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ABSTRACT Objective: Common bile duct (CBD) stones caused diseases are life-threatening. Because CBD
stones locate in the distal part of the CBD and have relatively small sizes, detecting CBD stones fromCT scans
is a challenging issue in the medical domain. Methods and procedures: We propose a deep learning based
weakly-supervisedmethod calledmultiple field-of-view based attention driven network (MFADNet) to detect
CBD stones from CT scans based on image-level labels. Three dominant modules including a multiple field-
of-view encoder, an attention driven decoder and a classification network are collaborated in the network.
The encoder learns the feature of multi-scale contextual information while the decoder with the classification
network is applied to locate the CBD stones based on spatial-channel attentions. To drive the learning of the
whole network in a weakly-supervised and end-to-end trainable manner, four losses including the foreground
loss, background loss, consistency loss and classification loss are proposed. Results: Compared with state-
of-the-art weakly-supervised methods in the experiments, the proposed method can accurately classify
and locate CBD stones based on the quantitative and qualitative results. Conclusion: We propose a novel
multiple field-of-view based attention driven network for a new medical application of CBD stone detection
from CT scans while only image-levels are required to reduce the burdens of labeling and help physicians
automatically diagnose CBD stones. The source code is available at https://github.com/nchucvml/MFADNet
after acceptance. Clinical impact: Our deep learning method can help physicians localize relatively small
CBD stones for effectively diagnosing CBD stone caused diseases.

INDEX TERMS Common bile duct (CBD) stone detection, choledocholithiasis, weakly-supervised learning,
deep learning, object detection.

I. INTRODUCTION
The presence of gallstones in the common bile duct refers
as the common bile duct (CBD) stone which is also known
as choledocholithiasis. Most cases of choledocholithiasis
result from gallstones stuck in the common bile duct [1].
As shown in [2], up to 20% of gallbladder stone cases
are associated with CBD stones. CBD stones caused acute
suppurative cholangitis and acute biliary pancreatitis [3] are

life-threatening. These diseases should be diagnosed and
treated immediately even in asymptomatic ones [4].

The gold standard treatment in managing CBD stones
nowadays is endoscopic retrograde cholangiopancreatogra-
phy (ERCP). However, ERCP is an invasive procedure and
may result in about 6.9% to 12% of adverse events even per-
formed by experienced endoscopists [5], [6]. Some adverse
events are lethal and needed to be prevented. To preventing
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FIGURE 1. The network architecture of the proposed method. The multiple field-of-view encoder aims to generate deep features of different resolutions
to represent CBD stones of different sizes. The attention driven decoder generates the channel attention map, spatial attention map and probability map.
The channel attention map enhances the decoder features via effective channel information. The spatial attention map aims to help locate the CBD
stones based on image-level labels. The probability map reduces the false detection of CBD stones based on the background loss and serves as the
feature for the classification network. The consistency loss ensures that the dominant feature response of the probability map is consistent with the
image-level label. Finally, the classification loss drives the predictions of the classification network to classify the CT scan. The dash rectangles show the
widths, heights and channels of the features maps.

ERCP [7], patients suspected of having choledocholithiasis
can also be diagnosed by history taking, blood test, physical
examination, and ultrasound scanning. However, the posi-
tive prediction rates of these tests are ranged from 59% to
64% [8], [9].

Compared with these methods, diagnosing CBD stones
from computed tomography (CT) scans achieves better diag-
nostic accuracy [10], [11]. However, the results are interpreter
dependent and the process is time-consuming. Compared
with larger gallstones, CBD stones locate in the distal part
of the CBD and have relatively small sizes. Thus, they may
not be clearly captured by CT scans. Automatically and
effectively detecting CBD stones from CT scans becomes a
novel and emerging issue in the medical domain. A novel
technical solution is expected to address this clinical need in
the interdisciplinary field and improve the quality of patient
care efficiently.

Recently, supervised convolutional neural networks
(CNNs) arewidely utilized to solvemedical image processing
problems [12], [13], [14]. In general, a large number of train-
ing data is required for CNNs to learn representative models
for object detection. Moreover, object-level labels such as
bounding boxes are required for supervised CNNs. These
labels bring the time-consuming burdens for physicians and
also heavily rely on physicians’ experience.

In this paper, we would like to propose a novel technical
method to solve the clinic CBD stone detection problem
from CT scans in a weakly-supervised manner, i.e. only the
image-level labels are given without the requirement of the
ground truth bounding boxes of the CBD stones. To achieve

the goal, we propose a novel multiple field-of-view based
attention driven network (MFADNet). As shown in Fig. 1,
the proposed network is composed of a multiple field-of-view
encoder, an attention driven decoder and a classification net-
work. We apply the multiple field-of-view encoder to extract
the encoder feature based on the dilated convolutions [15]
of different dilated rates. The encoder feature represents the
multi-scale contextual information of the CT scan. Through
the decoder, the encoder feature is further upsampled to
obtain the decoder feature of the higher resolution for CBD
stone detection. Via the spatial-channel attention scheme [16]
of the decoder, the spatial attention map and channel atten-
tion map are generated to represent salient responses of the
decoder feature for localizing the CBD stones. By integrating
the decoder feature, spatial attention map and channel atten-
tionmap, the probabilitymap is generated to distinguish CBD
stones from normal tissues.

To drive the learning of the network via image-level labels,
four losses including the foreground loss, background loss,
consistency loss and classification loss are proposed. Here,
the foreground loss aims to learn the locations of the CBD
stones. It indicates the correlations of the spatial atten-
tion map and the probability map based on the image-level
labels with CBD stones. The background loss aims to avoid
miss-detection of CBD stones for normal CT scans. It drives
the probability map to represent normal regions based on the
image-level labels without CBD stones. The consistency loss
aims to ensure that the learned dominant feature response of
the probability map needs to be consistent with the image-
level labels. Finally, the classification loss is computed based
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on the prediction of the classification network to achieve
accurate image-level classification. With the combination of
these losses, we can train the proposed network with weak
labels in an end-to-end training manner. During the inference,
the bounding boxes of the detected CBD stones are located by
searching the regions of the dominant responses in the spatial
attention map. As shown in the experiments, the proposed
method can successfully achieve CBD stone detection com-
pared with the state-of-the-art weakly-supervised methods.

There are three main contributions in this paper. First, this
is the first deep learning based weakly-supervised method
for CBD stone detection from CT scans based on our
best knowledge. Our method not only proposes a novel
weakly-supervised network for a novel application in the
medical domain, but also reduces the burdens of annota-
tions. Second, the attention driven decoder with the proposed
foreground loss, background loss and consistency loss helps
accurately locate CBD stones by using image-level labels.
These losses also drive the end-to-end training of the net-
work. Third, while the class activation map (CAM) based
methods [17], [18] aim to obtain salient features based on the
learned networks, the proposedmethod utilizes the aforemen-
tioned losses to effectively drive the learning of the features
and locations of the CBD stones. Thus, the proposed method
achieves outstanding performance compared with state-of-
the-art weakly-supervised methods.

The remaining parts of the paper are organized as follows.
Sec. II introduces the related weakly-supervised methods.
Sec. III presents the proposed method and implementation
details. The collected dataset and experimental results are
shown in Sec. IV. Finally, the conclusions are given in Sec. V.

II. RELATED WORK
Although supervised deep learning methods [19], [20], [21],
[22], [23], [24] have achieved amazing performance for
lesion classification, detection or segmentation in the med-
ical domain, time-consuming annotated labels are required.
To reduce the labeling burdens of the physicians, weakly-
supervised methods are proposed to achieve computer-aided
diagnosis for CT scans based on weakly annotated labels.
Many weakly-supervised methods [17], [18], [25], [26], [27]
are proposed in the computer vision domain. In the following,
we focus on the reviews of the weakly-supervised methods in
the medical domain.

Wang et al. [28] proposed a label denoising network
(LDnet) to segment male pelvic organs from CT scans with
3-D bounding box labels. Li and Xia [29] proposed a deep
reinforcement learning-based method for lymph node seg-
mentation by using two cross line-annotations on the lymph
node. They used GrabCut [30] to generate pseudo ground
truths for U-Net [19]. Tang et al. [31] proposed an attention
enhancedmodel with a regional level set loss to achieve lesion
segmentation.

Due to the COVID-19 issues, many state-of-the-art
weakly-supervised methods focus on the detection and

segmentation of lesions from chest CT scans.Wang et al. [12]
proposed a 3-D deep convolutional neural network for
COVID-19 detection from CT scans. They segmented lung
regions by using a pre-trained U-Net. Then, a 3-D deep
neural network and a class activation map (CAM) [17] were
applied to predict the COVID-19 infection and localize the
regions. Yang et al. [32] proposed a generative adversarial
network (GAN) [33] based weakly-supervised method for
COVID-19 lesion localization. They subtracted the output
image from the input image to localize lesions. Similar
GAN based weakly-supervised method can also be found
in [34]. Qian et al. [35] presented a multi-task multi-slice
deep learning method with two networks. Their method
diagnosed diseases for each single CT scan and generated
localization maps of abnormalities, while the patient-level
classification network provided the prediction based on the
features of the network. Liu et al. [36] proposed using
scribble-level annotations for segmenting COVID-19 lung
infections. Uncertainty-aware and transformation-consistent
schemes were considered to make consistent segmentation
results with respect to different perturbations of the CT scan.

Besides CT scans, Madooei et al. [37] proposed using a
multiple instance learning (MIL) framework for identify-
ing blue-white structure from dermoscopy images based
on image-level labels. Chamanzar and Nie [38] proposed
a deep learning method to achieve cell segmentation and
detection based on point labels. van Sloun and Demi [39]
proposed using a fully convolutional neural network to locate
B-lines from ultrasound scans. Ma et al. [40] proposed a
multi-scale class activation map (MS-CAM) to solve the
weakly-supervised geographic atrophy lesion segmentation
problem from spectral-domain optical coherence tomography
images. The geographic atrophy lesion is retrieved based
on the projection of the segmentation of the MS-CAM.
Meng et al. [41] proposed a complementary heatmap-based
method to achievemulti-retinal disease detection from fundus
images with weakly-supervised labels. Qi et al. [42] pro-
posed a graph-regularized embedding network to model the
cross-region and cross-image relationships on chest X-ray
images for weakly-supervised disease localization.

Compared with the aforementioned weakly-supervised
methods, the proposed method extracts the spatial-channel
attention feature from the multiple field-of-view feature to
detect CBD stones of different sizes. Then, based on the pro-
posed losses and image-level labels, the proposed method can
successfully classify the CT scans and locate the CBD stones
in an end-to-end trainable manner. In addition, the proposed
method is the first weakly-supervised method to detect CBD
stones and has been shown to achieve the state-of-the art
performance compared with competing weakly-supervised
methods from different research domains.

III. PROPOSED METHOD
In this section, an overview of the proposed method is
first presented. Then, the multiple field-of-view encoder, the
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attention driven decoder and the classification network are
described. The losses are introduced to address how can the
proposed method effectively locate the CBD stones based on
image-level labels. Finally, we provide the implementation
details.

A. OVERVIEW
Let a weakly annotated set of CT scans with image-level
labels be D = {In, yn}Nn=1, where In denotes the nth CT scan
and yn ∈ {1, 0} is its image label to indicate if In contains
the CBD stone or not, and N is the number of CT scans. The
width and height of each CT scan are denoted as W and H .
With the weakly annotated dataset D, we aim to derive a
detection model to locate CBD stones in CT scans. Fig. 1
illustrates the proposed network architecture.

The proposed network contains a multiple field-of-view
encoder, an attention driven decoder and a classification net-
work. The encoder aims to represent CBD stones by using
the multiple field-of-view scheme. Then, the feature of the
encoder is refined by the attention driven decoder with the
proposed losses to locate CBD stones. The classification
network provides the image-level predictions of the CT scans.

During training, we consider a CT scan I and its label
y, where I serves as the input of the multiple field-of-view
encoder. The encoder contains a feature backbone network
and a multiple field-of-view network to produce the encoder
feature f E of I . Then, the attention driven decoder with an
upsampling backbone network and a spatial-channel attention
network [16] is proposed to locate the CBD stones based on
the proposed losses. The feature f U produced by the upsam-
pling backbone network is the input of the spatial-channel
attention network. The spatial-channel attention network gen-
erates the channel attention map mc ∈ R1×64 and spatial
attention map ms ∈ RWH×1. By fusing f U , mc and ms with a
1× 1 convolutional layer, a probability mapmp ∈ RWH×1 is
generated to distinguish CBD stones from normal regions.

To enforce the learned spatial attention map ms to locate
CBD stones based on the weakly annotated image-level label,
ms is applied to compute the foreground loss ℓfg with respect
to mp. When the training image does not contain the CBD
stone, the background loss ℓbg is computed based on mp to
avoid themiss-detection of CBD stones of the normal training
image. Besides ℓbg, to ensure that the spatial prediction of
mp can be consistent with the weakly annotated image-level
label, a global average pooing layer is applied to mp to
compute the consistency loss ℓcon. Finally,mp is passed to the
classification network to obtain the image-level prediction.
A classification loss ℓcls is computed based on the prediction
and the image-level label y. In summary, the whole network
is optimized in a weakly-supervised manner by using the
following loss function:

ℓ = ωfgℓfg + ωbgℓbg + ωconℓcon + ωclsℓcls, (1)

where ωfg, ωbg, ωcon and ωcls are the weights of the losses.
The network will be described in details in the following.

B. MULTIPLE FIELD-OF-VIEW ENCODER
The multiple field-of-view encoder contains a feature back-
bone network and a multiple field-of-view network. The
feature backbone network is used to extract the deep feature
f b to represent I . It is a pre-trained convolutional neural
network based on the ImageNet dataset [43]. The downsam-
pling layers of the feature backbone network are achieved
by 2 × 2 max pooling. Because the sizes and spatial context
relationship of CBD stones are variant, f b is hard to provide
representative deep features to handle the scale problem of
CBD stone detection. Thus, we enhance f b by using the
multiple field-of-view network to extract features of different
resolutions as follows.

As shown in Fig. 1, the multiple field-of-view network
contains 4 parallel dilated convolutional layers [15] and a
maximum pooling layer to represent features in different
resolutions. The first dilated feature f 1d is obtained by a 3 ×

3 dilated convolutional layer of the dilated rate 1. To further
extend the discriminability of following learned dilated fea-
ture, f 1d is concatenated with f b and passed to a 3× 3 dilated
convolutional layer of the dilated rate 2 to obtain the second
dilated feature f 2d . Similarly, the third dilated feature f 3d and
the fourth dilated feature f 4d of the dilated rates 4 and 8 are
obtained based on f b and the dilated features of previous
dilated rates, respectively. The kth dilated feature is defined
as follows:

f kd =

{
dconv2

k−1
(f b), k = 1

dconv2
k−1

(f b ⊕ f k−1
d ), k > 1

, (2)

where dconv2
k−1

(·) is a 3 × 3 dilated convolutional layer of
the dilated rate 2k−1 and ⊕ is the concatenation operator of
the backbone feature and the previous dilated feature.

Finally, f b is passed to a 2× 2 max pooling layer to obtain
the pooling feature f p. By concatenating the dilated features
and the pooling feature of the multiple field-of-view network,
the obtained encoder feature f E can represent the multi-scale
contextual information of I and is defined as:

f E = f 1d ⊕ f 2d ⊕ f 3d ⊕ f 4d ⊕ f p, (3)

where ⊕ is the concatenation operator. The encoder feature
then serves as the input of the attention driven decoder for
CBD stone detection.

C. ATTENTION DRIVEN DECODER
The attention driven decoder contains an upsampling back-
bone network and a spatial-channel attention network to
locate the CBD stones based on the proposed losses. The
upsampling backbone network upsamples the encoder feature
f E to obtain the decoder feature f U which has the same spa-
tial resolution of the input image. Two forward connections
from the feature backbone network of the encoder provide
features of different resolutions to help obtain better decoder
features during upsampling. The encoder features of the first
block and second block of the feature backbone network
are passed to spatial-wise global average pooling layers to
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generate the features. To ensure the consistency of the feature
dimension, a 1 × 1 convolutional layer with 64 channels is
used to modify the dimension of the feature of the second
block after the global average pooling. These features then
serve as the weights to multiply the decoder features of the
corresponding blocks of the decoder as shown in Fig. 1.
Instead of considering the feature responses of the

low-resolution feature maps, we propose applying the
spatial-channel attention network based on the output
of the upsampling backbone network to compute the chan-
nel attention map mc and spatial attention map ms. In this
way, the computed attention maps can better represent the
locations of the CBD stones in the original resolution. The
spatial-channel attention network based on the convolutional
block attentionmodule [16] is consisted of a channel attention
module and a spatial attention module for feature and loss
computation. In our method, the channel attention module
aims to extract the channel attention map mc which contains
representative information of different channels of f U . mc
is computed by the addition of the channel features after
a spatial-wise max pooling layer and a spatial-wise global
average pooling layer. Because effective channel information
will be reserved, mc is used as the weight map to enhance
important features in f U .
The spatial attention module aims to obtain spatial atten-

tion map ms which is used to locate the CBD stones.
f U is passed to a channel-wise max pooling layer and a
channel-wise average pooling layer, respectively, to obtain
spatial attention features. These features are concatenated and
passed to a 7 × 7 convolutional layer conv7(·) to obtain the
spatial attention map ms as follows:

ms = conv7(poolmaxc (f U ) ⊕ poolavec (f U )), (4)

where poolmaxc (·) and poolavec (·) are the channel-wise max
pooling and channel-wise average pooling functions. If I
contains CBD stones, these two pooling functions help
emphasize the responses of the CBD stones.

The channel attention map mc aims to extract representa-
tive channel features of f U and is defined as follows:

mc = poolmaxs (f U ) + poolaves (f U ), (5)

where poolmaxs (·) and poolaves (·) are the spatial-wise max
pooling and spatial-wise average pooling functions. These
two spatial-wise pooling functions help find representative
features for CBD stones from f U .

Finally, a probability map mp is computed as follows:

mp = conv1(ms ⊗ (mc ⊗ f U )), (6)

where conv1(·) is a 1 × 1 convolutional layer followed by a
sigmoid function, and ⊗ is the element-wise multiplication.
mp aims to help distinguish CBD stones from backgrounds.

To locate CBD stones, we cooperate mp with ms to
compute the foreground loss ℓfg which enforces the spatial
attention map to learn the locations of the CBD stones.
When mp indicates the low probability of the CBD stones

for certain pixels, the spatial attention map should also have
low attention responses for these pixels. When a training
image contains the CBD stone, the network needs to learn
the locations of CBD stones based on the pixel-wise feature
responses of ms. In other words, the pixels with high feature
responses of CBD stones in the spatial attention map ms
should have low feature responses of mp.

By enforcing the learning of ms to locate the CBD stones
with respect tomp, the foreground loss ℓfg is defined based on
pixel-wise feature responses between ms and mp as follows:

ℓfg =
1

W × H

W∑
i=1

H∑
j=1

(1 −m(i,j)
s ) ×m(i,j)

p , (7)

where m(i,j)
s is the feature response of the pixel at position

(i, j) of ms, m
(i,j)
p is the feature response of the pixel at

position (i, j) ofmp. The foreground loss offers an supervisory
signal to identify possible locations of CBD stones in the
weakly-supervised training process of the network.

Besides the foreground loss to locate CBD stones, it is
also important to identify normal CT scans without CBD
stones based on image-level labels. To distinguish CBD
stones from normal regions, we propose the probability map
mp. To drive the learning of mp to learn normal regions
without CBD stones, we propose the background loss ℓbg.
The background loss aims to reduce the feature responses of
mp when inputting a normal training CT scan. Because we
only have the image-level label y of the training CT scan,
we define the label y(i,j) of the pixel at position (i, j) of the
training CT scan as y(i,j) = y. The background loss is then
defined as follows:

ℓbg =
1

W × H

W∑
i=1

H∑
j=1

(1 − y(i,j)) ×m(i,j)
p . (8)

If the input training CT scan contains the CBD stone, i.e.
y = 1, it should not be used to learn mp to avoid the
incorrect learning of CBD stones as backgrounds. Thus, only
the normal training CT scans affect the computation of mp.
By minimizing ℓbg, the network can effectively represent
normal training CT scans. When the feature responses of mp
are small for normal CT scans, the false detection of CBD
stones can be avoided.

Besides the pixel-based foreground loss and background
loss, we also propose the consistency loss and classification
loss which are probability-based loss functions computed by
using the dominant feature responses and the predictions to
drive the learning of the network based on global image-
level labels. While the probability map mp indicates possible
normal background regions and CBD stones of the input CT
scans, we would like to ensure that the dominant feature
response of mp is consistent with the image-level labels of
the input CT scans. If the CT scans are normal, the learned
mp should contain feature responses with respect to normal
image-level labels. Similarly, when the CT scans contain
CBD stones, their dominant feature responses should also
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be consistent with the image-level labels. To address the
dominant feature responses for both cases, we propose the
consistency loss ℓcon as follows:

ℓcon = −y log(GAP(mp)) + (1 − y) log(1 − GAP(mp)),

(9)

where GAP(·) is the global average pooling layer which
represents the dominant feature response of mp. By using
the consistency loss, each training CT scan produces an extra
dominant feature response which needs to be consistent with
the ground truth image-level label to optimize the whole
network.

Finally, mp is used as the input of the classification net-
work consisting of two fully connected layers followed by a
softmax layer. The classification network aims to figure out
if CBD stones exist in I or not. To guide the model learning,
the classification loss ℓcls is defined as follows:

ℓcls = −y log(ŷ) + (1 − y) log(1 − ŷ), (10)

where ŷ is the prediction of the classification network. Based
on Eq. (10), we can ensure that the predictions of the
classification network are consistent with the ground truth
image-level labels. Moreover, it will also drive the whole
network to learn proper features.

D. IMPLEMENTATION DETAILS
The feature backbone network [44] is modified from a pre-
trained VGG-16 network [45] by adding dropout layers to
VGG blocks to avoid overfitting. The upsampling backbone
network is composed of three 3 × 3 convolutional layers
and one 1 × 1 convolutional layer. Each 3 × 3 convolutional
layer is followed by an instance normalization layer. Finally,
the classification network consists of two fully connected
layers with 256 neurons and a softmax layer for image-level
prediction.

The Keras framework on an Intel Core i7 computer with
a 3.7 GHz CPU and RTX 2080 GPU is used to implement
the proposed method. We use the RMSProp optimizer to
train the model. The parameters of ρ and ϵ of the RMSProp
optimizer are set to 0.9 and 10−8. The batch size is set to 3.
The initial learning rate is set to 10−4. When the loss of the
validation stops improving for 5 epochs, the learning rate will
be decreased by a factor of 10. The maximal training epoch
is set to 100, and if the loss of the validation stops improving
in 10 epochs, the training will end early. The weights of
the losses are set to ωfg = 1, ωbg = 0.5, ωcon = 1 and
ωcls = 1, because we empirically found that suppressing the
background loss helps increase the detection rate of the CBD
stones. To locate the CBD stones in the CT scans, we first
extract the feature map from the spatial-channel attention
network. To extract salient regions which reflect locations
of CBD stones, we apply the channel-wise average pooling
to obtain important channel information of the feature map
through the channel dimensions. To avoid false detection of
the CBD stone of normal CT scans, we apply the probability

map as the weight map. In this way, we can obtain the CBD
stone attention map ma as follows:

ma = poolavec (ms ⊗ (mc ⊗ f U )) ⊗ (1 −mp). (11)

Here, ma is normalized by the maximal value of ma. When
the normalized values of pixels are larger than the threshold
th (= 0.6) and the classification network predicts that the
CBD stone exists in the CT scan, these pixels are considered
as pixels with CBD stones. Finally, a bounding box is used
to extract detection results based on the largest connected
component region which is the same as CAM [17].

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTINGS
1) DATASET
From January 2018 to August 2019, patients who were clin-
ically suspicious of CBD stones and met 2010 American
society for gastrointestinal endoscopy (ASGE) high proba-
bility criteria for CBD stones in the National Cheng Kung
University Hospital were included. All patients were pre-
sented with one of the following conditions: (a) total bilirubin
more than 4 mg/dL, (b) total bilirubin level ranged from
1.8 − 3.9 mg/dL with a dilated (diameter > 6mm) common
bile duct on images, (c) presented ascending cholangi-
tis clinically, and (d) abdominal ultrasound revealed CBD
stone. After the enrollment, patients with known malignancy
or medical implants inside the biliary system that causes
obstruction of the CBD were excluded. Patients without
pre-treatment abdominal CT scans, adolescent and pregnant
women were also excluded from the initial cohort. The
dataset is approved by Institutional Review Board, National
Cheng Kung University Hospital under B-ER-111-186.

In the experiments, abdomen CT scans near the gallbladder
regions of 252 patients were collected. 428 CT scans with
CBD stones were selected by the physicians. Because the
number of the normal CT scans are significantly more than
that of the CT scans with CBD stones, the physicians limited
the number of the normal CT scans to be twice the number
of CT scans with CBD stones to reduce the data imbalance
problem and retain the fact that the number of the normal
CT scans is more than that of CT scans with CBD stones.
To provide more diversity, the number of selected normal
CT scans for each patient was randomly decided by the
physicians and thus 856 normal CT scans were randomly
selected. As a result, each patient has ∼ 5 selected CT scans
on average. The CT scans of the dataset is divided into 7:3 for
the training and testing as the setting in [46], [47], and [48].
The training dataset contains 298 CT scans with CBD stones
and 596 normal CT scans. The testing dataset contains 130
CT scans with CBD stones and 260 normal CT scans. Only
the image-level labels were applied for a weakly-supervised
training manner. The resolution of the CT scans is 512×512.

We apply accuracy, sensitivity, specificity, F1-score met-
rics to evaluate the classification performance of the proposed
method and state-of-the-art methods. Moreover, to evalu-
ate the weakly-supervised detection performance of CBD
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TABLE 1. Ablation study.

stones for each method, the mean intersection over union
(mIoU) and the average precision (AP) [49] values were
employed, and the ground truth bounding boxes of the testing
images were manually labelled by an experienced physi-
cian. In addition, we used the same procedure shown in
CAM [17] to draw bounding boxes for all of the competing
methods.

2) COMPARATIVE BASELINES
Based on our best knowledge, the proposed method is the
first weakly-supervised method for CBD stone detection
from CT scans. Thus, we compared our method with four
state-of-the-art weakly-supervised learning methods from the
computer vision domain and medical domain for the evalu-
ations of CBD stone classification and detection. The first
competing method is the class activation map (CAM) [17]
which applies the global average pooling on the convolu-
tional feature maps before a fully-connected layer to identify
the importance of the image regions for object detection.
To provide more general explanations of activation maps in
convolutional neural networks, Grad-CAM [18] is proposed
by using the gradient information back-propagated to the con-
volutional layer of interest. To extract activation features by
using multiple scale information, MS-CAM [40] is proposed
for geographic atrophy lesion detection. While the localiza-
tion of the CAM based methods is easily affected by salient
feature responses, structure-preserving activation (SPA) [50]
is proposed to extract object structural information for object
detection.

B. ABLATION STUDY
The results of the ablation study are shown in Table 1. The
first row shows the results without (w/o) the multiple field-
of-view (M-FOV) network. When the multiple field-of-view
information is not considered, the sensitivity significantly
drops. Such results show the importance of the multiple
field-of-view network to help extract representative deep fea-
tures. The second row shows the results without the channel
attentionmapmc which represents effective channel informa-
tion of different channels of the decoder feature. When the
decoder feature cannot be enhanced by the learned channel
features, the classification accuracy of the network degrades.
Moreover, the learned features are hard to represent CBD
stones and thus the sensitivity also degrades. Compared with
mc, the spatial attention map ms aims to learn the locations
of the CBD stones based on image-level labels. It is also used
to compute the foreground loss ℓfg. As shown in the third

TABLE 2. Classification results compared with competing methods.

row of Table 1, withoutms, the sensitivity significantly drops
which indicates the importance ofms and ℓfg to identify CBD
stones. Please note that results of the ablation study without
mc and ms were obtained by ignoring corresponding terms
in Eqs. (4) and (5), respectively. The background loss ℓbg
aims to ensure that mp can indicate normal regions when the
training CT scan does not contain CBD stones. Without ℓbg,
the specificity drops compared with the proposed method in
the fourth row of Table 1. This result shows that ℓbg helps
reduce false detection of CBD stones for normal CT scans.
The fifth row shows the results without the consistency loss
ℓcon. Because ℓcon aims to ensure that the dominant feature
response of mp is consistent with the image-level labels,
both sensitivity and specificity of the method without ℓcon
drop compared with the proposed method. The ablation study
shows that the proposed network structure and losses are
effective.

C. QUANTITATIVE RESULTS
Two kinds of the quantitative performance are compared.
The first one is the image-based classification performance
shown in Table 2. Compared with the CAM based methods,
SPA considers a restricted activation module during object
localization to avoid the affections of local extremely high
responses in CAM. Thus, SPA achieves a better specificity
compared with CAM based methods. The proposed method
further considers the foreground loss, background loss and
the consistency loss. Thus, it can achieve high sensitivity
compared with SPA.

The second quantitative performance is to evaluate the
weakly-supervised detection results of each method. When
the methods can correctly locate CBD stones in the weakly-
supervised manner, the detected regions should overlap the
ground truth regions. In the CAM based methods, they do
not consider to learn the locations of CBD stones but only
consider the local extremely high responses of the feature
maps. SPA contains a self-correlation map generating mod-
ule which can improve the attention map based on the
structural information to better locate target objects. Because
CBD stones are usually inconspicuous and may not contain
self-correlations in CT scans, these competing methods fail
to locate CBD stones based on their salient feature responses
in the weakly-supervised manner. Thus, the area of intersec-
tion between the detected regions of these methods and the
ground truth regions is very small which leads to significantly
low mIoU and AP values of these methods as shown in
Table 3. The visualization results in Sec. IV-D also indicate
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FIGURE 2. The CBD stone detection results with attention maps for normal CT scans. (a) Ground truth, (b) CAM, (c) Grad-CAM, (d) MS-CAM, (e) SPA, and
(f) the proposed method. The red rectangles indicate the false detection results of the CBD stones.

TABLE 3. Detection results compared with competing methods.

TABLE 4. The confusion matrix of the proposed method.

that the detected regions of these methods fail to overlap the
ground truth regions. In contrast, the proposed method can
achieve better mIoU and AP values under the guidance of the
spatial-channel attention network with the proposed losses.

Table 4 shows the confusion matrix of the proposed
method. Most CT scans are correctly classified to show that
the proposed method can distinguish the CBD stone cases
from normal cases. In addition, the average inference time of
the proposed method is 0.067 seconds to show the potential
of the real-time usage of the proposed method.

D. QUALITATIVE RESULTS
Fig. 2 shows the qualitative results of the state-of-the-art
methods and the proposed method for normal CT scans of
three patients. The attention maps of each method are also
shown in Fig. 2. The red rectangles show the CBD stone

detection results when the method incorrectly classifies the
normal CT scans as the abnormal CT scans with CBD stones.
Fig. 2(a) shows the ground truth of normal CT scans. The
results of CAM are shown in Fig. 2(b). Because CAM con-
siders the feature responses after global average pooling, the
learned features then easily focus on bone and angiosteosis
regions which are salient compared with other organs in the
CT scans. Similar results can also be observed in Grad-CAM
as shown in Fig. 2(c). As a result, the false detection and false
classification results of CAM and Grad-CAM are observed
from the CT scan of the second patient.

Compared with CAM and Grad-CAM, MS-CAM consid-
ers the scale information with the attention mechanism of the
fully connected operations. It can then observe liver regions
as shown in the CT scans of the first and third patients of
Fig. 2(d). Nevertheless, MS-CAM still incorrectly detects
CBD stones for the second patient due to the salient features
of bones. As indicated by SPA, these CAM based methods
easily miss object structure information because extremely
high feature responses are considered. To solve the problem,
a restricted activation module is proposed in SPA. Neverthe-
less, extremely high feature responses such as bone and liver
regions still affect the classification results of SPA for the
second and third patients as shown in Fig. 2(e). Thus, SPA
also incorrectly locates the bone and liver regions as CBD
stones. Fig. 2(f) shows the results of the proposed method.
With the foreground loss, background loss and consistency
loss, the learned attention maps focus on the regions which
can distinguish CBD stones from ambiguous regions such as
bone regions of the second patient and angiosteosis regions of
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FIGURE 3. The CBD stone detection results with attention maps for CT scans with CBD stones. (a) Ground truth, (b) CAM, (c) Grad-CAM, (d) MS-CAM,
(e) SPA, and (f) the proposed method. The red rectangles indicate the false detection results of the CBD stones.

the third patient. Thus, the proposed method can successfully
classify these CT scans as normal CT scans based on the
learned features.

Fig. 3(a) shows the ground truth regions of CBD stones
in CT scans by using green rectangles. The results of CAM,
Grad-CAM, MS-CAM, SPA and the proposed method are
shown in Figs. 3(b), (c), (d), (e), and (f), respectively. The
same as the observations in Fig. 2(b), the salient feature
responses of CAMare affected by bone regions for the second
and fifth patients, and the gallstones of the first patient.
Although CAM successfully classifies the CT scans of the
first, second, and fifth patients as CT scans with CBD stones,
the locations of detected CBD stones are incorrect compared
with the ground truth. Because the CBD stones of the third
and fourth patients are not clearly captured by CT scans, the
learned salient features of CAM cannot represent the CBD

stones for classification. Thus, miss-detection of CBD stones
occurs for these two patients. Similar results can also be
observed for Grad-CAM and MS-CAM in Fig. 3(c) and (d).
Compared with CAM based methods, SPA considers the

restricted activation module to learn local object structure and
self-correlation to refine localization maps. Thus, the salient
features of SPA can focus on non-bone regions. Neverthe-
less, SPA still fails to correctly locate CBD stones compared
with the ground truth for the first four patients as shown in
Fig. 3(e). Because CBD stones are relatively small and are not
clearly captured in CT scans, the modules of SPA are hard to
learn local object structure of CBD stones from only image-
level labels. As a result, the learned features of SPA cannot
represent CBD stones for the fifth patient.

As shown in Table 3, the competing methods have low
mIoU and AP values. Such results can be visually explained

402 VOLUME 11, 2023



Y.-H. Chang et al.: MFADNet For Weakly Supervised CBD Stone Detection

by the salient feature responses of these methods shown in
Fig. 3(b), (c), (d) and (e), respectively. These competing
methods focus on regions without CBD stones comparedwith
the ground truth regions. Thus, the mIoU values of these
methods are naturally low because the detected regions do
not overlap the ground truth regions. In contrast, the visual-
izations shown in Fig. 3(f) reveal that the proposed method
provides an interpretable AI model which truly focuses on
CBD stones. The cooperation of losses and thewhole network
provides a novel weakly-supervised learning way to learn
salient features to represent CBD stones. Thus, the mIoU and
AP values of the proposed method are significantly better
than those of the competing methods.

V. CONCLUSION
In summary, we propose a novel multiple field-of-view based
attention driven network for a new medical application of
CBD stone detection from CT scans. Different from CAM
based methods, the proposed method is composed of a multi-
ple field-of-view encoder, an attention-driven decoder and
a classification network. While the encoder learns repre-
sentative multiple field-of-view features from CT scans, the
decoder learns the locations of CBD stones based on the
spatial-channel attention network with the proposed fore-
ground loss, background loss and consistency loss from
image-level labels. The classification network provides the
image-level prediction. By the guidance of the proposed
losses, the network is end-to-end trainable in a weakly-
supervised manner. Also shown in the experimental results,
CBD stones can be accurately detected and located com-
pared with the competing methods. To address the clinic
problem of CBD stone detection, we develop the unique
engineering solution with the collaboration between physi-
cians and engineers to achieve the CBD stone diagnosis.
In the future, we will apply the proposed method to differ-
ent interdisciplinary fields of biomedical engineering such
as [48], [51], and [52] to evaluate the generalization capability
of the proposed method.
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