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ABSTRACT Objective: Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative
disease that is not easily detectable in the early stage. This study proposed an efficient method of applying
a graph convolutional network (GCN) on the early prediction of AD. Methods: We proposed a univariate
neurodegeneration biomarker (UNB) based GCN semi-supervised classification framework. We generated
UNB by comparing the similarity of individual morphological atrophy pattern and the atrophy pattern
of Aβ+ AD group according to the brain morphological abnormalities induced by AD. For the GCN
semi-supervised classification model, we took the UNBs of individuals as the features of nodes and
constructed the weight of edges according to the similarity of phenotypic information between individuals,
which explored the essential features of individuals through spectral graph convolution. The attention module
was constructed and embedded into the GCN framework, which may refine the input morphological features
to highlight the main impact of AD on the cerebral cortex and weaken the instability caused by individual
diversities, thereby identifying the significant ROIs affected by AD and improving the classification accuracy.
Results: We tested the UNB-GCN framework on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. The estimated minimum sample sizes were 156, 349 and 423 for the longitudinal Aβ+ AD,
Aβ+ mild cognitive impairment (MCI) and Aβ+ cognitively unimpaired (CU) groups, respectively. And
the proposed UNB-GCN framework combined with the attention module can effectively improve the
classification performance with 93.90% classification accuracy for AD vs. CU and 82.05% for AD vs.
MCI on the validation set. Conclusion: The proposed UNB measures were superior to the conventional
volume measures in describing the AD-induced cerebral cortex morphological changes. And the UNB-GCN
framework combined with attention module may effectively improve the classification performance between
MCI subjects and AD patients. Clinical and Translational Impact Statement: This study aims to predict
the early AD patients, so as to help clinicians develop effective interventions to delay the deterioration of
AD symptoms.

INDEX TERMS Alzheimer’s disease, magnetic resonance imaging, univariate neurodegeneration biomarker,
graph convolutional network, attention module.

I. INTRODUCTION
Alzheimer’s disease (AD) is a progressive and irreversible
neurodegenerative disease which is expected to affect more
than 100 million families by 2050 [1]. In order to maximize

the efficacy of AD prevention therapies, the individuals at
high risk of AD, including the cognitively unimpaired older
adults (65 years) with accumulation of beta-amyloid plaques
(Aβ+) [2] and the carriers of the apolipoprotein E (APOE)
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4 allele [3], need to be treated prior to measurable impair-
ments in cognition, at which time the biomarkers associated
with pathology have been developed [4]. The commonly used
biomarkers related to AD include fluorooxyglucose positron
emission tomography (FDG-PET) measurement of brain glu-
cose metabolism rate [5], standard uptake value ratio (SUVR)
of florbetapir PET about the changes in amyloid plaque bur-
den [6] and magnetic resonance imaging (MRI) structural
measurements of the brain morphological changes [7], [8].
Due to the close relationship between MRI biomarker and
neurodegeneration, a major research in recent years has
been using brain imaging biomarkers, including cortical
atrophy [9], hippocampal atrophy [10], [11], and ventricu-
lar enlargement [12], for differential diagnosis and tracking
of AD. By designing a diagnostic classification model based
on the MRI biomarkers, we can effectively perceive the brain
morphological changes of individuals affected by AD. And
the patients with mild symptoms, such as mild cognitive
impairment (MCI) defined as the early stage of AD, may
be implemented to delay the progression of AD through the
targeted interventions [13], [14].

With the development of machine learning, including
support vector machines (SVM) [15], linear discriminant
analysis (LDA) [16], decision trees [17] and artificial neural
networks [18], which has been widely applied to the classifi-
cation of AD and obtained relatively accurate classification
results through statistical analysis on the extracted MRI
biomarkers. However, due to the strong individual morpho-
logical differences and the inhomogeneity of dementia, there
are some issues to be considered to improve the classification
accuracy.

First, due to the high individual variability and the complex
geometry of the cortical surface [19], it is major challenge to
generate the essential MRI morphological features induced
by AD with high statistical discrimination ability, which will
improve the accuracy of the classification model. Second,
due to the inhomogeneity of AD-induced cortical morphol-
ogy changes and the excessive noise introduced during MRI
acquisition, it is difficult for the classification framework
based on traditional machine learning algorithms, i.e., SVM,
LDA, Decision trees, etc., to obtain higher classification
accuracy. In addition, the correlation of AD-induced morpho-
logical structures among individuals is not fully exploited in
the classification mechanism, which also affects the discrim-
inative ability of the classification model.

Based on the above discussion, we need to consider how
to improve the accuracy of the classification model from two
aspects, i.e., AD-induced morphological features and classi-
fication mechanism. Most of the previous research extracted
the MRI cortical geometrical features on the predefined
regions of interest (ROIs) which are formed by the statistical
group difference analysis [20], [21]. However, these ROIs
lack the guidance of the cortical anatomical information,
which tends to generate the unreliable ROIs and is not con-
ducive to revealing the relationship between the anatomical
morphological abnormalities and AD-related symptoms.

To generate the reliable and robust ROIs, we combined the
registration method and the anatomical information of the
original cortical surfaces provided by FreeSurfer [22], [23]
to re-establish the spatial and anatomical correspondences
between the new registered individual surfaces. Then all the
registered anatomical regions, referred as all the ROIs of
the whole brain, can construct the overall AD-induced struc-
tural abnormality correspondences between the individuals
by the guidance of anatomical information. On each obtained
ROI, the univariate neurodegeneration biomarker (UNB) can
be generated based on our previous work [24] for reliably
and stably quantifying the morphological changes induced
by AD. Finally, we can get a 1D feature vector for each
individual containing n UNBs (i.e., AD-induced morpho-
logical features) computed over n ROIs (i.e., anatomical
regions).

For classification mechanism, it is difficult to obtain
high classification accuracy by directly applying traditional
machine learning methods on the UNBs due to the large
differences between the individual morphological changes
caused by AD. Recently, deep learning methods have
been developed to solve complicated problems in various
fields [25], [26]. In particularly, convolutional neural net-
work (CNN) [27] is widely applied in the fields of pattern
recognition and computer vision, which can automatically
learn the implicit features with rich meaning from the input
data through convolution layers and can effectively improve
the classification accuracy. However, the input data is lim-
ited within Euclidean-structure in CNN, which is difficult
to exploit the correlation between the individuals. Thus,
an efficient variant of CNN, referred as graph convolutional
network (GCN) [28], was proposed to achieve very promis-
ing classification results through applying spectral graph
theory on the non-Euclidean data structure that encodes
both the features of nodes and the correlation between the
nodes.

Due to the diversity of individual atrophy changes caused
by AD [29], it is worth noting that if the weight of atrophy
on each ROI is not identified, the computational complexity
of the GCN classification model will increase and the classi-
fication accuracy will decrease. However, the popular GCN
framework does not contain a discriminative module for each
UNB defined on each ROI. To address this issue, we plan to
embed an attention module in the GCN framework [30], [31],
which is usually used as an insertion module during training
to refine the input UNBs, which may make the network
focus on important regions where the significant UNBs were
generated. Based on the attention module, we may assign
each UNB a weighting factor that represents the degree of
the common statistical atrophy affected by AD. Through
revealing the significant UNBs defined on the significant
ROIs affected by AD, the attention module may improve the
classification performance and decrease the computational
complexity [31].

In this paper, we plan to construct an UNB-GCN
semi-supervised classification framework incorporating an
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attention module to differentiate the MCI subjects and
AD patients. The contributions can be summarized as
follows:

1. The univariate neurodegeneration biomarker (UNB)
generation method considering the anatomic infor-
mation is proposed to comprehensively capture the
AD-induced brain morphometry abnormalities and
reveal the relationship between the anatomical morpho-
logical abnormalities and AD-related symptoms.

2. The graph convolutional network (GCN) framework
is proposed, which may improve the classification
accuracy by automatically learning not only the node
features composed of the UNBs of individual, but
also the association information between nodes based
on the estimated similarity of phenotypic information
between individuals.

3. The attention module is constructed and embedded
into the GCN framework, which may refine the input
morphological features to highlight the main impact of
AD on the cerebral cortex and weaken the instability
caused by individual diversities, thereby identifying the
significant ROIs affected by AD and improving the
classification accuracy.

We hypothesized that our proposed UNB-GCN classi-
fication framework may outperform traditional machine
learning-based classification algorithms in early AD
diagnose.

UNB-GCN’s source code and datasets are available at
https://github.com/Zongshuaiqu/UNB-GCN.git.

II. MATERIAL AND METHODS
A. SUBJECTS
Data is downloaded from the ADNI database [32]. ADNI
is the result of efforts of many co-investigators from a
broad range of academic institutions and private corporations.
It enables researchers around the world to share data. Subjects
have been recruited from over 50 sites across the U.S. and
Canada. The primary goal of ADNI is to test whether bio-
logical markers, such as serial MRI and positron emission
tomography (PET), combined with clinical and neuropsy-
chological assessments, can measure the progression of mild
cognitive impairment (MCI) and early AD. Subjects origi-
nally recruited for ADNI-1 and ADNI-GO had the option
to be followed in ADNI-2. For up-to-date information, see
www.adniinfo.org.

In this study, we used brain structural MRI data
from 127 Aβ+ AD patients and 131 Aβ- cognitively unim-
paired (CU) to identify the ROIs which were further used to
defineUNB. Because the studies have shown that the cerebral
cortex of the left hemisphere shrinks faster than that of the
right hemisphere under the influence of AD [33]. There-
fore, we would focus our research on the left hemisphere
of brain. To validate the statistical discrimination ability of
UNB, we studied the longitudinal UNB changes through
group differences and minimum sample size estimation.

We used the 318 Aβ+ subjects, including 84 AD, 102 MCI,
and 132 CU subjects to train the Attention-based UNB-GCN.
To validate the classification performance of Attention-based
UNB-GCN, we input 128 Aβ+ validation subjects which
were at 24-months test, including 32 AD, 46MCI, and 50 CU
subjects into the graph convolutional network, to classify the
AD vs. MCI and AD vs. CU.

B. IMAGE ACQUISITION
High-resolution brain structural MRI scans were acquired
using 3 Tesla MRI scanners manufactured by General Elec-
tric Healthcare, Siemens Medical Solutions, and Philips
Medical Systems. For each subject, a high-resolution T1
magnetization-prepared spoiled gradient (SPGR) scan was
obtained in the sagittal plane. A T1-weighted pulse sequence
(radiofrequency-SPGR recall acquisition in the steady state,
repetition time = 33 msec, echo time = 5 msec, alpha = 30◦,
number of excitations = 1, field-of-view = 24 cm, imag-
ing matrix = 256 × 93, slice thickness = 1.5 mm, scan
time = 13:36 min) was used to acquire 124 congiguous
horizontal MRI slices with in-plane voxel dimensions of
0.94 × 1.25 mm.

C. SURFACE REGISTRATION
The MRIs of all subjects were preprocessed with auto-
matic FreeSurfer pipeline [34], including skull stripping,
B1 bias field correction, and gray/white matter segmentation.
After the reconstruction of the cortical gray matter surface
is completed, we used the spherical harmonic registra-
tion method [18] to establish the correspondence between
different outer surfaces, and finally achieved the registra-
tion of different individuals. Moreover, FreeSurfer uses the
Desikan/Killiany atlas partition method to label brain regions
during image processing [35]. This partitioning method
divided the cerebral cortex of left hemisphere into 34 anatom-
ical brain regions. We called each anatomical partition a
candidate ROI. According to the anatomical partition infor-
mation of FreeSurfer, there were a total of 34 candidate ROIs
in the left hemisphere.

D. UNIVARIATE NEURODEGENERATION
BIOMARKER (UNB)
We extracted the thickness measurements of all ROIs
from 127 Aβ+ AD subjects and 131 Aβ- CU subjects.
Considering the influence of three factors such as age,
gender and group among subjects, we used general linear
model in the SurfStat software package (http://www.math.
mcgill.ca/keith/surfstat) to obtain the intrinsic thickness
measurements on each vertex of all the ROIs. Next, we com-
puted the group mean thickness difference vertex by vertex
between the AD group and the CU group to obtain the
t-score of each vertex on the ROIs. After transforming
the t-scores to the z-scores for AD group, we obtained
the AD group atrophy pattern. For the individual atrophy
pattern, we selected 318 Aβ+ subjects, including 84 AD,
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102 MCI, and 132 CU subjects. We computed the group dif-
ference and the t-score vertex by vertex on the ROIs between
the thickness of individual subject and the average thickness
of the CU group including 131 Aβ- CU subjects. We trans-
formed the t-scores of each vertex to the z-scores to obtain the
atrophy pattern of the testing individual. Finally, UNB of each
ROI can be obtained by comparing the similarity between the
individual atrophy patterns with theADgroup atrophy pattern
on the predefined ROI:

UNBk =

mk∑
i=1

Zski · Zki

100
(1)

where k is the serial number of the ROI, N = C σ 2

(m−b)2
is the

z-score of ith vertex in the kth ROI for the testing individual
which is called the individual atrophy degree, and Zski is the
z-score of ith vertex in the kth ROI for AD group which is
called AD group atrophy degree. From Eq. (1), we could see
that the UNB measured how similar the individual atrophy
degree was when compared to the AD group atrophy degree
in the selected ROI. The greater the UNBs were, the closer
the individual atrophy degree from the AD morphological
characteristics. So we obtained a feature vector consisting
of 34 UNBs describing the atrophy degree of the left hemi-
sphere of an individual.

E. UNB-GCN FRAMEWORK WITH ATTENTION MODULE
The goal of UNB-GCN model is to learn a function f (X ,W )
on a graph G = {V ,E,W }, which takes G as input and
produces a node-level output Z . And V , E and W represent
nodes, edges, and adjacencymatrix of the graph, respectively.
And every feature vector x(i, •) for every node i, i.e., the
UNBs of i-th subject, is summarized into a feature matrix
X ∈ RN×M , where N is the number of nodes and M is the
feature dimension. The UNB-GCN framework contains K
neural network layers with the following layer-wise propa-
gation rule:

H (k+1)
= f (H (k),W ) (2)

where H (0)
= X and H (K )

= Z . The adjacency weight
Wi,j measures the non-geometric phenotype information sim-
ilarity between i-th subject and j-th subject, such as age,
gender and APOE, etc. In each network layer, f (H ,W ) is
done by graph convolution operation and non-linear activa-
tion function.

1) SPECTRAL GRAPH CONVOLUTION OPERATION
Based on spectral graph theory, the convolution of the
graph in the spatial domain is converted into the multipli-
cation in the spectral domain. Assuming a weighted graph
G = {V ,E,W }, where V represents nodes, E represents
edges, and W represents the adjacency matrix of the graph.
And its normalized graph Laplacian matrix can be expressed
as [36]:

L = IN − D−
1
2WD−

1
2 (3)

where IN is the identity matrix of size N × N and D is
the diagonal degree matrix. An eigen decomposition of the
Laplacian matrix, L = U3UT , gives a set of orthonormal
eigenvectors U = [u0, . . . , uN−1] ∈ RN×N with asso-
ciated real, non-negative eigenvalue diagonal matrix 3 =

diag([λ0, . . . , λN−1]) ∈ RN×N . Considering a spatial signal
x defined on graph G, its Fourier transform is defined as
x̂ = UT x ∈ RN , while the inverse transform is given by
x = Ux̂. Therefore, the graph convolution operation can be
defined as:

gθ ∗ x = U
((
UT gθ

)
·

(
UT x

))
(4)

where gθ represents the convolution kernel of graph convolu-
tion with the learnable parameters.

2) GRAPH EDGES
GivenMl(m) as l-th phenotypic information of individual m,
the adjacency matrix W is defined as

W (m, n) =

p∑
l=1

α (Ml(m),Ml(n)) (5)

where W (m, n) represents the edge weight between indi-
vidual m and individual n, P is the total number of kinds
of phenotypic information. And α characterizes the pheno-
typic information similarity between individuals. When the
phenotypic information is categorical type, such as gender,
we use the Kronecker delta formula [37] to define α. When
the phenotypic information is numerical type, such as age
and APOE, we define α as a unit step function with a
threshold θ . i.e.,

α (Mh(m),Mh(m)) =

{
1, abs (diff (Mh(m),Mh(n))) < θ

0, else

(6)

3) ATTENTION MODULE
In this work, we introduced an attention module for high-
lighting the UNBs generated by the significant ROIs affected
by AD. This module can effectively improve the training effi-
ciency and accuracy of the UNB-GCN model by refining the
input feature vectors. After obtaining feature vectors X{X ∈

RN×M
}, we computed the dot product of every two nodes

separately, and we reached a feature matrix Y {Y ∈ RN×N
}.

Then we applied a linear layer and a softmax function to
obtain the attention map A{A ∈ RN×M

}. Finally, we obtained
the attention feature map by computing Z = X ⊗ A i.e., Z =

softmax(Linear(X .XT )) ⊗ X , where X ∈ RN×M represents
the original input feature vector map. The attention module
was depicted in Fig. 1.

With the attention module, our UNB-GCN framework was
illustrated in Fig. 2. The model consisted of an embedded
attention module and a GCN with K hidden layers activated
by the rectified linear unit (ReLU) function. The output layer
was followed by a softmax activation function. In this frame-
work, each node represented the subject’s UNB features; the
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FIGURE 1. Architecture of attention module. We computed the dot
product of every two nodes on the feature map separately, applied a
linear layer and a softmax function to obtain the weight map A of ROIs.
Finally, we obtained the attention feature map Z = X ⊗ A.

edge weight represented the phenotypic information simi-
larity between two subjects. Using the UNB-GCN model
constructed by the graph-structured data and the symmetric
normalized Laplacian matrix L for graph convolution, we can
extract the hidden rich information the refined UNBs through
the attention module. By calculating the cross entropy loss
function for all labeled nodes, f(X , W ) on the graph can be
trained for a non-labeled node classification. All experiments
were run on commodity hardware with 64G RAM and a
single 2.8 GHz CPU. The framework adopted was PyTorch
1.0.0 and Python 3.6.1.

III. EXPERIMENTAL RESULTS
A. GENERATION OF AD GROUP ATROPHY PATTERN
To obtain the AD group atrophy pattern, we analyzed
258 subjects from ADNI database including 127 Aβ+ AD
patients and 131 Aβ- CU subjects (Table 1). Because one
of the hallmarks of AD is the accumulation of beta-amyloid
plaques (Aβ) in human brains and a positive Aβ reading
is now accepted as ‘dementia due to AD’ together with the
presence of clinical symptoms. Using Aβ+ AD subjects
to generate AD group atrophy pattern may reflect intrinsic
morphological changes induced by AD and also have strong
generalization ability on new subjects. Demographic and
clinical data were compared using a one-way analysis of
variance, and the gender data were analyzed by a χ2 test.
Table 1 indicated that the factors of gender, age and education
of the two groups were matched, while the Mini-Mental State
Examination (MMSE) was significantly different between
these two groups. MMSE is a commonly used cognitive
function rating scale [38]. The lower the score of MMSE is,
the more severe the dementia is.

TABLE 1. Demographic information of Aβ+ AD group and Aβ- CU group.

B. LONGITUDINAL DATA ANALYSIS
To verify the discrimination power of UNBs, we used
318 longitudinal Aβ+ subjects, including 84 AD, 102 MCI

and 132 CU subjects for longitudinal analysis. The demo-
graphic characteristic statistics information for the testing
subjects was shown in Table 2, such as Clinical Dementia
Rating Sum of Boxes (CDR-SB) [39], ADAssessment Scale-
Cognitive Subscale (ADAS-Cog11) [40] and MMSE scores.
CDR-SB is an important means to evaluate the stage and
severity of AD in longitudinal studies and clinical diagnosis.
And it is used for grading and follow-up of dementia severity.
Usually the higher the score is, the more severe the dementia.
ADAS-Cog11 includes orientation, language, structure, use
of ideas, immediate word recall and word recognition. It fol-
lows the same trend as the CDR-SB, the higher the score, the
more severe the dementia. All subjects underwent two tests,
including the baseline test and a 24-months test.

TABLE 2. Demographic information of subjects in three clinical groups.

C. GROUP DIFFERENCE STUDY
Based on the obtained ROIs, using the AD group atrophy
degree and the individual atrophy degree, we computed the
UNBs of 318 longitudinal Aβ+ subjects via (1), includ-
ing 84 AD, 102 MCI and 132 CU subjects for longitudinal
analysis. And we studied the total changes of the UNBs
and the left hemisphere cortical volume for the longitudinal
subjects within a period of 24 months. To adjust for indi-
vidual differences in head size, the volume of each ROI was
adjusted by the intracranial vault volume (ICV) of each ubject
(volume/ICV). The statistical comparison results of different
longitudinal groups of UNBs and volume measures were
shown in Table 3. The p-value results of different longitu-
dinal groups were computed by two-sided paired t-tests. The
effect sizes of different longitudinal groups were computed
by paired Cohen’s d measure [41].

TABLE 3. The statistical comparison results of different longitudinal
groups based on the UNBS and volume measures.
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FIGURE 2. Architecture of our proposed UNB-GCN framework. In this framework, each node represented the subject’s UNB features;
the edge weight represented the phenotypic information similarity between two subjects. The model contained an embedded
attention module and the GCN with K hidden layers activated by using the Rectified Linear Unit (ReLU) function. The output layer was
followed by a softmax activation function.

For the longitudinal Aβ+ AD, Aβ+ MCI and Aβ+

CU, the p-values and effect sizes for the mean differences
of the total UNB were 8.21e-09 and 0.63, 1.12e-05 and
0.37, 1.73e-04 and 0.26, respectively. For the total volume
measures, the p-values and effect sizes of the longitudi-
nal Aβ+ AD, Aβ+ MCI and Aβ+ CU were 1.29e-08 and
0.56, 2.08e-04 and 0.32, 8.81e-03 and 0.19, respectively. The
results indicated that the UNBs might have stronger per-
ception ability to the morphological changes of the cerebral
cortex than the volume measures.

D. MINIMUM SAMPLE SIZE ESTIMATION
To assess the statistical power of the obtained UNB, we used
the minimum sample size estimation:

N = C
σ 2

(m− b)2
(7)

where σ denotes the standard deviation of the biomark-
ers changes, m and b refer to the mean value of the
total UNBs at the 24-months test and the baseline test
of the longitudinal data. C is a constant. Using Eq. (7),
we estimated the minimum sample sizes of the total UNBs
and the total left hemisphere volume measures. As shown
in Fig. 3, the minimum sample sizes of the total UNBs of
the longitudinal Aβ+ AD, Aβ+ MCI and Aβ+ CU groups
were 156, 349 and 423, respectively. For the total volume
measures, the minimum sample sizes of the longitudinal

FIGURE 3. The minimum sample size comparisons between UNBs and
volume measures for longitudinal Aβ+ AD, MCI and CU groups.

Aβ+ AD, Aβ+ MCI and Aβ+ CU groups were 197,
437 and 491.

Regardless of whether it was based on the UNBs or vol-
ume measures, the minimum sample sizes of longitudinal
Aβ+ AD group was smallest, followed by the longitudinal
Aβ+ MCI group, and the minimum sample sizes of lon-
gitudinal Aβ+ CU group was largest. It indicated that the
morphological changes in the Aβ+AD group were relatively
largest, followed by Aβ+ MCI group, and the morphological
changes in Aβ+ CU group were relatively smallest between
the baseline and the 24-months follow-up. Meanwhile, the
results showed that the minimum sample sizes from the vol-
ume measures for different longitudinal groups were larger
than our UNBs, indicating that the UNBsmight have detected
the essential morphological changes induced by AD better
than the volume measures and could sensitively identify the
degree of abnormal cortical morphological changes caused
by neurodegenerative diseases.

E. CORRELATION ANALYSIS BETWEEN UNBs, VOLUME
MEASURES AND CLINICAL RATING SCORES
In this section, we verified whether the total changes of UNBs
and cortical volume measures were correlated with the total
changes of clinical rating scores, such as CDR-SB, ADAS-
Cog11 and MMSE scores. Then we calculated the change
rates (Rf ) of UNBs, volume measures and clinical rating
scores over a period of time by the following equation:

Rf =
fsecond − ffirst

ffirst
(8)

where ffirst and fsecond represent the total values of UNBs
and volume measures at the baseline test and the 24-months
test. We used the same Aβ+ longitudinal subjects (84 AD,
102 MCI and 132 CU subjects in Section III.B). We explored
the correlation analysis between the Rf values of UNBs,
cortical volume and the Rf values of CDR-SB, MMSE,
and ADAS-Cog11 measures with the Pearson parametric
test [42], to understand which variables were correlated with
UNBs in our dataset. The correlation results, i.e., correlation
coefficients (CC), and correlation significance for CC
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between the Rf values of UNBs, volume measures and the Rf
values of CDR-SB, MMSE, and ADAS-Cog11 measures,
were shown in Table 4.

TABLE 4. The correlation analysis results between UNBs, volume
measures and CDR-SB, ADAS-Cog11 and MMSE for different Aβ+

longitudinal groups.

The results in Table 4 showed that there were moderate
correlations between the Rf values of UNBs and the Rf val-
ues of CDR-SB, ADAS-Cog11 and MMSE scores for Aβ+

longitudinal AD and MCI groups. This was likely due to
that the proposed UNBs well match with clinical outcomes
within longitudinal Aβ+ AD and MCI groups. However, the
Rf values of UNBs had weak correlations with the Rf values
of the CDR-SB, ADAS-Cog11 and MMSE scores for lon-
gitudinal Aβ+ CU group. A reasonable reason might be
that the morphological changes induced by AD occurred
before the cognitive decline in the non-destructive cognitive
stage, as previously proposed in the literature [43], [44].
In addition, the correlation between the Rf values of UNBs
and the Rf values of CDR-SB, ADAS-Cog11 and MMSE
scores were better than those of volume measures for the all
Aβ+ longitudinal groups. In conclusion, UNB, as a measure
to compare abnormal morphological patterns of individuals
with abnormal morphological patterns of AD group, may
better describe the morphological changes of cerebral cortex
induced by AD.

F. SETTING
In our experiments, we evaluated the effectiveness of
UNB-GCN on the ADNI databases. We used the grid search
method and 10-fold cross-validation method to find the opti-
mal parameter combinations [45]. Specifically, we randomly
selected 90% of labeled subjects for training and the last 10%
for testing. The random splits were repeated 10 times to
reduce random errors. Finally, the best combination was
selected according to the cross-validation scores. Parameters
details are as below: dropout rate was 0.3, the learning rate
was 0.01, the number of epochs was 200, the quantitative
phenotypic measures θ was 2, the hidden layers K was 3.

Using the above setting, we carried out comprehensive exper-
iments to demonstrate the performance of the UNB-GCN
model.

G. CLASSIFICATION COMPARISON BETWEEN
UNB-GCN AND VOL-GCN
In this section, we used the Aβ+ longitudinal subjects at
24-months test (84 AD, 102 MCI and 132 CU subjects in
Section III.B). We took UNBs and volume measures as the
biomarker inputs and constructed the UNB-GCN and the Vol-
GCN classification models, respectively. To further evaluate
the effectiveness of the embedded attention model, we also
evaluated the performance for the Vol-GCN and UNB-GCN
with and without the attention module, respectively. The
results for the discrimination abilities of the different clas-
sification models were shown in Fig. 4.

FIGURE 4. The performances for UNB-GCN and Vol-GCN classification
models with and without attention module.

When UNBs were used as the biomarker, the aver-
age accuracy was 94.25% for AD vs. CU and 83.11%
for AD vs. MCI. When volume measures were used as
biomarkers, the average accuracy was 89.50% for AD vs. CU
and 75.28% for AD vs. MCI. The results showed that our
proposed UNB biomarker had higher classification power
than volume measures.

On the other hand, when we used UNB-GCN model
with attention module, the average accuracy was 94.84% for
AD vs. CU and 84.61% for AD vs. MCI. When we used
Vol-GCNmodel with attention module, the average accuracy
was 89.64% for AD vs. CU and 76.04% for AD vs. MCI.
The results showed that the embedded attention module may
slightly improve the classification performance of the GCN
network through highlighting the main impact of AD on the
cerebral cortex. Among them, the classification performance
of AD vs. MCI was a little improved than that of AD vs. CU.
This may be due to the fact that there are some stable signif-
icant atrophy patterns for some specific ROIs between MCI
and AD groups, which can be learned in the attention model.

H. COMPARISONS WITH SOME MACHINE
LEARNING ALGORITHM
We further compared the classification performance of
our UNB-GCN model with various traditional classifica-
tion models. Using the UNBs as the input, we compared
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the classification performance of AD and MCI. The tradi-
tional classification models included random forest classifier
(RF) [46], support vector machine (SVM),logistic regression
(LR) [47] and Extreme Gradient Boosting (XGBoost) [48].
The parameters of RF were: The number of trees was 50,
and the maximum depth was 25. We used the L2 penalty
and one-vs-rest (OVR). The parameters of SVM were: The
kernel was ‘gaussian radial basis function kernel’, the penalty
factor C was 10, regularization parameter was 0.1 and the
gamma was 0.05. For the XGBoost, we used the tree-based
models, estimators number was 50, min_child_weight was 6,
learning rate was 0.1, max_depth was 5. We used the squared
L2 penalty. And the result was shown in Fig. 5.

FIGURE 5. The classification performances of various classification
models.

Overall, the results showed that SVM model had the
worst performance with an accuracy of 72.2%, followed by
LR model (73.8% accuracy). And the classification accu-
racy of the RF classifier is slightly improved to 74.6%. The
classification accuracy of the XGBoost is slightly improved
to 79.2%. Compared with other methods, the classification
performance of GCN was greatly improved, with an average
accuracy of 83.11%. The average accuracy of our proposed
GCN model with attention module was 84.61%. The results
showed that our GCN model outperforms the traditional
machine learning classification models.

I. COMPARISONS WITH SOME DEEP-LEARNING
BASED MODELS
In order to compare the effectiveness of the proposed method
on the diagnostic task of AD, we compared the diagnos-
tic accuracy of UNB-GCN model with existing methods
(e.g., CNN [49], GCN [50], GAT [51]) on the same dataset
in Section III.G. The diagnostic accuracy (ACC), sensitivity
(SEN) and specificity (SPE) of the above methods were
compared with those of UNB-GCN in AD/NC diagnostic
tasks. The performances onAD classification achieved by our
method and some deep learning methods on the test set from
ADNI were shown in Table 5. And the confusion matrix was
shown in Table 6.

Our method reached better results on all four metrics
(i.e., ACC = 94.25%, SEN = 98.39%, SPE = 89.13%, and
AUC = 95.30%) in AD vs. CU classification. We set the
epochs as 200, the learning rate as 0.01, dropout rate: 0.3.
CNN model achieved ACC = 92.13%, SEN = 95.28%,

TABLE 5. Comparison of our method with some deep-learning based
models.

TABLE 6. Confusion matrix comparison of our method with some
deep-learning based models.

SPE = 87.64%, and AUC = 92.87%. GAT model achieved
ACC = 93.52%, SEN = 96.83%, SPE = 88.89%, and
AUC = 93.55%. GCN model achieved ACC = 90.28%,
SEN = 93.02%, SPE = 86.21%, and AUC = 90.80%.
GAT models perform better than GCN models. These results
are consistent with findings in previous works [48], [49].
In contrast, our proposed method achieved accuracy 0.7%
higher than the best results using the above methods. The
results shown in Table 6 indicated that True Positive (TP)
of UNB-GCN model and GAT model were better than other
models. And the True Negative (TN) of the UNB-GCNmodel
was better than the others. The False Negative (FN) and the
False Positive (FP) of the UNB-GCN model were smaller
than the other models.

J. VALIDATING THE MODEL ON THE VALIDATION SET
In this section, we created an external validation set from
ADNI to further evaluate the performance of our model.
we used 128 Aβ+ subjects which were at 24-months
test, including 32 AD, 46 MCI and 50 CU subjects. The
demographic characteristic statistics information was shown
in Table 7.

TABLE 7. Demographic information of subjects in three clinical groups.

We firstly generate new UNBs with our proposed UNB
algorithm for all the new subjects from ADNI according to
the Eq. (1). Then we validated the trained UNB-GCN model
in Section III.F. The validation set achieved ACC = 93.90%,
SEN = 90.91%, SPE = 95.92%, and AUC = 95.85% in AD
vs. CU classification. Our model achieved ACC = 82.05%,
SEN = 76.47%, SPE = 86.36%, and AUC = 86.60% in AD
vs. MCI classification. And the confusion matrix was shown
in Table 8.
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TABLE 8. Confusion matrix of our method on the validation set.

K. COMPARISONS TO THE RELATED PRIOR WORKS
In this section, we further compare our UNB-GCN method
with other different competing methods in the correspond-
ing papers. Poloni et al. proposed a two-level classification
framework, landmark- and image-based [52]. They clas-
sified 209 AD patients and 302 CU subjects. The ACC
was 89.24%. They classified 209 AD patients and 251 MCI
patients. The ACC was 69.8%. Jiao et al. proposed a
multi-modal feature selection algorithm using feature corre-
lation and feature structure fusion [53]. The accuracy of CU
subjects versus AD patients achieved 91.85%. Wu et al. pro-
posed an entropy-based measure of causality brain networks
on the basis of the rs-fMRI data to classify AD and CU [54].
The ACC was 89.83%. Jiang et al. proposed a hierarchical
GCN framework (hi-GCN) to learn the graph feature embed-
ding while considering the network topology information and
subject’s association at the same time [55]. The accuracy of
MCI subjects versus AD patients achieved 78.5%. Table 9
showed the comparison results. We can observe that our pro-
posed method had achieved promising performance. Hence,
our model had a good application prospect in classification
tasks.

TABLE 9. Algorithm comparison with the related works.

IV. DISCUSSION
We proposed the UNB-GCN classification framework that
can effectively discriminate between MCI subjects and

AD patients. With the reliability and sensitivity of UNB to
AD-induced cerebral cortical morphological changes and the
enhancement effect of attention module on the UNB features,
our proposed classification model can make full use of the
morphological features of individuals and the correlation
between individual phenotypic information for training and
classification, thereby improve the computational efficiency
and accuracy of the classification. The experimental results
indicated that our proposed UNB measures were superior
to the conventional volume measures, and the UNB-GCN
framework combined with attention module could effectively
improve the classification performance.

A. INFLUENCE OF THE GENERAL LINEAR MODEL
In this paper, we used the general linear model to obtain
intrinsic group morphological structure among the same
group excluding the influence of individual differences of
age and gender. In order to explore the influence of these
factors on UNBs, we directly used the raw thickness features
without the general linear model processing. We selected
same subjects (127 Aβ+ AD patients and 131 Aβ- CU
subjects in Section III.A). We followed the method pro-
posed in Section II.D to calculate the new UNBs based on
the raw thickness information and we called the new UNBs
as UNB-RAWs. With Eq. (7), we estimated the minimum
sample sizes of the total UNB-RAWs. The results were shown
in Fig. 6.

FIGURE 6. The minimum sample sizes of the UNB and UNB-RAW.

For the UNB-RAWs, the minimum sample sizes of the
longitudinal Aβ+ AD, Aβ+ MCI and Aβ+ CU groups were
205, 544 and 647, respectively. For the UNBs, the minimum
sample sizes of the longitudinal Aβ+ AD, Aβ+ MCI and
Aβ+ CU groups were 156, 349 and 423, respectively. The
experiments showed that the general linear model can elimi-
nate the influence of individual differences of age and gender.
It enabled us to extract intrinsic morphological changes of
cortical surface induced by AD. Using general linear model,
we could improve the stability of UNB and improve statistical
discrimination power.

B. ROC ANALYSIS
To further access the statistical discrimination power of the
UNBs, we used ROC method to compare the discrimination
performance of the total UNBs and the total volumemeasures
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in distinguishing Aβ+ AD and Aβ+ CU subjects. We used
the Aβ+ longitudinal subjects (84 AD and 132 CU subjects
in Section III.A). Then we applied the ROC curve to analyze
the statistical discriminative power of the total UNBs and the
total volume measures.

FIGURE 7. The ROC results of the UNBs and the volume measures.

The results in Fig. 7 showed that the AUC, 95% confidence
interval (CI) of AUC for classifying the Aβ+ AD and Aβ+

CU subjects are 0.934 and [0.890, 0.965] for the UNBs,
0.882 and [0.848, 0.904] for the volume measures, respec-
tively. This indicated that the UNBs may better characterize
the degree of influence of AD on individual morphology than
the volume measures.

C. INFLUENCE OF THE PHENOTYPIC MEASURES
To further improve the classification performance of our
UNB-GCN model, we incorporated phenotypic informa-
tion to further optimize the graph structure. In this section,
we evaluated the performance of the model under different
phenotype graph configurations for AD vs. MCI. Pheno-
typic information included age, gender and APOE genetic
information. The results of multiple different graph resulted
measured using gender, age or APOE genetic information
was presented in Fig. 8.

FIGURE 8. Classification results of different phenotypic information.

The experiments verified whether the classification per-
formance would change with the combination change of
phenotypic information. Among them, the combination of
age and APOE genetic information showed the largest perfor-
mance with an average accuracy of 82.4%. This was followed

by a combination of age and gender, with an average accuracy
of 81.8%. And the combination of gender and APOE genetic
information had an average accuracy of 81.35%. The average
accuracy of the classification was 79.6% without combining
phenotypic information. The results showed that the clas-
sification performance of our GCN model was improved
when we incorporated age, gender and APOE genetic infor-
mation into the construction of the weights of edges in the
graph structure. The average accuracy of the classification
was 83.11%.

D. ATTENTION MODULE FOR ROIs EXTRACTION
In our GCN model, we embedded an attention module that
could generate attention maps via forward propagation. The
attention map indicated ROIs with significant morphological
changes induced by AD, which were normalized to a range
of 0-1 for visualization. ROIs with the normalized attention
weights smaller than 0.05 were not displayed. As shown
in Fig. 9, it illustrated the localization of the significant ROIs.

FIGURE 9. The localization of the significant ROIs. ROIs with normalized
attention weights smaller than 0.05 were not displayed. Fig (a) and Fig (b)
showed that the GCN-UNB model with an attention module highlights the
significant group-difference regions for CU vs. AD. Fig (c) and Fig (d)
showed that the GCN-UNB model with an attention module highlights the
significant group-difference regions for MCI vs. AD.

The results show that the UNB-GCN model with an
attention module highlights the significant group-difference
regions for CU vs. AD and MCI vs. AD. Fig (a) and Fig (b)
showed regions with significant morphological difference
between CU and AD groups, including temporal pole middle
(w= 0.1065), temporal gyrus (w= 0.0815), inferior temporal
gyrus (w = 0.0708), parahippocampal gyrus (w = 0.0596),
supramarginal gyrus (w = 0.0553) and superior parietal cor-
tex (w = 0.0508). Fig (c) and Fig (d) showed regions with
significant morphological difference between MCI and AD
groups, including temporal gyrus (w = 0.0630), superior
parietal cortex (w= 0.0615), pars orbitalis (w= 0.0575), pars
opercularis (w = 0.0548), precuneus cortex (w = 0.0512),
superior frontal gyrus (w= 0.0508). The obtained significant
group-difference regions induced by AD in different group
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comparisons, i.e., CU vs. AD and MCI vs. AD, were consis-
tent with the observations in prior researches [31], [56].

E. LIMITATIONS
We should also note the limitations of this study. First, a rela-
tively small number of subjects were included as the research
objects. Besides, we had not tested our GCN model and
UNB algorithm in a cohort other than ADNI. Even so, our
current results demonstrated the proposed GCN model might
improve the classification performance of AD. Third, we used
UNBs only to identify AD without combining other types of
biomarkers. If we combined these biomarkers with UNBs, the
ability to identify AD could be effectively improved. Finally,
we need to continue to optimize the network model used
in the experiment to improve the robustness of the model
classification.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed a UNB-GCN classification
framework which may achieve the better classification per-
formance between MCI subjects and AD patients. Recently,
functional connectivity networks constructed from func-
tional magnetic resonance images (f-MRI) have shown great
promise for distinguishing patients with neurological dis-
eases from normal controls. In our future work, we will use
GCN model to fully exploit the complementary informa-
tion between multimodalities (MRI, PET, and CSF) to fully
extract AD-induced features and ultimately achieve better
classification performance.
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