64 V at off-state (VGS= −5 V), which demonstrates the
potential of GaN HEMT device for high power Ka-band
applications.
To investigate the RF characteristics of the AlGaN/GaN

HEMTs with the 2-Step Photolithography Process,

FIGURE 3. (a) IDS-VGS, (b) IDS-VDS and pulsed IDS-VDS curves, and (c) the
transfer characteristics in semi-log scale at VDS=10 V and 1 V of the 2×25
µm AlGaN/GaN HEMT.

S parameter results of the AlGaN/GaN HEMT and large
signal characteristics of a the AlGaN/GaN HEMT at 28GHz
were examined.
S-parameters results were measured on-wafer using the

N5227B PNA Microwave Network Analyzer and shown in
Fig. 8 after de-embedding. The system was calibrated with a
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FIGURE 4. TLM results of the AlGaN/GaN HEMT for the 2-Step
Photolithography Process.

short-open load-through calibration standard. The calibration
accuracy was verified by insuring that both S21 and S12 of the
through standard are less than ±0.01 dB and that both S11
and S22 are less than −45 dB within the measured frequency
range after calibration [30].
The current gain cut-off frequency (ft) of 63 GHz, the

unilateral power gain (U) curve, and the maximum oscillation
frequency (fmax) of 171 GHz for the 2×50 μm AlGaN/GaN
HEMT with LSD=2.5 μm using the 2-Step Photolithography
Process are shown in Fig. 8.

For large signal characteristics, the 3dB compression point
power density (POUT(P3dB)) of 4.3 W/mm, maximum power
density (POUT (Pmax)) of 10.8 W/mm, and maximum PAE
of 51.1% of the 2×25 μm device with LSD=2.25 μm
were measured at VDS = 20 V and VGS=−1.58 V (IDS=
460 mA/mm) in Continuous Wave (CW) mode Load Pull
measurement, as shown in Fig. 6.

28 GHz CW mode Load-pull measurement tests have also
been performed on the 2×50 μm, 8×50 μm, and 8×75 μm
devices, as shown in Fig. 7 (a), (b), and (c). The 2×50 μm
device with LSD=2.5 μm measured at a bias of VDS=28 V
and VGS=−1.66 V (IDS=41.1 mA/mm) exhibits an output
power density of 8.1 W/mm. The 8×50 μm device with
LSD=2.5 μm measured at a set bias of VDS=28 V and
VGS=−2.5 V (IDS=252.5 mA/mm) exhibits an output power
of 1.85 W. Moreover, to further increase the output power
performances of the 2-Step Process devices, the 8×75 μm
device with LSD=3.0 μm and with the increased gate width
of 25 μm compared to the 8×50 μm devices have been
fabricated and has demonstrated an output power of 2.25 W
under 28 GHz load pull measurements with VDS=28 V and
VGS=−2.6 V (IDS=233.3 mA/mm).
The RF performance of these devices shows the capa-

bility of the 2-Step Photolithography Process to be applied
on larger gate periphery devices, while maintaining high
wafer yield through a high uniformity analyzation. The
decrease of the output power density of the 2-Step devices

FIGURE 5. The 4-inch wafer uniformity of a 2×25 µm device on (a) IDSS
value, (b) Gm value and (c) Vth value.

with increased device single gate width may result from
the increased gate resistance (Rg). The effect of gate
width concerning the Rg has been done in detail by
Palacios et al. [31]. Palacios et al. shows that for AlGaN/GaN
HEMT devices, the Rg scales linearly with the gate width
for a device with gate lengths of around 150 nm, and has
an important effect on the device RF performances, such
as fmax.
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FIGURE 6. Large signal results of a 2×25 µm AlGaN/GaN HEMT for the
2-Step Photolithography Process.

FIGURE 7. Large signal results of the (a) 2×50 µm, (b) 8×50 µm,
(c) 8×75 µm AlGaN/GaN HEMTs for the 2-Step Photolithography Process.

The effects of gate width on ft and fmax are also discussed
with the small signal of the 2×50 μm and 8×50 μm devices.
The ft and fmax values of 43 GHz and 200GHz, respectively,
for the 8×50 μm AlGaN/GaN HEMT are shown in Fig. 11.
Compared to the 2×50 μm device in Fig. 8, the 8×50 μm

device exhibits a lower ft value, which may be due to
increased gate capacitance from the larger gate width.
However, the 8×50 μm device has a higher fmax value,
which is mainly due to the reduced Rg from increased gate
fingers [34].
The decrease of output power density of the devices

with more gate fingers in this study may be due to the
increase of self-heating effect [32], showing that the increase
of self-heating effects with gate fingers during on-wafer
measurement reduces the output power density of the SiC

FIGURE 8. Current-gain |H21|, unilateral power gain (U), and MAG/MSG vs.
Frequency plot for the 2×50 µm AlGaN/GaN HEMT with the 2-Step
Photolithography Process.

FIGURE 9. Benchmark of the 2-Step device and published results.

MESFET devices, despite the high thermal conductivity of
SiC substrates.
The RF power performance of the device with a highest

output power density in this study is compared with other
published results, as shown in Fig. 9. At Ka-Band, the RF
results of a 2×25 μm using the 2-Step Photolithography
Process exhibited an outstanding POUT (MAX) among rep-
resentative published papers. The RF power characteristic
shown in this work exhibits over 50% PAE, and a record
high output power density of 10.8 W/mm for devices fabri-
cated using only the stepper phtolithography system for LG
definition. Within published Ka band frequency devices [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], the output power density of this work not only
standout among state-of-the-art results, but also shows poten-
tial for the mass production of high output power density
GaN HEMT wafers without using the conventional E-beam
lithography system.
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FIGURE 10. Breakdown Voltage measurement result of the 2×25 µm
HEMT device at VGS = −5 V.

FIGURE 11. Current-gain |H21| and MAG/MSG vs. Frequency plot for the
8×50 µm AlGaN/GaN HEMT with the 2-Step Photolithography Process.

IV. CONCLUSION
We have demonstrated AlGaN/GaN HEMTs fabricated by the
Stepper Lithography, and with the 2-Step Photolithography
Process, we have achieved small gate lengths and achieved
high wafer uniformity on the 4-inch wafer with high IDSS,
Gm and Vth values. At VDS = 20 V, the AlGaN/GaN
HEMT exhibits an IDSS of 1004.2 mA/mm, a Gm value of
363.6mS/mm, amaximumoutput power density (POUT (MAX))
of 10.8 W/mm, and a power gain of 8.8 dB with a maximum
Power-added efficiency (PAE) of 51.1% at 28 GHz in CW
mode. Overall, the high wafer uniformity and the outstanding
RF power performance together makes the process applicable
for Ka-band device fabrication, and has the potential to mass
production on 6- and 8-inch wafers.
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