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ABSTRACT Epilepsy as a common disease of the nervous system, with high incidence, sudden and recurrent
characteristics. Therefore, timely prediction of seizures and intervention treatment can significantly reduce
the accidental injury of patients and protect the life and health of patients. Epilepsy seizures is the result of
temporal and spatial evolution, Existing deep learning methods often ignore its spatial features, in order to
make better use of the temporal and spatial characteristics of epileptic EEG signals. We propose a CBAM-3D
CNN-LSTM model to predict epilepsy seizures. First, we apply short-time Fourier transform(STFT) to
preprocess EEG signals. Secondly, the 3D CNN model was used to extract the features of preictal stage and
interictal stage from the preprocessed signals. Thirdly, Bi-LSTM is connected to 3D CNN for classification.
Finally CBAM is introduced into the model. Different attention is given to the data channel and space to
extract key information, so that themodel can accurately extract interictal and pre-ictal features. Our proposed
approach achieved an accuracy of 97.95%, a sensitivity of 98.40%, and a false alarm rate of 0.017 h−1 on
11 patients from the public CHB-MIT scalp EEG dataset. Clinical and Translational Impact Statement—
Timely prediction of epileptic seizures and intervention treatment can significantly reduce the accidental
injury of patients and protect the life and health of patients.

INDEX TERMS CBAM, EEG, LSTM, seizure prediction, 3DCNN.

I. INTRODUCTION

EPILEPSY is a chronic neurological disease in which
sudden abnormal discharges of brain neurons lead to

transient dysfunction of the brain. Because of the aberrant dis-
charge’s various starting positions andmodes of transmission.
Epilepsy can present as paroxysmalmovement, sensory, auto-
nomic nerve, awareness, and mental abnormalities, among
other complicated and varied clinical symptoms. At present,
epilepsy has become the second largest neurological dis-
ease after headache. According to statistics, there are about
70 million patients with epilepsy worldwide, it increases by
about 2 million people per year. Although epilepsy patients
after regular antiepileptic drugs, surgery, nerve stimulation
treatment, about 70 % of patients with seizures can be
controlled, but there are still about 30 % of patients with
intractable epilepsy do not have the appropriate treatment.
For these patients, Epilepsy not only causes great burden to

their lives and psychology, but also may endanger their life
safety. Therefore, it is of great significance to predict the
onset of epilepsy and to treat patients with drugs or nerve
stimulation in advance to prevent them from harm.

EEG is a graph created by boosting and capturing the
brain’s natural biological potential from the scalp using
sophisticated electronic equipment. It is the rhythmic and
uninhibited electrical activity of networks of brain cells that
has been captured by electrodes. EEG testing is particularly
accurate for the diagnosis of epilepsy because it may pre-
cisely record scattered slow waves, spikes, or erratic spikes
during seizures. EEG can be roughly divided into two types
according to the acquisition mode: One is scalp EEG, and
the other is intracranial EEG. According to EEG, doctors
generally divide the EEG signals of epileptic patients into
four periods, as shown in Fig.1. Epileptic seizures are the time
from the beginning to the end of seizures, usually lasting a few
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FIGURE 1. Four states of EEG in patients with epilepsy.

FIGURE 2. Flow chart of seizure prediction.

seconds or minutes. The preictal period is a few minutes to
dozens of minutes before the onset of seizures. The postictal
period is a period of time from the end of seizures to the return
to normal in patients with epilepsy. The interictal period is a
period of time between the late onset and the next pre-seizure,
at this time the patient ’ s state is no different from normal.
Studies have shown that the onset of epilepsy is sudden, but it
is not an instantaneous attack, but from the normal state to the
onset of a transition time, that is preictal period. Therefore,
accurate identification of pre-seizure is of great significance
for epilepsy prediction.

According to Fig. 2, the seizure prediction process nor-
mally entails data collection, EEG signal preprocessing,
feature extraction, classification, and evaluation of the results.
Epileptic seizure prediction is classified by different char-
acteristics of EEG signals in preictal period and interictal
periods. Seizure prediction dates back to the early 1870s,
Viglione et al. first used patient ’s EEG to predict epilepsy [1].
In the 1980 s, Rogowski et al. [2] and Salant et al. [3] pro-
posed an autoregressive model to analyze the parameter
change information generated within 6 seconds before the
onset, and introduced the physical-mathematical theory of
nonlinear systems. This is a new method for predicting
seizures. In recent years, seizure prediction has grown in
popularity as a result of the advancements in machine
learning and deep learning. Fei et al. used the improved
Lyapunov exponent algorithm to better capture the subtle
chaotic dynamics of epileptic signals in the fractional Fourier
transform domain. Compared with the Traditional, Lyapunov
exponent algorithm, the model has higher accuracy [4].
Raghu et al. showed that the successive decomposition index
(SDI) increased significantly during seizures, Therefore, they
proposed a successive decomposition index (SDI) feature that
predicts seizures based on changes in SDI before onset [5].
Bandarabadi et al. used the feature selection of amplitude
distribution. By calculating the amplitude distribution his-
tograms (ADHs) of epileptic EEG sample features, ranking
each feature, and then selecting features with the largest
ADHs difference [6].Wang and Lyu proposed a feature selec-
tion according to elimination and combined it with SVM to

select the optimal feature set [7]. Yuan and Wei proposed
a Bayesian linear discriminant analysis (BLDA) algorithm
which is used as a classifier to determine the sample fea-
tures. BLDA employs the regularization method in contrast
to the conventional Fisher’s linear discriminant analysis in
order to prevent the over-fitting issue [8]. Xu et al. presented
an end-to-end one-dimensional convolutional neural network
(CNN) architecture to directly input epileptic EEG signals
into the CNN model [9]. Zhang et al. computed the Pear-
son correlation coefficient of the EEG signals to obtain the
correlation matrix, which they then entered into the CNN
model for classification [10]. A 3D CNN model was pre-
sented by Ozcan and Erturk to take use of the temporal and
spatial correlation of EEG [11]. Abdelhameed and Bayoumi
adopted a deep convolutional auto-encoder to identify the
best spatial features from EEG signals and a BiLSTM for
temporal information classification [12]. In order to extract
the temporal and spatial characteristics of multi-channel EEG
signals, a CNN-LSTM model for epileptic seizure predic-
tion was put forth by Shahbazi and Aghajan [13]. Daoud and
Bayoumi [30] use convolutional neural networks to extract
significant spatial features from different scalp locations, use
recurrent neural networks to predict seizures, and introduce
a semi-supervised method based on transfer learning tech-
niques to improve optimization problems.

To accurately forecast epileptic seizures, the goal of this
study is to automatically extract the characteristics of epilep-
tic EEG using deep learning. In order to make better use
of the temporal and spatial characteristics of epileptic EEG
signals. We propose a CBAM-3D CNN-LSTM model to
predict seizures. First, we preprocess EEG signals using
STFT. Secondly, the 3D CNN model was used to abstract
the features of interictal stage and preictal stage from the
preprocessed signals. Thirdly, Bi-LSTM is connected to 3D
CNN for classification. Finally, CBAM is introduced into the
model to give different attention to the channel and space
of the data to extract the key information, so that the model
can accurately extract the interictal and pre-ictal features, and
improve the learning ability and robustness of the model.
Our proposed approach achieved 97.95% accuracy, 98.40%
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FIGURE 3. Schematic of epilepsy prediction model.

sensitive, and 0.017 h−1 false alarm rate on 11 patients from
the public CHB-MIT scalp EEG dataset.

This article is structured as follows: Section II describes
the materials and methods, including data sets, data set pre-
processing, 3D CNN, Bi-LSTM, CBAM, training and testing
methods. Section III shows the experimental results and com-
parison with other experimental models. Section IV discusses
the experimental results and models.

II. METHODOLOGY
Epilepsy EEG signal is the result of time and space evolu-
tion, so its time and space has a certain correlation. Usually,
the CNN model used in the epilepsy prediction method
refers to the 2DCNN model, which has certain advantages
in extracting spatial features, but ignores the temporal fea-
tures of EEG signals. The LSTM model is more suitable
for processing timing information. Both models cannot make
good use of the temporal and spatial correlation of epilep-
tic EEG signals. Therefore, inspired by deep learning in
video processing [25], human behavior recognition [26] and
sEMG noise recognition, figure 3 illustrates our suggested
CBAM-3D CNN-BiLSTM seizure prediction model. Firstly,
the collected data set is marked and preprocessed, and then
the processed data set is extracted by 3D CNN model, and
CBAM is introduced into the model to improve the learning
ability and robustness of the model. Finally, BiLSTM utilized
to classify the stages of interictal and preictal.

A. DATASET
In this study, we make use of the epileptic EEG data set
(CHB-MIT), which was co-created and recorded by scientists
from MIT and Boston Children’s Hospital. The CHB-MIT
dataset [14] is the most common public dataset for seizure
detection and seizure prediction. It consists of 23 incidents
and 844 hours of nonstop scalp EEG data from 22 pediatric
patients. EEG data from 22 electrodes were collected at a
sampling rate of 256 Hz using the bipolar montage technique

TABLE 1. The number of seizures and the duration of interphase data of
11 patients in the CHB-MIT dataset.

of the international 10-20 system. The start and finish times
of each seizure are clearly annotated in the dataset.

In our study, we used continuous EEG signals from
35 minutes to 5 minutes before a seizure as a pre-seizure. The
10 minutes after the end of seizures as post - seizure EEG.
The interictal period is defined as the period between 4 hours
after the end of the seizure and 4 hours before the start of the
next seizure. In addition, to carry out intervention in therapy,
we took the EEG signal 5 minutes before the attack as the
intervention period and deleted it from the data. Due to the
requirements of model training and testing, the number of
seizures should not be less than 3 times and not more than
10 times

Therefore, we selected 11 patients, 55 seizures, and
235 hours of continuous EEG from the CHB-MIT dataset,
as shown in Table 1.

B. PREPROCESSING
As a result of the vastly greater number of interictal data than
preictal data, and the deep learning model is not suitable for
dealing with a data imbalance problem. Therefore, we aim
to balance the interictal and preictal datasets. We use over-
lapping sampling techniques to generate more training data
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FIGURE 4. Overlapped sliding window sampling technique.

FIGURE 5. 8 s EEG signal de-noising spectrum after short time fourier
transform.

sets, and separate EEG segments from continuous scalp EEG
signals to select 8-second long overlapping activity windows.
The sliding length is 4s, as shown in Figure 4. N fragments (N
is the number of pre-ictal datasets) were randomly selected
from the interictal data as the training set for the interictal
period.

In the study, we needed to use the 3D CNN model to
extract features from the dataset, so we needed to convert
the EEG signal into a spectrogram. Fourier transform and
wavelet transform are commonly used methods to convert
EEG signals into spectrograms in epilepsy detection and
prediction.

Themajority of the EEG signals captured by the CHB-MIT
dataset have 60 Hz power line noise interfering with them.
Therefore, we use band-stop filter and high-pass filter to
eliminate 57-63Hz and 117-123Hz frequency components
to remove noise, and also remove 0Hz DC component. 8 s
EEG Signal De-noising Spectrum after Short Time Fourier
Transform, as shown in Figure 5.

C. 3D CNN
A type of feedforward neural network with convolution
calculation and a deep structure is a convolutional neural
network [15]. It is one of the key deep learning methods and
is widely used in image classification, speech recognition,
machine vision, and other domains. CNN holds the capacity
to represent learning, according to its hierarchical structure
of the input information translation invariant classification,
it is also referred to as ’ translation invariant artificial neural
network ’ [16]. CNN is mainly composed of convolution

layer, pooling layer and fully connected layer. The convo-
lution layer is typically employed to extract features from
the input data and output the feature map. Then, it is down-
sampled through the pooling layer to reduce the dimension of
the feature and reduce the computational complexity. Finally,
the output data from the preceding layer is then applied to the
fully connected layer to create a one-dimensional feature
vector [29].

Since epileptic seizure is the result of its temporal and spa-
tial evolution, in order to make better use of the temporal and
spatial characteristics of epileptic EEG signals. We propose a
3D CNN model as a feature extractor. The model has three
convolutional layers, three maximum pooling layers and a
fully connected layer, as shown in Figure 6.

In the first convolution stack, the convolution kernel size
is 22 ∗ 3 ∗ 3 and the pooling layer size is 1 ∗ 2 ∗ 2. In the
other two convolution stacks, the size of convolution layer
and pooling layer is 1 ∗ 1 ∗ 1. All convolutional layers use
the RELU activation function, and use Batch Normalization
to increase the model’s capacity for generalization, suppress
the model overfitting, and improve the training speed of the
model.

D. BI-LSTM
Recurrent convolutional neural network (RNN) is one kind
of neural network with sequence data as input, recursion in
the evolution direction of sequence and all recurrent units
connected in chain. RNN is suitable for time series data
prediction. It can process the time series of data by processing
the previous sequence. However, RNN has the disadvantages
of gradient explosion and disappearance and information
deformation in the process of back propagation training over
time.

LSTM can scale the gradient value during training and
solve the problem of gradient disappearance through time
back propagation. The LSTM consists of three gates, the
input, the forgetting, and the output gate. The three gates
create a self-circulation of the internal state of the LSTM unit,
as shown in Figure 7.
The update expression of the LSTM unit is as follows [17]:

h(t) = g(t)
0 fh

(
s(t)

)
(1)

s(t) = g(t)f s
(t−1)

+ g(t)i fs(wh
(t−1)uX (t)

+ b) (2)

g(t)i = sigmoid(wih(t−1)uiX (t)
+ bi (3)

g(t)f = sigmoid(wf h(t−1)uf X (t)
+ bf (4)

g(t)o = sigmoid(woh(t−1)uoX (t)
+ bo (5)

In the formula, Footmarks i, f , o represent input gate, for-
getting gate and output gate. fh, fs are the excitation functions
of system state and internal state, usually a hyperbolic tangent
function. G is a gated control updated over time.

This study employs the Bi-LSTM [18] classifier, which
processes the time series in two opposing orientations while
substituting two blocks for each LSTM block, as illustrated
in Figure 8. The feature vector generated from the 3D CNN
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FIGURE 6. 3D CNN model.

FIGURE 7. LSTM unit structure.

FIGURE 8. Bidirectional long short-term memory.

model is input into the forward transfer block of Bi-LSTM
from the beginning to the end of its first instance, and then the
same fragment is processed in the opposite order. Each time
step’s combined output from its two blocks is what is known
as the network output for that step. Compared to LSTM,
Bi-LSTM can handle both previous and future contexts, thus
enhancing prediction results. In the Bi-LSTM classification
process, to prevent overfitting, we employ the Dropout reg-
ularization technique. Dropout is applied with a 50% factor
to the input and loop states. As the cost function, the cross
entropy loss function is employed and Adma is selected as
the optimizer for optimization.

E. CBAM
The attention mechanism originates from the study of human
vision. Later, it is gradually applied to the field of deep
learning algorithms. The attention mechanism adjusts the
network parameters by generating and assigning weights, and
its role is to allocate computing resources to relatively more
important tasks [27].

In this paper, Convolutional Block Attention Mod-
ule (CBAM) is used to optimize the seizure prediction

FIGURE 9. Convolutional block attention module.

FIGURE 10. Channel attention module.

FIGURE 11. Channel attention module.

model. CBAM is a multi-attention mechanism proposed by
Woo et al. [28] in 2018. It connects the channel attention
module and the spatial attention module in series. Compared
with the attention mechanism that only focuses on a single
aspect, CBAM focuses on both channel and spatial attention,
which can achieve better results. The structure of CBAM is
shown in Fig 9.

The structure of the channel attention module is shown in
Figure 10. Firstly, the input features are subjected to global
maximum pooling and global average pooling operations,
and then jointly input into themulti-layer perceptron network.
Next, the output features are sequentially added and acti-
vated by the sigmoid function to obtain the channel attention
feature weight, and then multiplied with the input features
to generate the features required by the spatial attention
module.

The structure of the spatial attention module is shown
in Figure 11. The input feature map is subjected to
channel-based global maximum pooling and global average
pooling operations, and the obtained feature map is subjected
to channel splicing. After convolution operation and sigmoid
function activation operation, the spatial attention feature
weight is generated, and it is multiplied with the input feature
map to generate the final feature.
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FIGURE 12. SPH and SOP.

F. TRAINING AND TESTING METHODS
In order to simulate the real situation, and to avoid
over-fitting and model robustness, we evaluated our sug-
gested model using the leave-one-out cross-validation
approach (LOOCV) [19] for each patient. In other words,
we select one seizure from a patient’s total of N seizures as
the test set, and the model is trained using the remaining N-1
seizures. As a result, this procedure will be carried out N
times. In this study, 25% of the data from the pre-ictal and
interictal samples were randomly chosen as the test set and
75% were chosen as the training set.In the training process,
we select a larger number of iterations to increase the accu-
racy of training, but it is easy to cause over-fitting during the
training process. Therefore, we use the early-stop method to
solve this problem, stopping training immediately when the
validation set accuracy reaches 99 % or the validation set loss
function begins to increase.

III. RESULTS
To assess how well seizure prediction algorithms function,
two important time parameters were defined during the study:
seizure occurrence period (SOP) and seizure prediction hori-
zon (SPH), as shown in Figure 12. SPH refers to the period
between the time point when the predictive alarm is issued
and the time point when the SOP starts. At the same time,
appropriate means can be used to deal with seizures at this
stage. Therefore, SPH is also called clinical intervention [20].
SOP is the period when seizures occur.

For a correct prediction of epilepsy, it should be within the
SPH range after the alarm is issued, no seizures occur, while
seizures occur within the SOP range, and the specific time
point of the attack can be different. All other things are wrong.
Therefore, to assess the effectiveness of seizure prediction
models, different ranges of SPH and SOP need to be defined.
For example, the smaller the SOP, the more accurate the
prediction of the upcoming epileptic seizure time point. The
ideal situation is that the SOP is reduced to a time point,
which means that the epileptic seizure is accurately generated
at this time point. However, it is particularly difficult to design
such a prediction model. There is no perfect prediction model
that can accurately predict a certain time point of epileptic
seizures in patients. Therefore, SOP is not the smaller the
better. As the SOP range decreases, the number of false
predictions increases. In addition, the researchers believe that
although the scope of the SPH definition of the larger the
number of false positives, but the SPH range will increase
the patient ’s anxiety, to bring a heavy psychological burden
on patients [21]. Therefore, SOP was set at 30 minutes and
SPH to 3 minutes for this study.

TABLE 2. Results obtained using our model for each case in the CHB-MIT
dataset.

TABLE 3. The comparison results of 3DCNN model and time prediction
model are compared.

In this study, we also used three parameters: accuracy,
sensitivity and false prediction rate (FPR) as the evaluation
indexes of epileptic seizure prediction model. Among them,
sensitivity and FPR are two key evaluation indicators that
researchers are most interested. Sensitivity is the prediction
model’s capacity to recognize the pre-epileptic phase of the
EEG with accuracy., and FPR is a measure of how many
incorrect predictions the model makes each hour [6]. Its
mathematical expression is as follows.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(6)

Sensitivity =
TP

TP+ FN
(7)

FPR =
FP
Time

(8)

Among them, TP was true positive, FP was false positive,
TN was true negative, and FN was false negative.

Table 2 shows the accuracy, sensitivity and FPR predic-
tion results of our model for 11 patients. We can see that
the average performance of the proposed model reaches
97.95 % accuracy, 98.40 % sensitivity and 0.017 h−1 FPR
on the CHB-MIT dataset. Among all patients, Pt01 and
Pt08 achieved very good results, reaching more than 99 %
accuracy, 100 % zero sensitivity and 0 false prediction rate,
and achieved good results in other patients.

Table 3 shows the comparison results of 3DCNN model
and time prediction model. We can see that the model
combining 3DCNN with BiLSTM has better accuracy, sen-
sitivity and FPR than the model combining 3DCNN with
BiGRU. Therefore, we use the 3DCNN-BiLSTM model to
predict seizures. At the same time, we introduce CBAM
into 3DCNN-BiLSTM. It can be seen from Table 3 that the
CBAM-3DCNN-BiLSTM model achieves better results than
the other two models.
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TABLE 4. Comparison with other model experiments.

The performance comparison between our model and the
formerly suggested deep learning-based seizure prediction
technique is shown in Table 4. The CHB-MIT dataset is used
to assess all methodologies. The table shows that, in com-
parison to other models, our model achieves high accuracy,
high sensitivity, and a low false prediction rate. Therefore, our
proposed CBAM-3DCNN-BiLSTM model is significantly
superior to other CNN-based methods.

IV. CONCLUSION
In this study, a CBAM-3DCNN-BiLSTM model for seizure
prediction was suggested. EEG signals are transformed into
three-dimensional feature vectors using the STFT algorithm.
Time, frequency, and channel data are used to extract fea-
tures using 3DCNN. CBAM is introduced into the model
to filter important node information, avoid feature redun-
dancy, and improve model learning ability and robustness,
and BiLSTM is used to classify the extracted features. This
method achieves 97.95 % accuracy, 98.40 % sensitivity and
0.017 h−1FPR. Compared with the previous work, the exper-
imental results show that the proposed method has high
accuracy and sensitivity, and low error prediction rate. The
epileptic seizure prediction method in this study is superior to
other methods. Due to the patient-specific nature of epileptic
EEG data, we need to test more subjects in different age
groups, different clinical conditions, and different disease
characteristics in future work to ensure that the method can be
promoted. At the same time, through the existing technology
to continuously improve the accuracy of its prediction, reduce
the potential risk of epilepsy patients, and protect the life and
health of epilepsy patients.
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